®

Check for
updates

LLVM Based Parallelization
of C Programs for GPU

Nikita Kataev(®)

Keldysh Institute of Applied Mathematics RAS, Moscow, Russia
kaniandr@gmail.com

Abstract. The paper proposes an approach to semi-automatic pro-
gram parallelization in SAPFOR (System FOR Automated Paralleliza-
tion). SAPFOR proposes opportunities to perform user-guided source-
to-source program transformations and to reveal implicit parallelism in
sequential programs. The LLVM compiler infrastructure is used to exam-
ine a program and Clang is used to perform source-to-source program
transformation. This paper highlights benefits of IR-level (Intermedi-
ate Representation) program analysis which allows us to apply low-level
program transformations to investigate properties of the original pro-
gram. To exploit program parallelism SAPFOR relies on DVMH which
is a directive-based programming model. We use subset of C-DVMH
language which allows us to run parallel program on GPU as well on
multiprocessors. Evaluation of presented approach has been performed
using the C version of the NAS Parallel Benchmarks.

Keywords: Program analysis - Program transformation -
Semi-automatic parallelization - SAPFOR - DVM - GPU - LLVM

1 Introduction

Today’s parallel hardware platforms are usually heterogeneous and they are not
only equipped with multi-core processors but also provide accelerators. In order
to fully utilize the available resources, the developers have to update existing
software which relies on sequential programming models. To start this time-
consuming effort the developers choose from a large set of available approaches
to parallel programming.

Low-level data parallel programming models (CUDA, OpenCL) allow us to
achieve the best performance but at the same time require the greatest effort.
Pragma based models (OpenMP, OpenACC, DVMH [1,2]) simplify program-
ming and increase software maintainability while still providing high perfor-
mance. DSLs [3-5] and corresponding compilers automate the development of
high-performance parallel programs in a given domain. And finally, general pur-
pose libraries enable exploiting heterogeneous platforms through the use of stan-
dard high-level programming languages.

© Springer Nature Switzerland AG 2020
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2020, CCIS 1331, pp. 436—448, 2020.
https://doi.org/10.1007/978-3-030-64616-5_38



LLVM Based Parallelization of C Programs for GPU 437

However, any of these diverse approaches still requires expert knowledge. In
this situation, the development of user assistance tools can significantly reduce
the cost of parallel programming. The most desirable tools are automatic par-
allelizing compilers which return a fully parallelized source code for a given
sequential one [6-8]. Unfortunately, a generated code of such compilers may not
be optimal. In this case, successful program optimization may require prelimi-
nary manual transformation of a sequential source code or even further manual
optimization of a generated one. Other tools are applicable only on some stages of
parallelization [9,10]. For example, they assume that parallelism will be exploited
in a manual way, while static or dynamic dependence analysis or source code
profiling could be done automatically. Some of them make suggestions how to
improve performance of already written parallel program.

Alternative solution is to follow an implicit parallel programming methodol-
ogy [11,12]. This implies that the programmer is aware that the program must
be well-formed for automatic parallelization. Thus, he should be able to increase
algorithm-level parallelism, still relies on expressivity of standard sequential pro-
gramming languages. It is also possible to guide the compiler by the hints which
emphasis high-level program properties which are essential for parallelization.

This paper is devoted to the System FOR Automated Parallelization (SAP-
FOR) [13] which combines approaches mentioned above to automate develop-
ment of parallel programs.

SAPFOR relies on an implicitly parallel programming model. This means
that the system includes an automatic parallelizing compiler and it does not
require the user to parallel program explicitly. The system implements both
static and dynamic analysis techniques which complement each other. Thus,
the static analysis reduces overheads of program evaluation at runtime [14]. In
general, dynamic analysis tools are input sensitive and the application of static
analysis techniques also reduces the number of analysis results that the user must
control. SAPFOR implements LLVM [15] based static analysis. The paper [16]
shows how some kind of IR-level (Intermediate Representation) transformations
are used in SAPFOR to increase the quality of program analysis. It also argues
that despite the use of a low-level program transformations, the analysis report
is closely related to the original high-level source code.

The system also provides the user with a set of automatically performed
source-to-source transformations (inline expansion, dead code elimination,
expression propagation and other) that he can apply to the original sequen-
tial program. Guided by the analysis report, the programmer may choose some
of them for automatic execution.

