
Augmenting Loop Tiling with Data Alignment for
Improved Cache Performance

Preeti Ranjan Panda, Member, IEEE, Hiroshi Nakamura, Member, IEEE,

Nikil D. Dutt, Senior Member, IEEE, and Alexandru Nicolau, Member, IEEE

AbstractÐLoop blocking (tiling) is a well-known compiler optimization that helps improve cache performance by dividing the loop

iteration space into smaller blocks (tiles); reuse of array elements within each tile is maximized by ensuring that the working set for the

tile fits into the data cache. Padding is a data alignment technique that involves the insertion of dummy elements into a data structure

for improving cache performance. In this work, we present DAT, a technique that augments loop tiling with data alignment, achieving

improved efficiency (by ensuring that the cache is never under-utilized) as well as improved flexibility (by eliminating self-interference

cache conflicts independent of the tile size). This results in a more stable and better cache performance than existing approaches, in

addition to maximizing cache utilization, eliminating self-interference, and minimizing cross-interference conflicts. Further, while all

previous efforts are targetted at programs characterized by the reuse of a single array, we also address the issue of minimizing conflict

misses when several tiled arrays are involved. To validate our technique, we ran extensive experiments using both simulations as well

as actual measurements on SUN Sparc5 and Sparc10 workstations. The results on benchmarks exhibiting varying memory access

patterns demonstrate the effectiveness of our technique through consistently high hit ratios and improved performance across varying

problem sizes.

Index TermsÐLoop tiling, data cache, data alignment, cache conflict.

æ

1 INTRODUCTION

THE growing disparity between processor and memory
speeds makes the efficient utilization of cache memory

a critical factor in determining program performance.
Compiler optimizations to exploit the data cache have been
studied and implemented in the past. Compulsory cache
misses, which occur when memory data is referenced for
the first time, can be minimized to some extent by
prefetching techniques [1]. Reduction of capacity misses
(which occur when reusable data is evicted from the cache
due to cache size limitations) is achieved by loop blocking (or
loop tiling) [2]Ða well-known compiler optimization that
helps improve cache performance by dividing the loop
iteration space into smaller blocks (or tiles). This also results
in a logical division of arrays into tiles. The working set for a
tile is the set of all elements accessed during the computa-
tion involving the tile. Reuse of array elements within each
tile is maximized by ensuring that the working set for the
tile fits into the data cache. Conflict misses, which occur
when several data elements compete for the same cache
location, are a consequence of limited-associativity caches.
Cache conflicts in the context of tiled loops are categorized
into two classes: 1) self-interference: cache conflicts among
array elements in the same tile, and 2) cross-interference:

cache conflicts among elements of different tiles (of the
same array) or different arrays. Conflict misses can
seriously degrade program performance; their reduction is
generally addressed during the selection of tile sizes.

Data alignment techniques for reducing cache misses
were reported by Lebeck and Wood [3] in a study of the
cache performance of the SPEC92 benchmark suite, where
they observed significant speedups (up to 3.4X) even on code
that was previously tuned using execution-time profilers.

Padding is a data alignment technique that involves the
insertion of dummy elements in a data structure for
improving cache performance. In this paper, we present
DAT, a data alignment technique based on padding of
arrays that ensures a more stable and, in most cases, better
cache performance than existing approaches, in addition to
maximizing cache utilization, eliminating self-interference,
and minimizing cross-interference. Further, while all pre-
vious efforts are targeted at programs characterized by the
reuse of a single array, we also address the issue of
minimizing conflict misses when several tiled arrays are
involved. Our experiments on several benchmarks with
varying memory access patterns demonstrate the effective-
ness of our technique and its stability with respect to
changing problem sizes.

The rest of the paper is organized as follows. In Section 2,
we discuss previous published work on loop tiling for cache
performance enhancement. In Section 3, we demonstrate
the significance of the padding technique through a
motivating example. In Section 4, we describe our tile size
selection and padding strategies and a generalization of the
strategies into the case with several tiled arrays. We
describe our experimental results in Section 5, discuss the
implications in Section 6, and conclude in Section 7.

