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Abstract
Many modern data processing and HPC workloads are heav-
ily memory-latency bound. A tempting proposition to solve
this is software prefetching, where special non-blocking
loads are used to bring data into the cache hierarchy just
before being required. However, these are difficult to insert
to effectively improve performance, and techniques for au-
tomatic insertion are currently limited.

This paper develops a novel compiler pass to automat-
ically generate software prefetches for indirect memory
accesses, a special class of irregular memory accesses of-
ten seen in high-performance workloads. We evaluate this
across a wide set of systems, all of which gain benefit from
the technique. We then evaluate the extent to which good
prefetch instructions are architecture dependent. Across a set
of memory-bound benchmarks, our automated pass achieves
average speedups of 1.3× and 1.1× for an Intel Haswell pro-
cessor and an ARM Cortex-A57, both out-of-order cores,
and performance improvements of 2.1× and 3.7× for the
in-order ARM Cortex-A53 and Intel Xeon Phi.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors - Compilers, Optimization

Keywords Software Prefetching, Compiler Analysis

1. Introduction
Many modern workloads for high-performance compute
(HPC) and data processing are heavily memory-latency
bound [10, 13, 18, 25]. The traditional solution to this has
been prefetching: using hardware to detect common access
patterns such as strides [4, 28], and thus bring the required
data into fast cache memory before it is requested by the pro-
cessor. However, these techniques do not work for irregular
access patterns, as seen in linked data structures, and also in
indirect memory accesses, where the addresses loaded are
based on indices stored in arrays.

Software prefetching [2] is a tempting proposition for
these data access patterns. The idea is that the program-
mer uses data structure and algorithmic knowledge to insert
instructions into the program to bring the required data in
early, thus improving performance by overlapping memory
accesses. However, it is difficult to get right. To gain benefit,
the cost of generating the address and issuing the prefetch
load must be outweighed by the latency saved from avoiding
the cache miss. This is often not the case, as dynamic instruc-
tion count increases significantly, and any loads required

for the address generation cause stalls themselves. Further,
prefetching too far ahead risks cache pollution and the data
being evicted before use; prefetching too late risks the data
not being fetched early enough to mask the cache miss. In-
deed, these factors can often cause software prefetches to
under-perform, or show no benefit, even in seemingly ideal
situations.

Therefore, to ease programmer effort it is desirable to au-
tomate the insertion of prefetches into code. Examples exist
in the literature to do this for both stride [2, 23] and linked-
list access patterns [17]. However, the former is usually bet-
ter achieved in hardware to avoid instruction overhead, and
the latter has limited performance improvement due to the
lack of memory-level parallelism inherent in linked struc-
tures. Neither of these caveats apply to indirect memory ac-
cesses, which contain abundant memory-level parallelism.
However, no automated approach is currently available for
the majority of systems and access patterns.

To address this, we develop a novel algorithm to auto-
mate the insertion of software prefetches for indirect mem-
ory accesses into programs. Within the compiler, we find
loads that reference loop induction variables, and use a
depth-first search algorithm to identify the set of instruc-
tions which need to be duplicated to load in data for fu-
ture iterations. On workloads of interest to the scientific
computing [1], HPC [19], big data [24] and database [26]
communities, our automated prefetching technique gives
an average 1.3× performance improvement for an Intel
Haswell machine, 1.1× for an Arm Cortex-A57, 2.1× for
an Arm Cortex-A53, and 2.7× for Xeon Phi. We then con-
sider reasons for the wide variance in performance attainable
through software prefetching across different architectures
and benchmarks, showing that look-ahead distance, memory
bandwidth, dynamic instruction count and TLB support can
all affect the utility of software prefetch.

2. Related Work
Software prefetching has been studied in detail in the past,
and we give an overview of techniques that analyse their
performance, automate their insertion, and determine the
look-ahead, in addition to those providing software prefetch
though code transformations.

Prefetching Performance Studies Lee et al. [15] show
speedups for a variety of SPEC benchmarks with both
software and hardware prefetching. However, these bench-
marks don’t tend to show indirect memory-access patterns
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in performance-critical regions of the code, limiting the ob-
servable behaviour. By comparison, Mowry [22] considers
both Integer Sort and Conjugate Gradient from the NAS Par-
allel Benchmarks [1], which do. Both papers only consider
simulated hardware. However, we show the microarchitec-
tural impact on the efficacy of software prefetching is im-
portant: Integer Sort gains a 7× improvement on an Intel
Xeon Phi machine, but a negligible speedup on an ARM
Cortex-A57. In contrast, Chen et al. [3] insert prefetches
for database hash tables by hand, whereas we develop an
algorithm and automate insertion for this and other patterns.

Automatic Software Prefetch Generation Software pre-
fetching for regular stride access patterns has been imple-
mented in several tools, such as the Intel C Compiler [11].
These are particularly useful when they can beat the perfor-
mance of the hardware stride prefetcher, such as in the Xeon
Phi [21]. Methods for doing this in the literature directly in-
sert software prefetches into loops, for example Callahan
et al. [2]. Mowry [22] extends this with techniques to re-
duce branching, removing bounds checks for prefetches in-
side loops by splitting out the last few iterations of the loop.
Wu et al. [29] use profiles to prefetch applications that are ir-
regular but happen to exhibit stride-like patterns at runtime.
Examples also exist in the literature for software prefetch-
ing of both recursive data structures, for example Luk and
Mowry [17] prefetch linked lists, and function arguments,
such as Lipasti et al. perform [16].

Mowry’s PhD dissertation [22] discusses indirect prefetch-
ing for high level C-like code. In contrast, in this paper we
give a full algorithm to deal with the complexities of in-
termediate representations, including fault avoidance tech-
niques and value tracking. An algorithm for simple stride-
indirect patterns is implemented in the Xeon Phi com-
piler [12], but it is not enabled by default and little infor-
mation is available on its inner workings. Further, it picks
up relatively few access patterns, and is comprehensively
outclassed by our technique, as shown in section 6.