Unlike traditional compilers SAPFOR performs source-to-source paralleliza-
tion and produces a parallel version according to high-level DVMH parallel pro-
gramming model [1,2]. It was designed to create parallel programs of scientific-
technical calculations for heterogeneous computational clusters. C-DVMH is a
directive based programming language. The programmer can annotate a C source
code to highlight regions of code that should be executed in parallel. Thus,
application of DVMH model improves parallel program maintainability and the



438 N. Kataev

developer also can optimize it if necessary. Using DVMH extremely simplifies
the development of an automatic parallelizing compiler since it is not necessary
to use various parallel programming models to generate programs for hetero-
geneous parallel platforms. Moreover, DVMH runtime system controls low-level
data transfer and synchronization and it makes some optimizations of data trans-
fer between CPU and accelerators. Hence SAPFOR should not insert low-level
specifications of these operations in a source code.

The rest of the paper is organized as follows. Section 2 presents our approach
to automatic parallelization of well-formed sequential programs. It also focuses
on the application of lower-level transformations to increase the quality of pro-
gram analysis. Section 3 outlines the implementation details of the interaction
of the higher level transform passes, which perform program parallelization, and
lower level analysis passes. Section 4 is devoted to semi-automatic parallelization
of the C version of the NAS Parallel Benchmarks [20]. It summarizes the nec-
essary source-to-source transformations and presents the performance results.
Section 5 discusses the related work and finally Sect.6 concludes this paper.

2 Automatic Parallelization

In this paper we consider parallelization for compute devices with shared mem-
ory. This means that a parallel program can be run on multi-core CPU or accel-
erator. For this purpose DVMH model requires that three kinds of annotations
be inserted into the source code:

— specifications of the loops which can be executed in parallel, as well as spec-
ifications of private and reduction variables,

— specification of the compute regions which can be executed on the accelera-
tors, each region may enclose one or more parallel loops,

— high-level specifications of data transfer between a memory of CPU and a
memory of accelerator (actualization directives).

All specifications are in the form of directives. Each directive may contain
number of clauses. To make sure the insertion of these directives is permissible,
the automatic parallelizing compiler must investigate the properties of the code
section to be parallelized. There are two main groups of these properties. Firstly,
these are the properties of the program variables and corresponding memory
locations. Secondly, these are properties associated with the control flow of the
program.

The first group of properties includes loop-carried data dependencies, spuri-
ous dependencies, input, output and local data for compute regions. The second
group includes summary information on control flow of each function and loop.
It is necessary to identify whether function calls have side effect (including 1/0O
operations), whether a program may terminate inside a function call, whether a
function captures a pointer (i.e. it makes any copies of the pointer that outlive
the function call). It is also necessary to make sure that there is no recursion
leading to nested compute regions, including due to indirect function calls.



LLVM Based Parallelization of C Programs for GPU 439

The paper [16] discusses the implementation of static analysis in SAPFOR.
It introduces a novel data structure which is called a source-level alias tree. The
source-level alias tree depicts the structure of accessed memory and it allows us
to apply transform passes to improve the quality of the source program analysis.
This means that SAPFOR analyzes transformed program and propagate its
properties to the original source code. Moreover, it is possible to make property-
sensitive transformations, i.e. to make some transformation to analyze one kind
of properties and another transformation to analyze another kind of property.

In that way, the source-level alias tree is suitable to examine the first group of
properties which are necessary for automatic parallelization. If transform passes
do not cross bounds of the analyzed code section (function or loop) it is safe to
investigate the second group of properties.

After the properties of the program have been explored, SAPFOR looks up
for sections of code that can be executed in parallel. At this point, the original
source code is processed.

In the first step, we use a depth-first ordering [17] to traverse strongly con-
nected components of a call graph. To avoid explicit recursion, strongly con-
nected components with a single function are considered only. As a result, we
prevent the appearance of nested compute regions which are prohibited in the
DVMH model.

In the next step, the body of the visited function is processed. Depth-first
search of a loop tree allows us to find the outermost loops which can be paral-
lelized. For each loop the following constraints are examined:

1. Safety of control flow. That means the absence of function calls which have
side effects, the absence of multiple exits outside the loop body, the absence
of I/O operations inside the loop body, the absence of indirect calls to user-
defined functions.