142 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 2, FEBRUARY 1999

. P.R. Panda is with Synopsys, Inc., 700 E. Middlefield Rd., Mountain
View, CA 94043. E-mail: panda@synopsys.com.

. H. Nakamura is with the University of Tokyo, Research Center for
Advanced Science and Technology, 4-6-1 Komaba, Meguro-ku, Tokyo 153-
8904, Japan. E-mail: nakamura@hal.rcast.u-tokyo.ac.jp.

. N.D. Dutt and A. Nicolau are with the Department of Information and
Computer Science, University of California at Irvine, Irvine, CA 92697.
E-mail: {dutt, nicolau}@ics.uci.edu.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEE CS Log Number 108226.

0018-9340/99/$10.00 ß 1999 IEEE

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 14,2024 at 01:45:51 UTC from IEEE Xplore. Restrictions apply.

2 PREVIOUS WORK

Several techniques for exploiting the data cache through
loop tiling have been proposed in the past. Loop restructur-
ing techniques to enable tiling are reported in [4], [2], [5], all
of which do not address conflict misses that occur in real
caches.

Lam et al. [6] reported the first work modeling

interferences in direct-mapped caches with a study of the

cache performance of a matrix multiplication program for

different tile sizes. They present an algorithm (LRW) for

computing the tile size which selects the largest square tile

that does not incur self-interference conflicts. This strategy

PANDA ET AL.: AUGMENTING LOOP TILING WITH DATA ALIGNMENT FOR IMPROVED CACHE PERFORMANCE 143

Fig. 1. (a) Original FFT algorithm, (b) modified FFT algorithm, (c) distribution of array accesses in data cache for original FFT algorithm, (d)
distribution of array accesses in data cache for modified FFT algorithm.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 14,2024 at 01:45:51 UTC from IEEE Xplore. Restrictions apply.

is effective for reducing cache misses, but is sensitive to the
array sizeÐthe tile sizes vary widely with small changes in
array sizes. For instance, in the matrix multiplication
example, for a 1,024-element cache, a 200� 200 array
results in a 24� 24 tile, whereas a 205� 205 array results
in a 5� 5 tile. The 5� 5 tile makes inefficient utilization of
the 1,024-element cache and degrades performance due to
loop overheads introduced by tiling.

Esseghir [7] presents a tile size selection algorithm (ESS)
for one-dimensional tiling which selects a tile with as many
rows of the array, as would fit into the data cache. This
algorithm cannot exploit the benefits of two-dimensional
tiling and also does not consider cross-interference among
arrays in its computation of tile sizes.

Coleman and McKinley [8] present a technique (TSS)
based on the Euclidean G.C.D. computation algorithm for
selecting a tile size that attempts to maximize the cache
utilization while eliminating self-interferences within the
tile. They incorporate the effects of the cache line size, as
well as cross-interference between arrays. The tile sizes
generated by TSS are, like LRW, also very sensitive to the
array dimension. For the matrix multiplication example on
a 1,024-element cache, a 200� 200 array results in a 41� 24
tile, whereas, a 205� 205 array results in a 4� 203 tile. Since
the working set in both cases is large, the cache utilization of
TSS is good. However, if the working set gets too close to
the cache size, cross-interferences, which are handled with a
probabilistic estimate in TSS, begin to degrade the perfor-
mance. We discuss this issue in Section 5.

In this work, we present a data alignment technique
based on padding of arrays that ensures a stable cache
performance for a variety of problem sizes. Our approach
differs from that presented in [6], [7], [8] in that we are also
able to handle the case where several tiled arrays are
involved. As in previous work, we focus our attention on
two-dimensional arrays.

3 MOTIVATING EXAMPLE

We illustrate the effect of the padding data alignment
technique on the cache performance of the Fast Fourier
Transform (FFT) algorithm. Fig. 1a shows the core loop of
FFT [9], highlighting the accesses to array sigreal.