VanderWiel and Lilja [27] propose moving the software
prefetches to a dedicated programmable hardware prefetch
controller, to reduce the associated overheads, but their anal-
ysis technique also only works for regular address patterns
without loads. Khan et al. [7, 8] choose to instead insert soft-
ware prefetches at runtime using a runtime framework for
code modification. This allows prefetching to be done for
applications where the source code is unavailable, and also
gives access to runtime data, but limits access to static infor-
mation such as types, and also adds overhead.

Scheduling Prefetches A variety of fine-grained prefetch
scheduling techniques, to set the appropriate look-ahead dis-
tance, have been considered in the past. Mowry et al. [23]
consider estimated instruction time against an estimated
memory system time. The former is difficult to estimate
correctly on a modern system, and the latter is microarchi-
tecture dependent, which makes these numbers difficult to

1 for (i=0; i<base_array_size; i++) {
2 target_array[func(base_array[i])]++;
3 }

(a) Code containing stride-indirect accesses
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(b) Prefetching from target array

Figure 1: Many workloads perform stride-indirect traversals start-
ing from an array. We can look ahead in the base array and prefetch
future values from the target array.

get right. Lee et al. [15] extend this by splitting instruc-
tions per cycle (IPC) and average instruction count, which
are both determined from application profiling. As these are
all small numbers, and errors are multiplicative, accuracy is
challenging: the latter multiplies the distance by 4 to bias
the result in favour of data being in the cache too early. In
comparison, our algorithm schedule prefetches based on the
number of loads required to generate an address.

Techniques Involving Software Prefetches Rather than
directly inserting software prefetches within loops, some
works have used them as parts of separate loops to improve
performance or power efficiency. Jimborean et al. [6] use
compiler analysis to duplicate and simplify code, to separate
loads and computation. This is to enable different frequency-
voltage scaling properties for different sections of the code.

Software prefetches can also be moved to different threads,
to reduce the impact of the large number of extra instruc-
tions added to facilitate prefetching. Kim and Yeung [9] use
a profile-guided compiler pass to generate “helper threads”,
featuring prefetch instructions, to run ahead of the main
thread. Malhotra and Kozyrakis [20] create helper threads
by adding software prefetch instructions to shared libraries
and automatically detecting data structure traversals.

Summary Although Mowry has analysed indirect memory
access in the past [22], nobody has yet performed a ma-
jor study of software prefetching for them, nor developed
an automated compiler pass to exploit them. The next sec-
tion shows the potential for software prefetch for these ac-
cess patterns, before developing our algorithm for automatic
prefetch generation.

3. Prefetch Potential
To show how software prefetches can aid common indi-
rect access patterns, consider figure 1. Here, we have an
access pattern that involves sequential movement through
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1 for (i=0; i<NUM_KEYS; i++) {
2 // The intuitive case, but also
3 // required for optimal performance.
4 SWPF(key_buff1[key_buff2[i + offset]]);
5 // Required for optimal performance.
6 SWPF(key_buff2[i + offset*2]);
7 key_buff1[key_buff2[i]]++;
8 }

Code listing 1: An integer sort benchmark showing software
prefetch locations. The intuitive prefetch to insert is only at line 4,
whereas optimal performance also requires that at line 6.
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Figure 2: Software prefetching performance for code listing 1 on
an Intel Haswell micro-architecture. Inserting software prefetches
for maximal performance is a challenge even in simple cases, be-
cause intuitive schemes leave performance on the table, and choos-
ing the correct offset is similarly critical for high performance.

base array, followed by access into target array, based
on a function func on the data from the first array. When
using the identity function (i.e., func(x) = x), this repre-
sents a simple stride-indirect pattern. If func(x) is more
complex, it represents a hashing access.

Both patterns are suitable for software prefetching, pro-
vided that func(x) is side-effect free. As the addresses ac-
cessed in target array are data-dependent, a hardware
stride prefetcher will be unable to discern any pattern, so
will fail to accurately prefetch them. However, future mem-
ory access addresses can easily be calculated in software due
to being able to look ahead in base array.

Still, inserting the correct prefetch code, with suitable
look-ahead distances (or offset from the current iteration),
is challenging for an end user. Code listing 1 shows the code
required to prefetch a simple stride-indirect access pattern
from an integer sort benchmark (as described in section 5.1),
and figure 2 shows the performance of different schemes.
The intuitive approach inserts only the prefetch at line 4, giv-
ing a speedup of 1.08×. However, for optimal performance,
staggered prefetches to both the base array key buff2 and
the indirect array key buff1 are required, even in the pres-
ence of a hardware stride prefetcher, meaning the prefetch
at line 6 is also required to give a speedup of 1.30×. Fur-
ther, choosing a good prefetch distance is critical to avoid
fetching the data too late (when the offset is too large), or
polluting the cache (when the offset is too small).

Given these complexities, even for the simple exam-
ple shown, we propose an automated software-prefetch-
generation pass for indirect memory-access patterns within
modern compilers. This avoids the programmer having to

1 DFS(inst) {
2 candidates = {}
3 foreach (o: inst.src_operands):
4 // Found induction variable, finished this path.
5 if (o is an induction variable):
6 candidates ∪= {(o, {inst})}
7 // Recurse to find an induction variable.
8 elif (o is a variable and is defined in a loop):
9 if (((iv, set) = DFS(loop_def(o))) != null):

