
Group 14

Tsen-Yen Hsiao, Chieh-Shen Chen, Chien Tu, Rick Tsai

Practical Control Flow Integrity &
Randomization for Binary Executables

Outline
● CFI Introduction

● CCFIR High Level View

● CCFIR Details

● Performance and Remarks

EECS 583 Advanced Compilers1

Outline
● CFI Introduction

● CCFIR High Level View

● CCFIR Details

● Performance and Remarks

EECS 583 Advanced Compilers2

CFI Introduction
● Why?

Protect from hijacking by changing target address

code injection, control flow hijack, ROP, return-to-libc

● What?

Indirect jump/call and return instruction

● How?

Mark valid targets of indirect control transfer (IDs)

Check IDs once with indirect jumps

3 EECS 583 Advanced Compilers

CFI vs CCFIR
● CFI

v: strong protection

x: high overhead, required source code and debug info for precise CFG

● CCFIR

v: low overhead, binary only, support incremental deployment

x: still have unprotected attacks

4 EECS 583 Advanced Compilers

Outline
● CFI Introduction

● CCFIR High Level View

● CCFIR Details

● Performance and Remarks

EECS 583 Advanced Compilers5

CCFIR High Level View

6 EECS 583 Advanced Compilers

▲ CCFIR concept ▲ Memory layout after CCFIR

check

check

Safe

Safe

Safe

How to identify valid address in bit operation?

Use Bit Mask of stubs in Springboard.

Springboard Stub Classification

7 EECS 583 Advanced Compilers

CCFIR = 3-ID CFI

Enforcing Control Flow Integrity
1. Indirect call/jump can only jump to function pointer stubs

 => 8 B not 16 B aligned

2. Normal return can only jump to normal return address not sensitive

 => 16 B aligned with 26th 0

3. Return in sensitive functions can jump to any return address

=> 16 B aligned

4. Byte aligned means no jumps to the middle. Random initialization.

8 EECS 583 Advanced Compilers

Outline
● CFI Introduction

● CCFIR High Level View

● CCFIR Design and Implementation

● Performance and Remarks

EECS 583 Advanced Compilers9

CCFIR Implementation - Overview
1. BitCover

- Disassemble for input PE file
- Identify indirect inst and indirect

control-transfer targets
-

2. BitRewrite
- insert Springboard Section
- encode valid transfer target
- run time check
-

3. BitVerify
- verify our defined security policy

10 EECS 583 Advanced Compilers

1. 2.

3.

Identify Indirect Control Transfer & Valid Targets (= disassemble)

1. Explore Data and Code
- Entry Point in export table/Relocation Entries
- Must or May - Terminate Function
- Switch Jump Table
-
-

2. Refine Disassembling Result
- remove unreachable entries from relocation entry
- remove invalid entries

CCFIR Implementation - BitCover

11 EECS 583 Advanced Compilers

1. 2.

1. Redirecting Indirect Control Transfer Targets for
a. Return Address
b. Function Pointer

2. Check For the Springboard Mask and Slice
3. Compatibility Issue, eg DLL and import function

CCFIR Implementation - BitRewrite

12 EECS 583 Advanced Compilers

Enforcement:
1. Indirect jump can only jump to function stubs in Springboard
2. Return instructions are constrained to jump to return address stub in Springboard
3. Normal return are not allowed jumping to sensitive return stubs

13 EECS 583 Advanced Compilers

CCFIR Implementation - BitRewrite
Indirect Direct

● Verification provides independent checks if the target obey the policy

=> guarantee all indirect and ret can only flow to valid code entry

CCFIR Implementation - BitVerify

14 EECS 583 Advanced Compilers

Outline
● CFI Introduction

● CCFIR High Level View

● CCFIR Details

● Performance and Remarks

EECS 583 Advanced Compilers15

CCFIR Overhead
● CCFIR

Largest overhead: 8.6 %

Average overhead: 3.6 %

Ref: CFI (Max 26.8 %, Avg 7.7%)

● CCFIR (browser)
● Low Springboard size and Randomizing time

16 EECS 583 Advanced Compilers

Protection Effect
● Eliminating ROP Gadgets

17 EECS 583 Advanced Compilers

Comment
● Best: Low Runtime and Space to implement

● Weakness:
1. Race Condition of Return Address

=> Return Address will be modified by another thread

● Limitation:
1. Cannot support self-modify code
2. Useless if Springboard is vulnerable to attacker

18 EECS 583 Advanced Compilers

Q&A

19 EECS 583 Advanced Compilers