Fig. 1c illustrates the distribution of the accesses in the
sigreal array for two iterations of the outer loop (indexed by
l) with array size n � 2; 048 words, and an example 512-
word direct-mapped cache with four words per line. In the
first iteration of the outer loop (l � 0), we have accesses to
the set of pairs (sigreal�i�; sigreal�i� 1; 024�), all of which
conflict in the cache because, in general, the pairs
(sigreal�i�; sigreal�i� 512k�) will map to the same cache
location for all integral k. Similarly, we observe similar
s e v e r e c o n f l i c t s b e t w e e n t h e p a i r s
(sigreal�i�; sigreal�i� 512�) in the second iteration (l � 1).

The pathological conflicts above can be prevented by the
judicious padding of the sigreal array with dummy
elements. Fig. 1d shows a modification of the storage of
the sigreal array with four dummy words (size of one cache
line) inserted after every 512 words. This ensures that
sigreal�i� and sigreal�i� 2n� never map into the same cache
line. The sigimag array, which has an identical access pattern

to sigreal, is prevented from conflicting with sigreal by
adjusting the distance between the two arrays, i.e., by
inserting padding between them.

A comparison of the execution times of the original FFT
algorithm in Fig. 1a with that of Fig. 1b shows a speedup of
15 percent on the SunSparc-5 machine. This shows that the
time spent in the extra computation involved in calculating
the new array indices (i' and le') is small in comparison to
the time saved by preventing the cache misses.

4 DATA ALIGNMENT STRATEGY

We now describe our technique, DAT, for data alignment of
two-dimensional arrays. In Section 4.1, we describe the
procedure for selecting the tile sizes. For the selected tile
sizes, we compute the required padding of arrays for
avoiding self-interference within the tile in Section 4.2. In
Section 4.3, we present a generalization of the technique to
handle the case when a tiled loop involves several arrays
with closely-related access patterns.

4.1 Tile Size Computation

The tile size selection procedure can be summarized as
follows: Select the largest tile for which the working set fits
into the cache. For computing the working set size, we use
the formulation used in [8].

Fig. 2 describes procedure SelectTile for computing the
tile sizes. In addition to the most common case where we
select the square tile, we also allow the user to specify the
shape of the tile in cases where additional information about
the application is available. To achieve this, the procedure
takes the parameters: TypeX, TypeY, ShapeX, and ShapeY. In
the common case (case 1: ShapeX = ShapeY = 0), we choose
the largest square tile for which the working set fits into the
cache. ws�x; y� gives the size of the working set for a tile
with x rows and y columns. We maintain the number of
columns to be a multiple of the cache line size to ensure that
unnecessary data is not brought into the cache. If ShapeX
and ShapeY have a nonzero value, the user wishes to guide
the tile-selection process. TypeX and TypeY can take the
value CONSTANT or VARIABLE. If TypeX (TypeY) has
value CONSTANT and TypeY (TypeX) has value VARI-
ABLE, as in cases 2 and 3, the user has fixed the number of
rows (columns) in the tile as ShapeX (ShapeY). Procedure
SelectTile only determines the number of columns (rows). If
both TypeX and TypeY are CONSTANT (case 4), the user
has already optimized the tile sizes, and the procedure
performs no action. If both TypeX and TypeY are VARIABLE
(case 5), the user intends the ratio of rows and columns of
the tile to be ShapeX : ShapeY. The procedure selects the
largest tile with the rows and columns in the given ratio for
which the working set � C.

4.1.1 Associative Caches

Associative caches can be effectively utilized in our tiling
procedure to reduce cross interference in a tiled loop. We
first determine the largest allowed working set size (M) for the
tile by considering the possibility of cross-interference. If
there is no cross-interference (e.g., there is only one array
involved), we set M � C (the cache size). However, there
are circumstances where cross-interferences cannot be

144 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 2, FEBRUARY 1999

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 14,2024 at 01:45:51 UTC from IEEE Xplore. Restrictions apply.

completely eliminated. For example, in the matrix multi-
plication example (discussed in Section 5), implementing
P1 � P2 � P3, where P1; P2, and P3 are matrices, the tiling
algorithm is designed to exploit reuse in matrix P2Ðthe
other matrices contribute unavoidable cross-interferences
with the tile from P2 in the cache. In this case, if the cache
associativity A > 1, we set M � Aÿ1

A � C. 1 In other words, in
an A-way cache, in any cache entry (with A lines), the
primary tile (tile of the blocked array) occupies only (Aÿ 1)
lines, leaving the remaining one line to be occupied by
elements outside the reused tile. This ensures that elements
of the primary tile are almost never mistakenly evicted from
the cache. After determining M, we use procedure SelectTile
(Fig. 2), replacing the condition ws�x; y� � C by
ws�x; y� �M.