10 candidates ∪= {(iv, {inst}∪set)}
11
12 // Simple cases of 0 or 1 induction variable.
13 if (candidates.size == 0):
14 return null
15 elif (candidates.size == 1):
16 return candidates[0]
17
18 // There are paths based on multiple induction
19 // variables, so choose the induction variable in
20 // the closest loop to the load.
21 indvar = closest_loop_indvar(candidates)
22
23 // Merge paths which depend on indvar.
24 return merge_instructions(indvar, candidates)
25 }
26
27 // Generate initial set of loads to prefetch and
28 // their address generation instructions.
29 prefetches = {}
30 foreach (l: loads within a loop):
31 if (((indvar, set) = DFS(l)) != null):
32 prefetches ∪= {(l, indvar, set)}
33
34 // Function calls only allowed if side-effect free.
35 remove(prefetches, contains function calls)
36 // Prefetches should not cause new program faults.
37 remove(prefetches, contains loads which may fault)
38 // Non-induction variable phi nodes allowed if the
39 // pass can cope with complex control flow.
40 remove(prefetches, contains non-induction phi nodes)
41
42 // Emit the prefetches and address generation code.
43 foreach ((ld, iv, set): prefetches):
44 off = calc_offset(list, iv, load)
45 insts = copy(set)
46 foreach (i: insts):
47 // Update induction variable uses.
48 if (uses_var(i, iv)):
49 replace(i, iv, min(iv.val + off, max(iv.val)))
50 // Final load becomes the prefetch.
51 if (i == copy_of(ld)):
52 insts = (insts - {i}) ∪ {prefetch(i)}
53 // Place all code just before the original load.
54 add_at_position(ld, insts)

Algorithm 1: The software prefetch generation algorithm, assum-
ing the intermediate representation is in SSA form.

find suitable access patterns within their code, and allows
the generation of good prefetch code without needing to be
an expert in the properties of software prefetches.

4. Software Prefetch Generation
We present a pass which finds loads that can be prefetched
based on look-ahead within an array, and generates software
prefetches for those that will not be identified by a stride
prefetcher. We first describe the analysis required, then the
actual code generated. An overview is given in algorithm 1.

4.1 Analysis
The overall aim of our analysis pass is to identify loads that
can be profitably prefetched and determine the code required
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to generate prefetch instructions for them. Target loads are
those where it is possible to generate a prefetch with look-
ahead: that is, we check whether we can generate a new load
address by increasing the value of a referenced induction
variable within the address calculation by a certain offset.
Our analysis considers a function at a time and does not cross
procedure boundaries.

We start with loads that are part of a loop (line 30 in al-
gorithm 1). We walk the data dependence graph backwards
using a depth-first search from each load to find an induction
variable within the transitive closure of the input operands
(line 1). We stop searching along a particular path when we
reach an instruction that is not inside any loop. When we
find an induction variable, we record all instructions that ref-
erence this induction variable (directly or indirectly) along
each path to the load (lines 6 and 10). If multiple paths ref-
erence different induction variables, we only record the in-
structions which reference the innermost ones (line 21). This
reflects the fact that these variables are likely to be the most
fine-grained form of memory-level parallelism available for
that loop.

Our recorded set of instructions will become the code
to generate the prefetch address in a later stage of our al-
gorithm. However, we must constrain this set further, such
that no function calls (line 35) or non-induction-variable phi
nodes (line 40) appear within it, because the former may
result in side-effects occurring and the latter may indicate
complex control flow changes are required. In these cases we
throw away the whole set of instructions, and do not gener-
ate prefetches for the target load. Nevertheless, both could be
allowed with further analysis. For example, side-effect-free
function calls could be permitted, allowing the prefetch to
call the function and obtain the same value as the target load.
Non-induction phi nodes require more complicated control
flow generation than we currently support, along with more
complex control flow analysis. However, without this analy-
sis, the conditions are required to ensure that we can insert a
new prefetch instruction next to the old load, without adding
further control flow.

4.2 Fault Avoidance
While software prefetches themselves cannot cause faults,
intermediate loads used to calculate addresses can (e.g., the
load from key buff2 to generate a prefetch of key buff1

at line 4 in code listing 1). We therefore need to ensure that
any look-ahead values will be valid addresses and, if they
are to be used for other intermediate loads, that they contain
valid data.

To address this challenge, we follow two strategies. First,
we add address bounds checks into our software prefetch
code, to limit the range of induction variables to known valid
values (line 49 in algorithm 1). For example, checking that i
+ 2*offset < NUM KEYS at line 6 in code listing 1. Sec-
ond, we analyse the loop containing the load, and only pro-
ceed with prefetching if we do not find stores to data struc-

tures that are used to generated load addresses within the
software prefetch code (line 37). For example, in the code
x[y[z[i]]], if there were stores to z, we would not be able
to safely prefetch x. This could be avoided with additional
bounds checking instructions, but would add to the complex-
ity of prefetch code. We also disallow any prefetches where
loads for the address-generating instructions are conditional
on loop-variant values other than the induction variable. To-
gether, these ensure that the addresses generated for interme-
diate loads leading to prefetches will be exactly the same as
when computation reaches the equivalent point, several loop
iterations later.

The first strategy requires knowledge of each data struc-
ture’s size. In some cases, this is directly available as part of
the intermediate representation’s type analysis. For others,
walking back through the data dependence graph can iden-
tify the memory allocation instruction which generated the
array. However, in general, this is not the case. For example,
it is typical in languages such as C for arrays to be passed
to functions as a pointer and associated size, in two sepa-
rate arguments. In these cases, and more complicated ones,
we can only continue if the following two conditions hold.
First, the loop must have only a single loop termination con-
dition, since then we can be sure that all iterations of the
loop will give valid induction values. Second, accesses to
the look-ahead array must use the induction variable which
should be monotonically increasing or decreasing.

Given these conditions, the maximum value of the in-
duction variable within the loop will be the final element
accessed in the look-ahead array in that loop and we can
therefore use this value as a substitute for size informa-
tion of the array, to ensure correctness. Although these con-
ditions are sufficient alone, to ease analysis in our proto-
type implementation, we further limit the second constraint
such that the look-ahead array must be accessed using the
induction variable as a direct index (base array[i] not
base array[f(i)]) and add a constraint that the induction
variable must be in canonical form.