2. Safety of memory accesses. That means the absence of loop-carried data
dependencies and captured pointers. If a pointer references a privatizable
variable and if this pointer is captured, then, after variable privatization, the
relation between the pointer and the variable will be lost. Spurious depen-
dencies such as private and reduction variables are allowed.

3. Direction of data usage. An input data is intended to have the newest values
at the beginning of the loop. An output data is updated in the loop and is live
[17] at any exit from the loop. A local data are updated in the loop, but the
values of corresponding memory locations are not used outside the loop. This
property will be useful for data transfer optimizations at runtime if this loop
is supposed to be executed on GPU. The corresponding clauses will follow a
compute region which surrounds this loop.

4. Canonical loop form according to the OpenMP [18] standard. DVMH as well
as OpenMP disallows parallelization of a loop that does not have canonical
loop form. Source-level alias tree is useful to ensure that loop boundaries and
step are loop invariant expressions.

5. The ability to express properties of memory locations with DVMH directives.
A source-level alias tree allows us to represent any memory location in the



440 N. Kataev

program. However, directive based programming models have some restric-
tions on variables listed in clauses. For example, it is not possible to privatize
memory that is allocated in the heap. The other case is accesses to a global
memory inside the loop body. If there is a call which accesses this global
memory, the corresponding variable cannot be placed in private or reduction
clauses. Each new item is allocated for the corresponding variable listed in
these constructs. Hence these items are not associated with global memory
which is accessed in callees.

6. The ability to collapse iteration spaces of nested loops into one larger iteration
space. The corresponding specification in the parallel directive is similar to
collapse clause in OpenMP [18]. It increases the amount of computation,
which is especially important for running a program on accelerators.

If all constraints are satisfied, the current loop will be parallelized and corre-
sponding DVMH directives will be created. Some constraints can be relaxed to
allow parallel execution on CPU even if the utilization of GPU is not possible.
For instance, calculation of data usage is not necessary in this case and data
transfer specifications can be omitted in a parallel code.

In the last step, we optimize the placement of data transfer specifications in
a source code. We use postorder traversal [17] to prepare data for accelerator
as early as possible and to request data from the accelerator as late as possible.
The call graph and loop trees are traversed. Neighboring regions at the same
level of a loop tree are joined. Even if regions cannot be joined compiler tries
to insert actualization directives before the first region and after the last one to
avoid data transfer between computations. For loops which are not parallelized
we try to move actualization directives outside the loop body and for functions
we move data transfer outside the callees.

3 Implementation Details

We have implemented proposed approach to automatic parallelization in SAP-
FOR. Low-level LLVM IR is used to perform program analysis and source-to-
source transformations rely on Clang AST (Abstract Syntax Tree). LLVM 7.1.0
is currently supported.

As stated in the previous section, we need to have a transformed representa-
tion of the program in the form of a LLVM IR as well as its original represen-
tation. Transformed representation is suitable to analyze memory locations and
to build summary information on control flow while the parallelization pass also
investigates original LLVM IR. Maintaining the correspondence between original
LLVM IR and Clang AST is necessary for source-to-source transformations.

For this purpose, a separate thread (analysis server) can be started inside the
automatic compiler (Fig. 1). It clones the original LLVM IR and then it performs
analysis and transform passes according to [16].

The client thread, which is responsible for program parallelization, requests
the necessary information from the server. A source-level alias tree is used to



LLVM Based Parallelization of C Programs for GPU 441

v

Produce LLVM IR with Clang Alias tree handles allow )
v us to track memory Analysis server (separate
. locations across thread
Construct source-level alias tree. transformation of LLVM IR thread)
Use metadata to store its nodes in LLVM IR N
v /N
/ \
Clone LLVM module
Origin Clone Rebuild the alias tree.
e ? Correspondence with original
Bidirectional map stores alias tree is established and the
memory locations. bidirectional map is initialized.
v Synchronization \b
Analysis Transform and analysis passes.

v
Parallelization pass

Request for analysis results from
server, explore original LLVM IR to
determine parallelization
opportunities of the original program
v
Transformation of the source
code.

Fig. 1. Implementation scheme of the automatic parallelizing compiler in SAPFOR

synchronize the analysis results. An instance of the alias tree will be built both on
the client side and on the server side. As noted in [16] for the alias tree, special
handlers are implemented that allow the compiler to track memory locations
across rebuilding of the alias tree after IR transformation. These handlers are
also used to establish correspondence between objects on the server and on the
client.