4.2 Pad Size Computation

The computation of tile size in Section 4.1 ignores the
possibility of self-interferences within the tile. We now
formulate the procedure for an appropriate padding of the
rows of the array with dummy elements in order to avoid
this self-interference. Consider the mapping of a 30 rows �
30 columns tile in a 256� 256 array into a 1; 024-element
cache. Fig. 3a shows that rows 1 and 5 of the tile cause self-
interference because they map into the same cache
locations. To overcome this conflict, we can pad each row
of the array with eight dummy elements so that the fifth tile
row now occupies the space adjacent to row 1 in the cache
(Fig. 3b). The regularity of the cache mapping ensures that
no self-interference occurs among the elements of all the tile
rows.

Algorithm ComputePad (Fig. 4) outlines the pad size
computation procedure. The initial assignment to InitPad
ensures that the rows of the padded array are aligned to the
cache line size. For different multiples of LineSize, from a
minimum of 0 to a maximum of CacheSize, we test if the
resulting padded row of size �N � PadSize� causes self-
interference conflicts for the given tile of dimension Rows �
Cols. This is done by iterating through all the elements of
the tile in steps of LineSize and checking if any two elements
map into the same cache line.

4.3 Multiple Tiled Arrays

The padding technique described in Sections 4.1 and 4.2
lends itself to an elegant generalization when computing
the tile sizes of an algorithm involving more than one tiled
array. We assume that the arrays have identical sizes
(S �R). Since both arrays are accessed in the same tiled
loop, they have identical tile sizes. We choose the tile sizes
such that, as before, the working set (which involves
elements accessed from all the tiled arrays) fits into the
cache. To determine the padding size such that both self-
interferences within each tile, as well as cross-interferences
across tiles, are avoided, we first construct a tile consisting
of the smallest rectangular shape (T) enclosing all the tiles.
In Fig. 5, the new contour formed from the tiles in arrays A
and B are shown. We now determine the pad size such that

rectangle T in an S �R array does not have any self-
interference, using the method described in Section 4.2. This
becomes the pad size of all the tiled arrays. However, the
tile size of each array remains X � Y . Finally, we adjust the
distance between the starting points of the arrays so that the
tiles are laid out the way they appear in rectangle T in the
first iteration. For example, in Fig. 5, arrays A and B (both
are now S �R0) are laid out such that A�0��0� and B�0��0� are
a distance (�X � R0�mod C) apart in the cache.

5 EXPERIMENTS

We performed experiments on two commonly available
workstationsÐSUNSparc5 (SS5) and SUNSparc10 (SS10).
The SS5 has a direct-mapped 8 KB data cache (1,024 double
precision elements) with a 16-byte cache line (two elements
per line). The SS10 has a 4-way associative 16 KB data cache
(2,048 elements) with a 32-byte cache line (four elements per
line). Our experimental results were performed both
through actual measurement (MFLOPs on SUN SPARC
Stations) as well as simulations on the SHADE simulator
from SUN Microsystems [10].

The example programs on which we performed our
experiments are: 1) Matrix Multiplication (MM) (with the
standard ijk-loop nest permuted to ikj-order, as in [6]); 2)
Successive Over Relaxation (SOR) [8]; 3) L-U Decomposi-
tion (LUD) [8]; and 4) Laplace [11]. We did not use the FFT
algorithm in the comparisons because it does not involve
tiled loops and, consequently, LRW, TSS, and ESS cannot be
applied to it.