The software prefetch instructions themselves cannot
change correctness, as they are only hints. The checks de-
scribed in this section further ensure that address generation
code doesn’t create faults if the original code was correct.
However, the pass can still change runtime behaviour if the
program originally caused memory faults. While no memory
access violations will occur if none were in the original pro-
gram, if memory access violations occur within prefetched
loops, they may manifest earlier in execution as a result of
prefetches, unless size information comes directly from code
analysis instead of from the loop size.

4.3 Prefetch Generation
Having identified all instructions required to generate a soft-
ware prefetch, and met all conditions to avoid introducing
memory faults, the next task is to actually insert new instruc-
tions into the code. These come from the set of instructions
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recorded as software prefetch code in section 4.1 and aug-
mented in section 4.2.

We insert an add instruction (line 49 in algorithm 1) to
increase the induction variable by a value (line 44), which is
the offset for prefetch. Determining this value is described in
section 4.4. We then generate an instruction (either a select
or conditional branch, depending on the architecture) to take
the minimum value of the size of the data structure and the
offset induction variable (line 49). We create new copies
(line 45) of the software prefetch code instructions, but with
any induction-variable affected operands (determined by the
earlier depth-first search) replaced by the instruction copies
(line 49). Finally, we generate a software prefetch instruction
(line 52) instead of the final load (i.e., the instruction we
started with in section 4.1).

We only generate software prefetches for stride accesses
if they are part of a load for an indirect access. Otherwise,
we leave the pattern to be picked up by the hardware stride
prefetcher, or a more complicated stride software prefetch
generation pass which is able to take into account, for exam-
ple, reuse analysis [23].

4.4 Scheduling
Our goal is to schedule prefetches by finding a look-ahead
distance that is generous enough to prevent data being
fetched too late, yet avoids polluting the cache and extracts
sufficient memory parallelism to gain performance. Previ-
ous work [23] has calculated prefetch distance using a ratio
of memory bandwidth against number of instructions. How-
ever, code featuring indirect accesses is typically memory
bound, so execution time is dominated by load instructions.
We therefore generate look-ahead distances using the fol-
lowing formula.

offset =
c(t− l)

t
(1)

where t is the total number of loads in a prefetch sequence,
l is the position of a given load in its sequence, and c is
a microarchitecture-specific constant, which represents the
look-ahead required for a simple loop, and is influenced by
a combination of the memory latency and throughput (e.g.,
instructions-per-cycle (IPC)) of the system. High memory
latency requires larger look-ahead distances to overcome,
and high IPC means the CPU will move through loop it-
erations quickly, meaning many iterations will occur within
one memory latency of time.

As an example of this scheduling, for the code in code
listing 1, two prefetches are generated: one for the stride
on key buff2, and one using a previously prefetched look-
ahead value to index into key buff1. This means t = 2 for
these loads. For the first, l = 0, so offset = c by eq. (1)
so we issue a prefetch to key buff2[i+c]. For the second,
l = 1, so we issue a prefetch to key buff[i+c/2].

This has the property that it spaces out the look-ahead
for dependent loads equally: each is prefetched c

t iterations

1 start: alloc a, asize
2 alloc b, bsize
3 loop: phi i, [#0, i.1]
4 gep t1, a, i
5 ld l2, t1
6 gep t3, b, t2
7 ld t4, t3
8 add t5, t4, #1
9 str t3, t5

10 add i.1, i, #1
11 cmp size, i.1
12 bne loop

(a) Original compiler IR code

1 add p1, i, #32
2 min p2, p1, asize
3 gep p3, a, p2
4 ld p4, p3
5 gep p5, b, p4
6 prefetch p5
7 add p6, i, #64
8 gep p7, a, p6
9 prefetch p7

(c) Generated prefetching code
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(b) Depth-first search

Figure 3: Our pass running on an integer sort benchmark.

before it is used, either as part of the next prefetch in a
sequence, or as an original load.

4.5 Example
An example of our prefetching pass is given in figure 3.
From the load in line 7 in figure 3(a), we work backwards
through the data dependence graph (DDG) using a depth-
first search. The path followed is shown in figure 3(b). From
the gep in line 6, we find an alloc that is not in a loop
(line 2), and so stop searching down this path and follow
the next. We next encounter the ld in line 5 and continue
working through the DDG until reaching the alloc in line 1,
which is also outside a loop, stopping search down this path.
These two allocation instructions give the bounds of the a

and b arrays.
Continuing along the other path from the gep is the phi in

line 3, at which point we have found an induction variable.
We take this set of instructions along the path from the phi
node to the original load (dark red in figure 3(b)) and note
that there are two loads that require prefetching. Therefore
we calculate the offset for the original load as 32 and that
for the load at line 5 as 64. From this, we generate the
code shown in figure 3(c), where all references to i are
replaced with min(i+32, a) for the prefetch at line 6 to
avoid creating any faults with the intermediate load (line 4).

4.6 Prefetch Loop Hoisting
It is possible for analysed loads to be within inner loops rel-
ative to the induction variable observed. In this case, the in-
ner loop may not feature an induction variable (for example,
a linked list walking loop), or may be too small to gener-
ate look-ahead from. However, if we can guarantee control
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flow, and remove loop-dependent values for some iterations,
it may be beneficial to add prefetches for these outside the
inner loop.

We implement this by generating prefetches for loads
inside loops where control flow indicates that any phi nodes
used in the calculation reference a value from an outer loop.
We then replace the phi node in the prefetch with the value
from the outer loop, and attempt to make the prefetch loop
invariant by hoisting the instructions upwards. This will fail
if there are other loop invariant values on which the load
depends. We must also guarantee the control flow occurs
such that the loads generated by the software prefetches
won’t cause any new faults to occur. We can do this provided
we can guarantee execution of any of the original loads we
duplicate to generate new prefetches, or that the loads will
be valid due to other static analyses.

4.7 Summary
We have described a pass to automatically generate software
prefetch for indirect memory accesses, which are likely to
miss in the cache, cannot be picked up by current hardware
prefetchers, and are simple to extract look-ahead from. We
have further provided a set of sufficient conditions to en-
sure the code generated will not cause memory faults, pro-
vided the original code was correct. We have also described
a scheduling technique for these prefetches which is aimed
at modern architectures, where despite variation in perfor-
mance, the critical determiner of look-ahead distance is how
many dependent loads are in each loop, rather than total
number of instructions.