A separate LLVM pass has been created to start analysis server. Built-in
support for threads, which is included in C++11, is used. It is possible to create
multiple analysis servers at the same time in order to examine transform-sensitive
properties. A separate pass is also implemented to transform original program.

4 Evaluation

The applicability of the implemented approach was examined on the C versions
of the NAS Parallel Benchmarks (NPB) [19]. In this section we consider in detail
the semi-automatic parallelization of three benchmarks: EP (Embarrassingly
Parallel), BT (Block Tri-diagonal solver) and CG (Conjugate Gradient). Each
of these programs has features that affect the complexity of its analysis and
further parallelization. This section highlights SAPFOR capabilities which are
helpful to overcome these issues. We also summarize source-to-source program



442 N. Kataev

transformations which were applied to improve the quality of the source program
analysis.

We performed the evaluation on 6-cores processor Intel Xeon CPU E5-1660
v2, 3.70 GHz with active Hyper Threading (2 threads per core) and with Turbo
Boost disabled. GPU experiments were performed on GPU GeForce GTX 1660
Ti. We use Intel Compiler 19.0.2.187 for all tests.

4.1 Semi-automatic Transformation

We made some simple preliminary transformations of benchmarks manually to
deal with the limitations of the current version of SAPFOR.

Firstly, each benchmark consists of several files which should be merged
together to allow inter-procedural analysis of programs. The ability of Clang to
merge together several ASTs does not work well for large programs, especially
ones which use the C standard library. On the other hand, LLVM comprises a
tool which allows us to obtain an LLVM IR for each file in order to subsequently
generate a single LLVM IR for all files. Although this approach is applicable to
analyze programs, at the moment, SAPFOR suffers from inability to establish a
correspondence between the original higher level sources and a single LLVM IR.
Thus, this inability prevents source-to-source transformations and it implies us
to merge all sources except header files manually.

Secondly, the presence of macros drastically complicates source-to-source pro-
gram transformation. For instance, macro with the same name may have differ-
ent meanings in distinct program regions. Moreover, changes of macro defini-
tion after program transformation may lead to changes in the transform region
which are unobvious for the user. We replaced definitions of all integer constants
with enumerations and definitions of floating point constants with const-qualified
variables. However, the wide usage of the preprocessor in real-world applications
[21] does not allow us to rely on the absence of macros in programs of scientific-
technical calculations as well. In the future versions of SAPFOR the user will
be able to force the transformations across presence of macros in the transform
region.

The time of the analysis of the merged files, as well as the size of each
benchmark in the number of lines of code are given in Table 1. The original ver-
sions comprise source files with mentioned above preliminary transformations
performed on them. The transformed versions were obtained after manual and
user-guided automatic transformations. And finally, the parallel C-DVMH ver-
sions were obtained after automatic parallelization.

The increase in code size of the transformed versions is primarily due to
the inline expansion. This is the most important transformation which signif-
icantly reduce the complexity of program analysis. At this moment SAPFOR
implements some kinds of inter-procedural analysis known as classical methods
of interprocedural summary dataflow analysis [22]. Unfortunately, as mentioned
in [22] this summary information is too coarse to prove the absence of data
dependencies. Moreover, in the presence of pointers which are essential for every
C program it is necessary to ensure that the callee does not make any copies



LLVM Based Parallelization of C Programs for GPU 443

Table 1. The analysis time(s) of the NAS Parallel Benchmarks (NPB)

Benchmark | Original Transformed Parallel
Lines | Time (s) | Lines | Time (s) | Lines
BT 3488 |46.15 8805 |2213.09 |8954
CG 1283 | 0.59 1460 0.67 | 1515
EP 623 | 0.2 908 0.4 947

of the pointer that outlive the callee itself. The inline expansion allows SAP-
FOR to perform pairwise comparison of array accesses to determine whether
dependences exist between two subscripted references [23] to this array in the
loop nest. In case of inline expansion the loop nest may grow notably causing
significant rise of analysis time (up to 37 min for BT).

Call to a function with arguments of pointer type (this is an CG case) is
another reason for inline expansion because invocation context should be ana-
lyzed to investigate whether or not two pointers can point to the same object.
The usage of restrict keyword in a source code is another way to overcome this
issue.