5.1 Uniformity of Cache Performance

Our first experiment was to verify our claim that the
padding technique results in a uniformly good performance
for a wide variety of array sizes. Fig. 6 shows the variation
of data cache miss ratios (on the SS5 cache configuration) of
four algorithms (LRW, ESS, TSS, and DAT) on the matrix
multiplication (MM) example for all integral array sizes
between 35 and 350.2 We observe that the miss ratio of DAT
is consistently low, independent of problem size, whereas
all other algorithms show some sensitivity to the size. This
is attributed to the fact that DAT uses fixed tile dimensions
(30� 30) for the given cache parameters, independent of
array size, whereas, in the other algorithms, tile dimensions
vary widely with array size.

5.2 Variation of Cache Performance
with Problem Size

We present experiments below on the performance of each
technique on the various examples, for several array sizes.
We include array sizes of 256, 300, 301, and 550 to enable
comparison with TSS [8] (which also presents data on these
sizes). Array sizes 256 and 512 are chosen to illustrate the
case with pathological cache interference, while 300 and 301
are chosen to demonstrate the widely different tile sizes for
small changes in array size. Sizes 384, 640, and 768 illustrate
the cases where the array size is a small multiple of a power

PANDA ET AL.: AUGMENTING LOOP TILING WITH DATA ALIGNMENT FOR IMPROVED CACHE PERFORMANCE 145

1. This expression for M is somewhat arbitrary. If, for each tile of T elements,
there is a maximum of K cross-interfering elements, the expression M=(T/
(K+T))*C is also a possibility.

2. For small array sizes, all the data fits into the cache, obviating the necessity
for tiling; for larger sizes, the simulation times on the commercial simulator,
SHADE, were too long to examine every integral data size. Hence, the range
35-350. We expect similar performance for larger arrays.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 14,2024 at 01:45:51 UTC from IEEE Xplore. Restrictions apply.

of 2 (384 � 128� 3; 640 � 128� 5; 768 � 256� 3). We also
include data for array sizes 700, 800, 900, and 1,000.

Fig. 7 shows the cache performance of the blocked L-U
Decomposition program described in [8]. An analysis of the
array access patterns in LUD [12] reveals the following
relationship for the optimal tile shape: No. of Columns �
No. of Rows � Cache Line Size.

Fig. 7 shows that DAT and LRW have the lowest cache
miss ratios (except at array sizes such as 256, 384, 512, etc.,
where LRW has considerably higher miss ratios). The lower
miss ratio of LRW is, however, often at the expense of
instruction count, since the relatively smaller tiles in LRW
incur overheads introduced by loop tiling. TSS tends to
incur higher miss ratios because it sometimes chooses a
comparatively larger tile sizes, leading to the working set
size being too close to the cache size, which results in cross-
interferences. ESS incurs cache conflicts because it does not
account for cross-interferences.

A comparison of the instruction count shows that, in
general, ESS has a smaller number of executed instructions
than DAT and LRW. This is a consequence of the larger tile
sizes selected by ESS. The instruction count of TSS
fluctuates because it selects widely varying tile sizes.

The processor cycle count (with memory latency = 12
cycles; normalized to DAT) and MFLOPs measurements
show that DAT has the best and most stable overall
performance.

Table 1 summarizes the comparisons of experimental
results for all the four examples (MM, LUD, SOR, and
Laplace) on the SS5 and SS10 platforms on the basis of the
four metrics identified above. In order to do a fair
comparison, the table does not include array sizes such as
512, 640, etc., which would penalize all the other techniques.
Thus, the improvements shown in the table are obtained
without considering these cases. If these were taken into
account, the improvement would be higher. Column 1

gives the example names; Columns 2, 3, and 4 give the

improvement in cache miss ratios (MR) of our technique

DAT over TSS, ESS, and LRW, respectively. Similarly,

Columns 5, 6, and 7 compare the normalized instruction

counts; Columns 8, 9, and 10 compare the normalized

processor cycle counts; and Columns 11, 12, and 13

compare the MFLOPs with respect to DAT, i.e., the speedup

146 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 2, FEBRUARY 1999

Fig. 2. Procedure for selecting tile size.