5. Experimental Setup
We implement the algorithm described in section 4 as an
LLVM IR pass [14], which is used within Clang. Clang can-
not generate code for the Xeon Phi, so instead we manually
insert the same prefetches our pass generates for the other
architectures and compile using ICC. For Clang, we always
use the O3 setting, as it is optimal for each program; how-
ever, for ICC we use whichever of O1, O2 or O3 works best
for each program. We set c = 64 for all systems to sched-
ule prefetches, as described in section 4.4, and evaluate the
extent to which this is suitable in section 6.2.

5.1 Benchmarks
To evaluate software prefetching, we use a variety of bench-
marks that include indirect loads from arrays that are ac-
cessed sequentially. We run each benchmark to completion,
timing everything apart from data generation and initialisa-
tion functions, repeating experiments three times.

Integer Sort (IS) Integer Sort is a memory-bound kernel
from the NAS Parallel Benchmarks [1], designed to be rep-
resentative of computational fluid dynamics workloads. It
sorts integers using a bucket sort, walking an array of in-
tegers and resulting in array-indirect accesses to increment

the bucket of each observed value. We run this on the NAS
parallel benchmark size B and insert software prefetches in
the loop which increments each bucket, by looking ahead in
the outer array, and issuing prefetch instructions based on
the index value from the resulting load.

Conjugate Gradient (CG) Conjugate Gradient is another
benchmark from the NAS Parallel suite [1]. It performs
eigenvalue estimation on sparse matrices, and is designed to
be typical of unstructured grid computations. As before, we
run this on the NAS parallel benchmark size B.

The sparse matrix multiplication computation exhibits an
array-indirect pattern, which allows us to insert software
prefetches based on the NZ matrix (which stores non-zeros),
using the stored indices of the dense vector it points to. The
irregular access is on a smaller dataset than IS, meaning it
is more likely to fit in the L2 cache, and presents less of a
challenge for the TLB system.

RandomAccess (RA) HPCC RandomAccess is from the
HPC Challenge Benchmark Suite [19], and is designed to
measure memory performance in the context of HPC sys-
tems. It generates a stream of pseudo-random values which
are used as indices into a large array. The access pattern is
more complicated than in CG and IS, in that we look ahead
in the random number array, then perform a hash function on
the value to generate the final address for prefetching. Thus,
each prefetch involves more computation than in IS or CG.

Hash Join 2EPB (HJ-2) Hash Join [26] is a kernel de-
signed to mimic the behaviour of database systems, in that it
hashes the keys of one relation, and uses them as index into
a hash table. Each bucket in the hash table is a linked list of
items to search within. In HJ-2, we run the benchmark with
an input that creates only two elements in each hash bucket,
causing the access pattern to involve no linked-list traversals
(due to the data structure used). Therefore, the access pattern
is prefetched by looking ahead in the first relation’s keys,
computing the hash function on the value obtained, and fi-
nally a prefetch of this hashed value into the hash table. This
is similar to the access pattern in RA, but involves more con-
trol flow, therefore, more work is done per element.

Hash Join 8EPB (HJ-8) This kernel is the same as HJ-2,
but in this instance the input creates eight elements per hash
bucket. This means that, as well as an indirect access to the
hash table bucket, there are also three linked-list elements to
be walked per index in the key array we use for look-ahead.
It is unlikely that any of these loads will be in the cache,
therefore there are four different addresses we must prefetch
per index, each dependent on loading the previous one. This
means a direct prefetch of the last linked-list element in
the bucket would cause three cache misses to calculate the
correct address. To avoid this, we can stagger prefetches to
each element, making sure the previous one is in the cache
by the time the next is prefetched in a future iteration. For
example, we can fetch the first bucket element at offset 16,
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System Specifications

Haswell Intel Core i5-4570 CPU, 3.20GHz, 4 cores, 32KB
L1D, 256KiB L2, 8MiB L3, 16GiB DDR3

Xeon Phi Intel Xeon Phi 3120P CPU, 1.10GHz, 57 cores,
32KiB L1D, 512KiB L2, 6GiB GDDR5

A57 Nvidia TX1, ARM Cortex-A57 CPU, 1.9GHz, 4
cores, 32KiB L1D, 2MiB L2, 4GiB LPDDR4

A53 Odroid C2, ARM Cortex-A53 CPU, 2.0GHz, 4
cores, 32KiB L1D, 1MiB L2, 2GiB DDR3

Table 1: System setup for each processor evaluated.

followed by the first linked-list element at offset 12, then
offsets 8 and 4 for the second and third respectively.

Graph500 Seq-CSR (G500) Graph500 [24] is designed to
be representative of modern graph workloads, by perform-
ing a breadth-first search on a generated Kronecker graph in
compressed sparse row format. This results in four different
possible prefetches. We can prefetch each of the vertex, edge
and parent lists from the breadth-first search’s work list us-
ing a staggered approach, as for HJ-8. Further, as there are
multiple edges per vertex, we can prefetch parent informa-
tion based on each edge, provided the look-ahead distance
is small enough to be within the same vertex’s edges. The
efficacy of each prefetch then depends on how many instruc-
tions we can afford to execute to mask the misses and, in the
latter case, how likely the value is to be used: longer prefetch
distances are more likely to successfully hide latency, but are
less likely to be in the same vertex, and thus be accessed.

We run this benchmark on both a small, 10MiB Graph,
with options -s 16 -e 10 (G500-s16), and a larger 700MiB
graph (G500-s21, options -s 21 -e 10), to get perfor-
mance for a wide set of inputs with different probabilities
of the data already being in the cache.