Along with the choice of transformations, the user can also control the anal-
ysis options. As presented in [24] array delinearization is an important technique
which is implemented in SAPFOR. It significantly reduces the complexity of data
dependence analysis since it allows SAPFOR to perform the pairwise compari-
son of subscript expressions which calculate the addresses of accessed elements
[24]. Unfortunately, variable dimension sizes and loop bounds may prohibit such
comparison because C language does not ensure that subscript expression is
in bounds value of an array dimension. That is why we introduce an analysis
option which allows the user to force data dependence analysis and to assume
that subscript expression is in bounds value.

Although SAPFOR is not able to reveal privatizable arrays in a static way,
it uses dynamic analysis [14] which is helpful in case of EP and BT programs.

The EP benchmark has two features that require a manual program trans-
formation. Firstly, it uses a reduction array, the use of which in C-DVMH is
currently not supported. This array consists of 10 elements and we manually
replaced it with 10 scalar variables. In this case, SAPFOR was able to automat-
ically detect the presence of reduction operations and it generated the corre-
sponding DVMH directives. Secondly, this benchmark uses a privatizable array
of a very large size; this prevents the execution of the program on GPU. In order
to eliminate this array, we manually fused two adjacent loops into a single loop
(the first loop initializes this array and the second loop accesses the calculated
values) and added a re-calculation of the required elements (two neighboring
array elements) at each iteration of the new loop. As a result, the array was
replaced with two scalar variables.

Each of benchmarks uses time measurement functions which access global
variables to store execution time. If the calls of these functions were placed



444 N. Kataev

inside the loop body, this loop could not be parallelized. Whether the control flow
reaches these calls depends on the program input, so static analysis techniques
are not able to parallelize this loop. We removed unreachable calls manually if
SAPFOR detected the likelihood of a side effect which prevents parallelization.

4.2 Performance Results

Table 2 shows the execution times of parallel versions obtained after automatic
parallelization of the transformed benchmarks. The benchmarks have been also
parallelized using OpenMP and OpenCL manually [19]. The results of corre-
sponding launches are also given.

It can be noted that the sequential transformed version of the BT benchmark
is better optimized than the original one. It is the result of inline expansion which
provides the compiler with more optimization opportunities. On the other hand,
the elimination of the private array in the EP benchmark increases the amount
of computations, and as a result, slows down the sequential program.

A significant advantage of the OpenCL version of the CG benchmark com-
pared to the DVMH version is caused by the use of shared memory on GPU.
In addition, in the OpenCL version, the developers performed the vectorization
of some inner loops. At the same time, DVMH and OpenCL versions of EP
benchmark have similar performance, and on the BT benchmark, the DVMH
program significantly outperforms OpenCL version. As to the maintainability,
the OpenCL program is dramatically inferior to DVMH program because it is
very different from the original sequential program.

Table 2. The execution time(s) of the NAS Parallel Benchmarks (NPB)

Benchmark | Sequential SAPFOR Manual
DVMH OpenMP | OpenCL
Name | Class | Original | Transformed | CPU | GPU | CPU GPU
BT A 39.71 38.75 8.21| 9.65| 8.3 21.29
B 169.72 | 161.49 34.3 | 34.83| 35.71 77.15
C 720.86 |696.74 145.72 | 127.16 | 149.85 356.70
CG |A 0.82 0.83 0.33| 0.42| 0.23 0.07
B 75.99 75.63 15.2 | 10.74| 14.63 2.0
C 213.11 |222.67 40.14| 46.67| 39.05 6.45
EP A 15.83 18.56 1.77| 0.53| 1.64 0.4
B 63.2 74.27 7.07 1.49| 6.55 1.42
C 252.94 |297.07 28.28| 5.35| 26.04 5.05




LLVM Based Parallelization of C Programs for GPU 445

5 Related Work

There is a large number of studies dedicated to the automation of parallel pro-
gramming. In this section we will consider some of them.

Polly [6] focuses on loop transformations to optimize data-locality and to
exploit OpenMP level parallelism as well as to vectorize loops. It relies on a
polyhedral model to optimize the program. Polly-ACC [7] extends Polly to bring
accelerator support to generated parallel programs. Although the polyhedral
model has a high potential for detecting parallelism in the program, it imposes
significant restrictions on the source code that can be processed. The low level of
LLVM IR, which is used to analyze and transform programs, does not allow the
programmer to update or even view the generated code. Moreover, polyhedral
based transformations implemented in a source-to-source way as in Plutto [25]
produces the code which is significantly different from the original one and it
can be quite difficult for the user to maintain it.