Fig. 3. (a) Self-interference in a 30� 30 tile: Rows 1 and 5 of tile interfere
in cache. (b) Avoiding self-interference with padding.

Fig. 4. Algorithm for computing pad size for array.
Authorized licensed use limited to: University of Michigan Library. Downloaded on March 14,2024 at 01:45:51 UTC from IEEE Xplore. Restrictions apply.

of DAT over other techniques. On the SS5, we notice an
average speedup of 24.2 percent over TSS, 38.0 percent over
ESS, and 12.0 percent over LRW. On the SS10, we observe
an average speedup of 7.2 percent over TSS, 13.8 percent
over ESS, and 4.8 percent over LRW. The speedup on SS10
is smaller because the SS10 has a larger cache, which
reduces the number of cache conflicts.

6 DISCUSSION

The main advantage of DAT, the data alignment technique
we presented, is its flexibilityÐdecoupling tile selection
from the padding phase allows the tile size to be
independently optimized without regard to self-interfer-
ence conflicts. This allows us to select larger tile sizes to
maximize the cache utilization. This also allows us to
incorporate a user-supplied tile-shape which might be
optimized for a specific application. For instance, we can
easily handle one-dimensional tiling (SOR example in
Table 1), while it cannot be easily incorporated into TSS and
LRW. For a given application and cache size, we choose a
fixed tile size, independent of the array size (only the pad
size varies with the array size), resulting in stability of the
performance of the resulting tiled loop. For instance, in the
matrix multiplication (Fig. 6), the miss ratio of DAT was in
the range [3.11 percent-4.87 percent] in comparison to [2.77
percent-25.18 percent] for LRW, [2.93 percent-23.18 percent]
for TSS, and [3.70 percent-23.15 percent] for ESS. Another
advantage of our technique is that it is possible to avoid
cross-interferences among several tiled arrays (Laplace
example in Table 1), while all the other techniquesÐLRW,
TSS, and ESS are targeted at algorithms in which the reuse
of only a single array dominates. While accesses to the

several arrays would cause cross-interference in the other
approaches, we are able to completely eliminate cache
conflicts arising out of this cross-interference using our
technique. Finally, our padding technique can be easily
extended to arrays with greater than two dimensions, by
serializing the padding procedure over the different
dimensions.

One consequence of the padding technique is that the
structure of the data arrays is transformed and references to
the array in the rest of the code have to reflect the new
structure. This, however, does not lead to any performance
penalties. For example, when the row size is updated from
R to R0, the expression to compute the location for a�i��j�
changes from �A� i�R� j� to �A� i�R0 � j�, assuming
the array begins at A. There could be a conflict in padding
sizes if the same array is accessed in different tiled loops. In
this case, we invoke the padding strategy on the more
critical loop (larger number of array accesses) and, in the
others, use one of the existing methods (LRW or TSS) in the
remaining loops, with updated row size for the array.

Another consequence of our proposed data alignment
technique is that it cannot be directly incorporated into a
library routine since the array sizes are not known. The
optimization is most effective when it is integrated into the
program instead of compiled separately as a library routine.
However, the incorporation into a library routine is possible
under certain reasonable constraintsÐfor example, if the
interface to the tiled array is through file I/O and the library
routine constructs the data structure for the arrays in
memory.

One way to work around the problem of incorporating
the data alignment technique into a library routine is to
copy the arrays into a separate memory space with the
padding inserted, similar to the Copy Optimization technique
[6], [13]. However, the overhead of copying the arrays is
usually quite significant [13], [8]. In our experiment on the
FFT, program copying resulted in a 6 percent improvement
in performance over the original code in Fig. 1a, in contrast
to the 15 percent improvement for Fig. 1c. It is interesting to

PANDA ET AL.: AUGMENTING LOOP TILING WITH DATA ALIGNMENT FOR IMPROVED CACHE PERFORMANCE 147

Fig. 5. Multiple tiled arrays.

Fig. 6. Matrix multiplication on SS-5: Variation of data cache miss ratio
with array dimension.