5.2 Systems
Table 1 shows the parameters of the systems we have evalu-
ated. Each is equipped with a hardware prefetcher to deal
with regular access patterns; our software prefetches are
used to prefetch the irregular, indirect accesses based on ar-
rays. Haswell and A57 are out-of-order superscalar cores;
A53 and Xeon Phi are in-order.

6. Evaluation
We first present the results of our autogenerated software
prefetch pass across benchmarks and systems, showing sig-
nificant improvements comparable to fine-tuned manual in-
sertion of prefetch instructions. We then evaluate the factors
that affect software prefetching in different systems.

6.1 Autogenerated Performance
Figure 4 shows the performance improvement for each sys-
tem and benchmark using our compiler pass, along with

the performance of the best manual software prefetches we
could generate.

Haswell Haswell gets close to ideal performance on HJ-
2, and IS, as the access patterns are fully picked up by
the compiler pass. This is also true of CG but, as with
RA, performance improvement with software prefetches is
limited because the latency of executing the additional code
masks the improvement in cache hit rates.

HJ-8 gets a limited improvement. The stride-hash-indirect
pattern is picked up by the compiler, but the analysis cannot
pick up the fact that we walk a particular number of linked-
list elements each time in a loop. This is a runtime property
of the input that the compiler could never know, but manual
prefetches can take advantage of this additional knowledge.

While G500 shows a performance improvement for both
the s16 and s21 setups, it isn’t close to what we can achieve
by manual insertion of prefetch instructions. This is because
the automated pass cannot pick up prefetches to the edge
list, the largest data structure, due to complicated control
flow. In addition, it inserts prefetches within the innermost
loop, which are suboptimal on Haswell due to the stride-
indirect pattern being short-distance, something only known
with runtime knowledge.

A57 The performance for the Cortex-A57 follows a simi-
lar pattern to Haswell, as both are out-of-order architectures.
For IS, CG and HJ-2, differences between the automated
pass and manual prefetches are simply down to different
code generation. However, the A57 can only support one
page-table walk at a time on a TLB miss, limiting improve-
ments for IS and HJ-2. CG’s irregular dataset is smaller
than for other benchmarks, so fewer page-table walks are
required and a lack of parallelism in the TLB system doesn’t
prevent memory-level parallelism from being extracted via
software prefetch instructions. The newer Cortex-A73 is
able to support two page-table walks at once [5], likely im-
proving prefetch performance.

A53 As the Cortex-A53 is in-order, significant speedups
are achieved across the board using our compiler pass. RA
achieves a significant improvement in performance because
the core cannot overlap the irregular memory accesses across
loop iterations at by itself (because it stalls on load misses),
so the comparatively high cost of the hash computation
within the prefetch is easily offset by the reduction in mem-
ory access time. However, autogenerated performance for
RA is lower than manual, as the inner loop is small (128
iterations). Though this loop is repeated multiple times, our
compiler analysis is unable to observe this, and so does not
generate prefetches for future iterations of the outside loop,
meaning the first few elements of each 128 element iteration
miss in the cache.

In the G500 benchmark, the edge to visited list stride-
indirect patterns dominate the execution time on in-order
systems, because the system does not extract any memory-
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(c) A53
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Figure 4: Performance of our autogenerated software prefetching pass and the best manual software prefetches found. Also shown for the
Xeon Phi is the performance of ICC-generated software prefetches.
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Figure 5: Performance of inserting staggered stride software
prefetches along with the indirect prefetch, compared to the indirect
alone, for Haswell, with our automated scheme.

level parallelism. Therefore, autogenerated performance is
much closer to ideal than on the out-of-order systems.

Xeon Phi The Xeon Phi is the only system we evaluate for
which the compiler can already generate software prefetches
for some indirect access patterns, using an optional flag.
Therefore, figure 4(d) also shows prefetches autogenerated
by the Intel compiler’s own pass, “ICC-generated”.

For the simplest patterns, IS and CG, which are pure
stride-indirects, the compiler is already able to generate
prefetches successfully. For IS, Intel’s compiler is more op-
timal than ours, due to reducing overhead by moving the
checks on the prefetch to outer loops.

As the Intel pass only looks for the simplest patterns, their
algorithm entirely misses the potential for improvement in
RA and HJ-2, as it cannot pick up the necessary hash com-

putation. Its pass also misses out on any performance im-
provement for G500, despite the two simple stride-indirects
present, from both work to vertex lists and edge to visited
lists, likely because it is unable to determine the size of ar-
rays and guarantee the safety of inserting loads to the work
list and edge list structures.

We see dramatic performance improvements across the
board on this architecture. The in-order Xeon Phi is unable
to parallelise memory accesses by itself, so prefetching is
necessary for good performance.

Stride Prefetch Generation As discussed previously in
figure 1, performance for prefetching is optimal when, in
addition to the prefetch for the indirect access, a staggered
prefetch for the initial, sequentially-accessed array is also in-
serted. Figure 5 shows this for each benchmark on Haswell
for our automated scheme: performance improvements are
observed across the board, despite the system featuring a
hardware stride prefetcher.

6.2 Microarchitectural Impact
Our compiler prefetch-generation pass creates the same code
regardless of target microarchitecture. Given the signifi-
cantly varying performance improvements attainable on the
different machines we evaluate, this may not always be the
optimal choice. Here, we consider how the target microar-
chitecture affects the best prefetching strategy, in terms of
look-ahead distances, which prefetches we generate when
there are multiple possibilities, and whether we generate
prefetches at all. We evaluate this based on manual insertion
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(b) Conjugate Gradient (CG)
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(c) RandomAccess (RA)
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Figure 6: Varying look-ahead distance shows the best is usually the consistent across systems.

of software prefetches, to show the limits of performance
achievable across systems regardless of algorithm.