The application of the static analysis in these tools limits the possibilities
of parallelization. In some cases this analysis does not allow one to estimate
the sizes of the array dimensions and of the loop boundaries. Thus, the absence
of such information may lead to a conservative assumption of the presence of
data dependencies. Unlike Polly and the Polly-ACC, the Apollo [26] optimizer,
which also relies on the polyhedral model, applies speculative optimizations at
run time. However, Apollo does not allow parallelization of programs for GPU.

DiscoPop [8] relies on dynamic profiling information to reveal task graph
which can be transformed with both loop-level and task-level parallelism. Clang
is used to perform source-to-source transformation and to obtain parallel code
using Intel Threading Building Blocks (TBB). It does not imply a significant
transformation of the original program to increase the available parallelism. For
each task in the task graph the corresponding code section is taken from the
source code. Then it is wrapped up in a separate function which becomes a node
in a flow graph of a parallel program.

The authors present the results of the automatic parallelization of programs
from NAS Parallel Benchmarks (loop-level parallelism was exploited). Despite
the use of dynamic analysis techniques, the performance of the parallel code
is quite low and significantly inferior to the manually parallelized programs.
Investigation of task-level parallelism is mainly suitable for programs with an
unchangeable flow graph, such as application of different filters in image process-
ing. In the case of repeated rebuilding of the flow graph, the overhead is very
high.

6 Conclusion

The paper proposes an approach to the automation of parallel programming
which follows an implicit parallel programming methodology. This approach was
implemented in SAPFOR which includes an automatic parallelizing compiler.
SAPFOR also provides source-to-source transformation techniques that allow



446 N. Kataev

the user to bring the sequential program to a well-formed version. SAPFOR relies
on DVMH directive based programming model to exploit loop-level parallelism
for multi-core processors and accelerators. Based on the proposed approach we
perform semi-automatic parallelization of some applications from the C version
of the NAS Parallel Benchmarks. The paper shows that automatically generated
parallel versions have the similar performance to the manually parallelized ones.

This paper advocates the use of low-level program transformations, which
are invisible to the programmer, to increase the quality of the analysis of the
original program. We propose a novel approach that enables property sensitive
transformations. This means that the internal representation of the program can
be transformed to the most suitable form for program analysis.

The evaluation results show that SAPFOR is still suffering from an insuffi-
cient level of inter-procedural analysis. Future work will focus on this issue. We
also intend to increase the number of supported C-DVMH constructions to dis-
tribute the data and the computations between several accelerators and nodes
of the heterogeneous cluster.

References

1. Konovalov, N.A., Krukov, V.A., Mikhajlov, S.N., Pogrebtsov, A.A.: Fortan DVM:
a language for portable parallel program development. Program. Comput. Softw.
21(1), 35-38 (1995)

2. Bakhtin, V.A., Klinov, M.S., Krukov, V.A., Podderugina, N.V., Pritula, M.N.,
Sazanov, Yu.L.: Extension of the DVM-model of parallel programming for clus-
ters with heterogeneous nodes. Bull. South Ural State Univ. Ser. Math. Model.
Program. Comput. Softw. 18(277)(12), 82-92 (2012). (in Russian)

3. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.P.:
Halide: a language and compiler for optimizing parallelism, locality, and recompu-
tation in image processing pipelines. In: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2013,
pp. 519-530 (2013)

4. Beaugnon, U., et al.: VOBLA: a vehicle for optimized basic linear algebra. In:
Proceedings of the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers
and Tools for Embedded Systems, LCTES 2014, New York, NY, USA, pp. 115-124
(2014)

5. Zhang, Y., Yang, M., Baghdadi, R., Kamil, S., Shun, J., Amarasinghe, S.: Graphit:
a high-performance graph DSL. In: Proceedings of the ACM on Programming
Languages, vol. 2, no. OOPSLA, pp. 121:1-121:30 (2018)

6. Grosser, T., Groesslinger, A., Lengauer, C.: Polly-performing polyhedral optimiza-
tions on a low-level intermediate representation. Parallel Process. Lett. 22(04),
1250010 (2012)