Fig. 7. Performance of L-U decomposition on SS-5: Variation of 1) data
cache miss ratio, 2) normalized instruction count, 3) normalized
processor cycles, and 4) MFLOPs with array size.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 14,2024 at 01:45:51 UTC from IEEE Xplore. Restrictions apply.

note the performance improvement of 6 percent in spite of

the copy overhead.

7 CONCLUSIONS

We presented a data alignment technique DAT for

improving the cache performance of numerical applica-

tions. We presented an algorithm for selection of tile sizes

and data alignment through padding to maximize the

utilization of data caches and minimize cache conflicts. We

also presented an extension of this approach to reduce

cross-interference in applications with multiple tiled arrays.
Our experiments were performed on machines with

different cache configurations (SS-5 and SS-10), using a

number of standard numerical benchmarks for a range of

array sizes. The results demonstrate that our technique results

in consistently low data cache miss ratios and effective cache

utilization, leading to good overall performance.

ACKNOWLEDGMENTS

This work was partially supported by grants from the U.S.

National Science Foundation (CDA-9422095) and the U.S.

Office of Naval Research (N00014-93-1-1348).

REFERENCES

[1] A. Milenkovic and V. Milutinovic, ªLazy Prefetching,º Proc. 31st
Hawaii Int'l Conf. System Science, vol. 7, Mauna Lani, Hawaii, Jan.
1998.

[2] M.J. Wolfe, ªMore Iteration Space Tiling,º Proc. Supercomputing,
pp. 655-664, Reno, Nev., Nov. 1989.

[3] A.R. Lebeck and D.A. Wood, ªCache Profiling and the Spec
Benchmarks: A Case Study,º Computer, vol. 27, no. 10 Oct. 1994.

[4] S. Carr and K. Kennedy, ªCompiler Blockability of Numerical
Algorithms;º Proc. Supercomputing, pp. 114-124, Minneapolis,
Minn., Nov. 1992.

[5] M.E. Wolf and M. Lam, ªA Data Locality Optimizing Algorithm,º
Proc. SIGPLAN '91 Conf. Programming Language Design and
Implementation, pp. 30-44, Toronto, Canada, June 1991.

[6] M. Lam, E. Rothberg, and M.E. Wolf, ªThe Cache Performance
and Optimizations of Blocked Algorithms,º Proc. Fourth Int'l Conf.
Architectural Support for Programming Languages and Operating
Systems, pp. 63-74, Apr. 1991.

[7] K. Esseghir, ªImproving Data Locality for Caches,º MS thesis,
Dept. of Computer Science, Rice Univ., 1993.

[8] S. Coleman and K.S. McKinley, ªTile Size Selection Using Cache
Organization and Data Layout,º Proc. ACM SIGPLAN '95 Conf.
Programming Language Design and Implementation, pp. 279-289, La
Jolla, Calif., June 1995.

[9] P.M. Embree and B. Kimble, C Language Algorithms for Digital
Signal Processing. Englewood Cliffs, N.J.: Prentice Hall, 1991.

[10] Sun Microsystems Laboratories, Inc., Shade User's Manual.
Mountain View, Calif., 1993.

[11] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing. Cambridge
Univ. Press, 1992.

[12] P.R. Panda, H. Nakamura, N.D. Dutt, and A. Nicolau, ªImproving
Cache Performance Through Tiling and Data Alignment,º Solving
Irregularly Structured Problems in Parallel, G. Bilardi, A. Ferreira, R.
LUÈ ling, and J. Rolim, eds., vol. 1253. Heidelberg, Germany:
Springer-Verlag, 1997.

[13] O. Temam, E.D. Granston, and W. Jalby, ªTo Copy or Not to
Copy: A Compile-Time Technique for Assessing When Data
Copying Should Be Used to Eliminate Cache Conflicts,º Proc.
Supercomputing, Nov. 1993.

148 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 2, FEBRUARY 1999

TABLE 1
Performance Results on SS5 and SS10. Data for Problem Sizes 384, 512, 640, and 768 Are Not Included Because That Would

Penalize LRW, ESS, and TSS; the Cache Performance Behavior for All Examples Is Similar to That Observed in Fig. 6.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 14,2024 at 01:45:51 UTC from IEEE Xplore. Restrictions apply.