Look-Ahead Distance Figure 6 gives speedup plotted
against look-ahead distance (c from eq. (1) in section 4.4)
for IS, CG, RA and HJ-2 for each architecture. Notably,
and perhaps surprisingly, the optimal look-ahead distance is
relatively consistent, despite wide disparity in the number
of instructions per loop, microarchitectural differences, and
varied memory latencies. Setting c = 64 is close to optimal
for every benchmark and microarchitecture combination.
The A53 has an optimal look-ahead slightly lower than this,
at 16–32, depending on the benchmark, as does the Xeon
Phi on HJ-2, but performance doesn’t drop significantly for
c = 64, and we can set c generously. The trends for other
benchmarks are similar, but as there are multiple possible
prefetches and thus multiple offsets to choose in HJ-8 and
G500, we show only the simpler benchmarks here.

The reasons for this are twofold. First, the optimal look-
ahead distance in general for a prefetch is the memory la-
tency divided by the time for each loop iteration [23]. How-
ever, for memory bound workloads, the time per loop iter-
ation is dominated by memory latency, meaning that high
memory latencies (e.g., from GDDR5 DRAM), despite caus-
ing a significant overall change in performance, has only a
minor effect on look-ahead distance.

Second, it is more detrimental to be too late issuing
prefetches than too early. Although the latter results in cache
pollution, it has a lower impact on performance than the in-
creased stall time from the prefetches arriving too late. This
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Figure 7: Performance improvement for prefetching progressively
more dependent loads, for Hash Join 8EPB (HJ-8)

means we can be generous in setting look-ahead distances in
general, with only a minor performance impact.

Prefetch Stagger Depth Even when it is possible to gen-
erate prefetches for all cache misses, it may not always be
the optimal strategy. The extra instructions to prefetch more
nested loads (see section 4.4) may outweigh the benefits
from issuing the prefetches, because prefetches at one off-
set require a real load at another for the next prefetch in the
sequence. This results in O(n2) new code, where n is the
number of loads in a sequence. We may therefore choose to
prefetch fewer loads in a sequence to quadratically reduce
the additional code size.

For example, HJ-8 involves a stride-hash-indirect fol-
lowed by three linked-list elements per bucket. This makes
for four irregular accesses per loop iteration. However, as
we see from figure 7, for all of the architectures tested, it is
optimal to prefetch only the first three of these.

Costs of Prefetching For some benchmarks, the expense
of calculating the prefetches outweighs the benefit from a

313
Authorized licensed use limited to: University of Michigan Library. Downloaded on March 24,2024 at 15:09:16 UTC from IEEE Xplore.  Restrictions apply. 



 0

 10

 20

 30

 40

 50

 60

 70

 80

IS CG RA HJ-2 HJ-8 G500-s16 G500-s21

%
 E

x
tr

a
 I
n
s
tr

u
c
ti
o
n
s

Figure 8: Percentage increase in dynamic instruction count for
Haswell as a result of adding software prefetches, with the optimal
scheme chosen in each case.

reduction in cache misses. Figure 8 shows the increase in
dynamic instruction count for each benchmark on Haswell.
For all but the Graph500 benchmarks, dynamic instruction
count increases dramatically by adding software prefetching,
by almost 70% for IS and RA, and almost 80% for CG.
In Graph500 workloads, prefetches reduce performance on
Haswell within the innermost loop, and thus are only used
on outer loops.

Bandwidth DRAM bandwidth can become a bottleneck
for some systems and benchmarks. Out-of-order cores can
saturate the bus by executing multiple loops at the same
time. We demonstrate this in figure 9. IS running on multiple
cores slows down significantly on Haswell, with throughput
below 1 for four cores, meaning that running four copies
of the benchmark simultaneously on four different cores is
slower than running the four in sequence on a single core.
This shows that the shared memory system is a bottleneck.
However, even with four cores, software prefetching still
improves performance.

TLB Support All architectures have 4KiB memory pages,
but Haswell’s kernel also has transparent huge pages en-
abled. Figure 10 shows the impact of prefetching with and
without this support. Huge pages reduce the relative per-
formance improvement attained by our scheme slightly for
simpler benchmarks (like IS and RA), because we do not
gain as much from bringing in TLB entries that would other-
wise miss, as a side effect of software prefetching. However,
it increases our performance improvement on page-table-
bound benchmarks, such as HJ-2. All other benchmarks are
unaffected and, overall, trends stay consistent regardless of
whether huge pages are enabled or not.

6.3 Summary
Our autogenerated pass generates code with close to optimal
performance compared to manual insertion of prefetches
across a variety of systems, except where the optimal choice
is input dependent (HJ-8), or requires complicated control
flow knowledge (G500, RA).

A compiler pass which is microarchitecture specific
would only improve performance slightly: similar prefetch
look-ahead distances are optimal for all the architectures we
evaluate, despite large differences in performance and mem-
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ory latency. Still, performance improvement can be limited
by microarchitectural features such as a lack of memory
bandwidth, an increase in dynamic instruction count, and a
lack of parallelism in the virtual memory system. Despite
these factors, every system we evaluate attains a net perfor-
mance benefit from our technique.

7. Conclusion
While software prefetching appears to make sense as a tech-
nique to reduce memory latency costs, it is often the case
that prefetching instructions do not improve performance,
as good prefetches are difficult to insert by hand. To ad-
dress this, we have developed an automated compiler pass to
identify loads suitable for prefetching and insert the neces-
sary code to calculate their addresses and prefetch the data.
These target indirect memory-access patterns, which have
high potential for improvement due to their low cache hit
rates and simple address computations. Across four differ-
ent in-order and out-of-order architectures, we gain aver-
age speedups between 2.1× and 2.7× for a set of memory-
bound benchmarks, and then investigate the various factors
that contribute to software prefetch performance.
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A. Artefact Description
A.1 Abstract
Our artefact provides x86-64 and AArch64 binaries for all
of our evaluated benchmarks, along with scripts to use these
benchmarks to regenerate the time data for the graphs in the
paper. This will allow evaluation of our results on any of the
Haswell, Cortex-A57 or Cortex-A53 systems described in
the paper (or similar micro-architectures).

We also provide source code for all of our benchmarks
and our evaluation pass itself, along with scripts to compile
binaries for both x86-64 and ARM machines.

