
Alpa: Automating Inter- and Intra-Operator 
Parallelism for Distributed Deep Learning

University of Michigan
EECS 583 Group 4

Presenter: Hithesh P. Reddy, Lai Wang, Noah Kaplan, Parin Senta





Motivation

● Recent advances in deep learning result in increasing model size
○ Transformer-based LLM
○ Hundreds of billions of parameters

● Large model cannot fit in single device/machine
● Distributed Deep Learning is a trend
● Parallelization strategies greatly 

affect training speed
○ Model & Data specific
○ Hand-craft (manual) approach needs time

 & expertise
● Automating the parallelization!



What is Alpa?

● A compiler generates model-parallel execution plan
○ 3 passes at IR level (Jax IR + cluster configuration)

● Optimize and utilize intra-operator parallelism and inter-operator parallelism
○ View as ILP + DP problem
○ Prune + cost model used to prune and reduce the search space

● Scales well with the number of GPUs
● Reasonable compilation time

○ < 1 hr for GPT3-36B w/ 64 GPUs



ML Parallelism

● Data Parallel
○ Partitioned data across batch, replicated model

● Operator Parallel
○ Partitioned operator across non-batch axis
○ “SPMD”, extensive communication between devices (all-reduce, gather)

● Pipeline Parallel
○ Partitioned the model into stages (“group of ops)
○ Transfer only intermediate activates between stages (point-to-point)



Hard Problem

● The configurations of each individual parallelism increase the search space
● Huge Combinatorial space of #devices, #parallels, #layers, #ops

○ Prior auto-parallelization are limited:
■ Combine data parallel with only one other approach to reduce the space
■ But misses performance opportunities

● Alpa: Only 2 views of parallelism, intra & inter operator
○ Distinguished by whether involve partitioning operators along any tensor axis



Alpa’s View: Intra-Operator Parallelism

● Partition of tensor along some axis so that devices execute different portions 
of the operator at the same time.

● Includes Data parallel & Operator parallel
● Substantial communication among devices needed.

Device Idle Time - Less

Communication - More



Alpa’s View: Inter-Operator Parallelism

● Assign groups of operators to execute on distributed devices
● Divide the model into stages inside which are multiple layers
● Devices communicate only between stages.
● Some devices may idle due to dependencies

Device Idle Time - More

Communication - Less



Alpa’s View: Device Mesh

Cluster (2D Device Mesh)

GPUs within a Node

Nodes

● Devices within the mesh have equivalent compute capability



Inter-Operator Search Space

● Partition Constraints
○ 1D sub-mesh of shape (1, 2^m)
○ 2D sub-mesh of shape (n, M) 



Intra-Operator Search Space



Optimization & Prune

● Early stop in DP
● Compile different pipeline stage in parallel
● Operator fusion for “light operators” (ReLU, element-wise ops)
● Cost model at XLA instruction level for matmul and communication primitives.



Evaluations: GPT-3, GShard MoE & Wide-ResNet

Weak scaling results where the model size grow with #GPUs.
Evaluated on 8 AWS EC2 p3.16xlarge nodes with 8 16GB V100s each (64 GPUs in total).

Match specialized 
manual systems.

GPT (up to 39B) GShard MoE (up to 70B) Wide-ResNet (up to 13B)

Outperform the manual 
baseline by up to 8x.

Generalize to models 
without manual plans.



Limitations

● Cannot handle heterogeneous device mappings
● Doesn’t model communication cost between pipeline stages
● Alpa lets you divide a batch into sub-batches. Must specify this as 

hyperparameter
● Every pipeline stage is executed serially (assumes false dependencies)
● Alpa compiles to a particular tensor shape. 



Conclusion

● Alpa optimizes performance of Neural Networks across multiple nodes by 
exploiting parallelism inherent to DNN models

● It’s fast! (reasonably)
○ But there are opportunities to improve the compilation time

● It outperforms hand tuned partitioning!
○ But it only works for homogeneous nodes



References

Zheng, Lianmin, et al. "Alpa: Automating inter-and {Intra-Operator} parallelism for distributed deep learning." 16th USENIX 
Symposium on Operating Systems Design and Implementation (OSDI 22). 2022.

https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin



Q&A