Preeti Ranjan Panda (M'92) received the
BTech degree in computer science and engi-
neering from the Indian Institute of Technology,
Madras, in 1990, and the MS and PhD degrees
in information and computer science from the
University of California, Irvine, in 1995 and 1997,
respectively. From 1990 to 1993, he worked as a
software design engineer at the Design Auto-
mation Division of Texas Instruments, India. He
is currently with the Advanced Technology

Group at Synopsys, Inc., Mountain View, California. His research
interests include memory issues in high-level and system-level synth-
esis, compilation for embedded processors, cache-oriented compiler
optimization, and hardware-software codesign. He is the author of the
book Memory Issues in Embedded Systems-on-Chip: Optimizations and
Exploration (Kluwer Academic, 1999). He was a recipient of the U.C.
Regents Dissertation Fellowship at U.C. Irvine, and an honourable
mention award at the Fifth Intl. Conf. on VLSI Design, 1992. He is a
member of the IEEE.

Hiroshi Nakamura (M '90) received the BE,
ME, and PhD degrees in electrical engineering
from the University of Tokyo in 1985, 1987, and
1990, respectively. From 1990 to 1996, he was
a faculty member at Institute of Information
Sciences and Engineering at the University of
Tsukuba, where he was a member of the CP-
PACS project. He was a visiting associate
professor at the University of California, Irvine,
from 1996 to 1997. He is currently an associate

professor at the Research Center for Advanced Science and Technol-
ogy at the University of Tokyo. His research interests include computer
architecture, high-performance computing, system-level design assis-
tance, and memory issues in application-specific processors. He
received the best paper award from the Information Processing Society
of Japan (IPSJ) in 1994. He has served on the program committees of
APCHDL94 and PACT97. He is a member of the IEEE, the ACM, the
IEICE, and the IPSJ.

Nikil D. Dutt (S'83-M'89-SM'96) received the
PhD degree in computer science from the
University of Illinois at Urbana-Champaign in
1989. He is currently a professor of ICS and
ECE at the University of California at Irvine. His
research interests include high-level and sys-
tem synthesis, system specification languages,
retargetable compilers, and hardware/software
issues in embedded system design. He is a
coauthor of two books: High-Level Synthesis:

Introduction to Chip and System Design (Kluwer Academic, 1992) and
Memory Issues in Embedded Systems-on-Chip: Optimizations and
Exploration (Kluwer Academic, 1999). He received the Best Paper
Award at two consecutive Conferences on Hardware Description
Languages (CHDL89 and CHDL91). He has served on many conference
program committees, including ICCAD, ED&TC, EURODAC, ISSS, and
CHDL. He is a member of the IEEE, the ACM, and the IFIP WG 10.5.

Alexandru Nicolau (M'88) received the PhD
degree from Yale University, New Haven,
Connecticut, in 1984, where he was a member
of the ELI/Bulldog project. He is currently a
professor of computer science with the Uni-
versity of California, Irvine, where he leads the
ESP/PS parallelization project. His research
interests are in the areas of fine-grain paralleliz-
ing compilers and environments, program
transformations, and parallel architectures. Dr.

Nicolau is the co-organizer of the Workshop on Languages and
Compilers for Parallel Computing and has served on the program
committees of the International Conference on Supercomputing and the
Symposium on Microarchitecture. He is on the editorial board of the
Pitman/MIT Press series of Research Monographs in Parallel and
Distributed Computing and is a co-editor-in-chief of the International
Journal of Parallel Programming. He is a coauthor of the book Memory
Issues in Embedded Systems-on-Chip: Optimizations and Exploration
(Kluwer Academic, 1999).

PANDA ET AL.: AUGMENTING LOOP TILING WITH DATA ALIGNMENT FOR IMPROVED CACHE PERFORMANCE 149

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 14,2024 at 01:45:51 UTC from IEEE Xplore. Restrictions apply.