We further provide Collective Knowledge (CK) integra-
tion to automatically compile and run benchmarks, and gen-
erate graphs.

A.2 Description
A.2.1 Check-List (Artefact Meta Information)
• Algorithm: Automated software prefetching.

• Program: Graph 500, NAS, HPCC, Hash Join (all sources and
binaries included).

• Compilation: Clang 3.9 or above.

• Transformations: Software prefetch insertion implemented as
an LLVM pass.

• Binary: Included for Linux (Ubuntu 16.04 recommended) for
both x86-64 and AArch64. Source code and scripts included to
regenerate binaries.

• Run-time environment: Provided binaries are for Linux (Ubuntu
16.04) x86-64 and AArch64, but source code given.

• Hardware: We recommend a Haswell i5-4570 for verifying
x86 results, or an ARM Cortex-A57 and/or Cortex-A53 for ver-
ifying ARM results. Similar systems should give comparable
results.

• Output: Speedup graphs are output by the CK framework.
For scripts without CK, the time is written to files along with
program output. These are generated for each figure in the
original paper.

• Experiment workflow: Collective Knowledge, or manual
Linux shell scripts.

• Publicly available?: Yes.

A.2.2 How Delivered
Our benchmarks, source code, scripts and CK integra-
tion are available on Github: https://github.com/
SamAinsworth/reproduce-cgo2017-paper.

A.2.3 Hardware Dependencies
We recommend testing on an Intel Haswell (an i5-4570 was
our test system, but any should give similar results), an
ARM Cortex-A57 (we used an Nvidia TX1), or an ARM
Cortex-A53 (we used an Odroid C2). Any similar micro-
architectures should give comparable results.

A.2.4 Software Dependencies
Our binary files assume Ubuntu 16.04 on both x86-64 and
AArch64 systems, with 64-bit executable support on both.
Similar Linux distributions should also work. We assume
transparent huge pages are enabled on x86: however, fig-
ure 10 shows the expected difference in performance when
huge pages are disabled.

No further software requirements are necessary for eval-
uating the binaries provided. However, if you would like to
recompile our binaries from source without using CK, an
x86-64 system along with Clang 3.9 or above, and aarch64-
gnu-linux-gcc (from the Ubuntu package gcc-aarch64-linux-
gnu) are required: the former for both binaries, and the latter
for linking AArch64 binaries.

The CK tools may require Ubuntu 16.04 or above (14.04
can sometimes cause issues).

A.3 Installation
Using CK To install CK, do:

1 $ sudo apt-get install python python-pip git
2 $ sudo pip install ck

You can install our repository via CK as follows:
1 $ ck pull repo --url=https://github.com/SamAinsworth

↪→/reproduce-cgo2017-paper

Manual You can pull our scripts and benchmarks from
Github:

1 $ git pull https://github.com/SamAinsworth/reproduce
↪→-cgo2017-paper

A.4 Experiment Workflow
Using CK Once you have installed the above packages,
simply run:

1 $ ck run workflow-from-cgo2017-paper

To run benchmarks continuously without prompts, run
1 $ ck run workflow-from-cgo2017-paper --quiet

Manual Navigate to script/reproduce-cgo2017-
paper.

To run the experiments on an x86-64 machine, run
./run_x86.sh while in the root directory of our pro-
vided evaluation directory tree. Tests should take around 20
minutes on a modern machine.

To run the experiments on an AArch64 machine, run
./run_arm.shwhile in the root directory of our provided
evaluation directory tree. Tests should take around two hours
on an out-of-order ARM system, and around four hours on
an in order ARM system.

To recompile all of our benchmarks (not necessary)
on an x86-64 machine, run ./compile_x86.sh and
./compile_aarch64.sh while in the root directory of
our provided evaluation directory tree.
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For low-variance results, we advise running the exper-
iments on a system with no other compute- or memory-
intensive applications running in the background.

A.5 Evaluation and Expected Result
Using CK Once you have run the CK workflow, you can
then run:

1 $ ck dashboard workflow-from-cgo2017-paper

This will include the generated time data from running
the experiments, along with reference results for comparison
for either Haswell or A57 depending on the architecture.

Manual Move directory to script/reproduce-
cgo2017-paper. Files for the relevant figures in
the paper will be output by the ./run_x86.sh and
./run_arm.sh scripts. These will contain the outputs of
each program, including a time value. These time values can
be compared with the speedups given in the corresponding
figures of the paper for similar micro-architectures. De-
pending on the similarity of the micro-architecture being
used for evaluation, speedups of comparable magnitude and
trends should be observed.

Example output taken from a Haswell machine is given
in the folder example_data.

A.6 Experiment Customisation
Scripts are all customisable to allow different fetch distances
to be chosen at compile time: check the relevant directo-

ries for each benchmark, or module/workflow-from-
cgo-paper/module.py using CK. Similarly, source
and a shared object are provided for the software prefetch-
ing pass, to allow it to be applied to other code or with other
offsets, if desired. These can be used in the same way exem-
plified in the currently provided scripts.

Experiments can also be run on different micro-
architectures from those we have evaluated: either differ-
ent x86-64 or AArch64 systems with the provided scripts,
or others with slight modification.

If you would like to recompile our software prefetch-
ing pass without using CK, you can do so by nav-
igating to package/plugin-llvm-sw-prefetch-
pass and using make. The Makefile within this folder will
have to be reconfigured with LLVM_DIR set to the directory
of your LLVM Clang source and build.

The software prefetching shared object pass can also be
compiled and installed using CK, then used separately:

1 $ ck install package:plugin-llvm-sw-prefetch-pass
2 $ clang -Xclang -load -Xclang $(ck find package:

↪→plugin-llvm-sw-prefetch-pass)/lib/
↪→SwPrefetchPass.so -O3 ...

A.7 Submission and Reviewing Methodology
The artefact for this paper was reviewed according
to the guidelines at http://cTuning.org/ae/
submission-20161020.html.
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