7. Grosser, T., Hoefler, T.: Polly-ACC transparent compilation to heterogeneous
hardware. In: ICS 2016: Proceedings of the 2016 International Conference on Super-
computing, June 2016, pp. 1-13 (2016). https://doi.org/10.1145/2925426.2926286

8. Zhao, B., Li, Z., Jannesari, A., Wolf, F., Wu, W.: Dependence-based code transfor-
mation for coarse-grained parallelism. In: Proceedings of the International Work-
shop on Code Optimisation for Multi and Many Cores, San Francisco, CA, USA,
pp- 1:1-1:10. ACM, February 2015



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

LLVM Based Parallelization of C Programs for GPU 447

Kim, M., Kim, H., Luk, C.-K.: Prospector: a dynamic data-dependence profiler to
help parallel programming. In: 2nd USENIX Workshop on Hot Topics in Paral-
lelism (HotPar 2010) (2010)

Garcia, S., Jeon, D., Louie, C., Taylor, M.B.: Kremlin: rethinking and rebooting
gprof for the multicore age. ACM SIGPLAN Not. (2011). https://doi.org/10.1145/
1993316.1993553

Hwu, W.-M., et al.: Implicitly parallel programming models for thousand-core
microprocessors. In: Proceedings of the 44th Annual Design Automation Confer-
ence (DAC 2007), pp. 754-759. ACM, New York (2007). https://doi.org/10.1145/
1278480.1278669

Vandierendonck, H., Rul, S., De Bosschere, K.: The Paralax infrastructure: auto-
matic parallelization with a helping hand. In: 2010 19th International Conference
on Parallel Architectures and Compilation Techniques (PACT). IEEE (2010)
Klinov, M.S., Krukov, V.A.: Automatic parallelization of Fortran programs. Map-
ping to cluster. In: Vestnik of Lobachevsky University of Nizhni Novgorod, no. 2,
pp. 128-134. Nizhni Novgorod State University Press (2009). (in Russian)
Kataev, N., Smirnov, A., Zhukov, A.: Dynamic data-dependence analysis in SAP-
FOR. In: CEUR Workshop Proceedings, vol. 2543, pp. 199-208 (2020)

Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO 2004), Palo Alto, California (2004)
Kataev, N.: Application of the LLVM compiler infrastructure to the program anal-
ysis in SAPFOR. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2018. CCIS,
vol. 965, pp. 487-499. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
05807-4_41

Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison Wesley, Boston (2006). p. 1038, Chap. 9

OpenMP Application Programming Interface. https://www.openmp.org/wp-
content /uploads/OpenMP- API-Specification-5.0.pdf. Accessed 14 Apr 2020

Seo, S., Jo, G., Lee, J.: Performance characterization of the NAS parallel bench-
marks in OpenCL. In: 2011 IEEE International Symposium on Workload Charac-
terization (IISWC), pp. 137-148 (2011)

NAS Parallel Benchmarks. https://www.nas.nasa.gov/publications/npb.html.
Accessed 14 Apr 2020

Ernst, M.D., Badros, G.J., Notkin, D.: An empirical analysis of C preprocessor use.
IEEE Trans. Software Eng. 28(12), 1146-1170 (2002). https://doi.org/10.1109/
TSE.2002.1158288

Havlak, P., Kennedy, K.: An implementation of interprocedural bounded regular
section analysis. IEEE Trans. Parallel Distrib. Syst. 2(3), 350-360 (1991). https://
doi.org/10.1109/71.86110

Goff, G., Kennedy, K., Tseng, C.-W.: Practical dependence testing. In: Proceedings
of the ACM SIGPLAN 1991 Conference on Programming Language Design and
Implementation (PLDI 1991), pp. 15-29. ACM, New York (1991). https://doi.org/
10.1145/113446.113448

Kataev, N., Vasilkin, V.: Reconstruction of multi-dimensional arrays in SAPFOR.
In: CEUR Workshop Proceedings, vol. 2543, pp. 209-218 (2020)



448

25.

26.

N. Kataev

Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. SIGPLAN Not. 43(6), 101-113
(2008)

Caamano, J.M.M., Sukumaran-Rajam, A., Baloian, A., Selva, M., Clauss, P.:
APOLLO: automatic speculative polyhedral loop optimizer. In: 7th International
Workshop on Polyhedral Compilation Techniques (IMPACT), Stockholm, Sweden,
January 2017 (2017)



