White-box Compiler Fuzzing Empowered by Large Language Models

CHENYUAN YANG, University of Illinois Urbana-Champaign, USA YINLIN DENG, University of Illinois Urbana-Champaign, USA RUNYU LU, Huazhong University of Science and Technology, China JIAYI YAO, The Chinese University of Hong Kong, Shenzhen, China JIAWEI LIU, University of Illinois Urbana-Champaign, USA REYHANEH JABBARVAND, University of Illinois Urbana-Champaign, USA LINGMING ZHANG, University of Illinois Urbana-Champaign, USA

Presented by Group 2:

Advait Iyer, Sam Jaehnig, Leah MacKay, Julianne Shah & Daphne Tsai

Motivation

Compilers are huge, complex software systems

- Optimizations triggered by small edge cases
- LLVM 14M Lines of Code
- Needs to be tested, but how?

LLMs for Generating Software Tests

WhiteFox and Dual Model Framework

- WhiteFox: test compiler optimizations by leveraging LLMs
- Dual-Model Approach:
 - (1) Analysis LLM
 - (2) Generation LLM
- Feedback loop: incorporating successful test cases back into the model

Overview of WHITEFox.

Compiler White Box Fuzzing through WhiteFox

- Requirement:
 - LLM: generated test cases
- Test Generation:
 - Generation LLM
 - Employs a feedback loop
- Thompson Sampling
 - Test generation
 - Exploitation to optimize test generation

Target Optimization

Please generate different valid [TARGET INPUT] example with
[INPUT SPECIFICATION] meets the specified requirements.

```
# Description
The [TARGET INPUT] should contain the following pattern:
...
[PSEUDO CODE]
...
This pattern characterizes scenarios where [NL DESCRIPTION].
```

[TARGET INPUT] [EXAMPLE TRIGGERING INPUT #1]

[TARGET INPUT]
[EXAMPLE TRIGGERING INPUT #2]

[TARGET INPUT]
[EXAMPLE TRIGGERING INPUT #3]

[TARGET INPUT] [TO BE GENERATED]

Prompting for test generation with feedback.

Evaluation Overview

Evaluate **WhiteFox** from these perspectives:

- How is each component of the architecture relevant? (ablation study)
- How does it perform relative to existing compiler fuzzing technologies?
- Is it useful in detecting "real-world" bugs?

Evaluation (Ablation Study)

Requirement Formatting:

- **WF-mix** = default
- WF-NL = natural language
- **WF-Code** = pseudo-code
- WF-Impl = source code

Loop Configurations:

- default (Thompson Sampling)
- Wf-No-Feedback: no feedback loop
- Wf-Random: random feedback

Other:

• WF-StarCoder: StarCoder replaces GPT4 in analysis LLM

Results (Ablation Study)

- WF-mix (natural language & pseudo-code hybrid) tests triggered the most compiler optimizations
- Using GPT4 performs better than StarCoder for the analysis step

	# Triggered optim.	% Total optim.	# Triggering tests	% Total tests
WF-Mix	39	60.9%	1,113	17.4%
WF-NL	37	57.8%	940	14.7%
WF-Code	32	50.0%	1,055	16.5%
WF-Impl	32	50.0%	638	10.0%
WF-Starcoder	32	50.0%	745	11.6%

Results (Ablation Study)

• A feedback loop (specifically Thompson Sampling) performs best

Evaluation (Relative Performance)

Compiler Frameworks:

• 3 deep learning compilers (PyTorch Inductor, TensorFlow Lite, TensorFlow-XLA) & LLVM for C/C++

Existing Fuzzers:

- TitanFuzz (LLM-based) & NNSmith (symbolic rule based) DL fuzzers
- **YarpGen** for C/C++ fuzzing & **GrayC** for grey-box C fuzzing

Evaluation (Real-world Applications)

Main Goal:

• # of detected bugs

WhiteFox Sub-goals:

- # of triggered optimizations
- # of optimization-triggering tests

Results (Real-world Applications)

- WhiteFox detects 65 bugs in PyTorch
 - i. 10 detected by TitanFuzz, 3 by NNSmith
- **51 bugs** (of 65) have been fixed
 - i. 5 are *high-priority*
 - ii. 32 are compiler-opt related; 2 detected by competitors

	Total	Confirmed	New	Won't fix	Pending
PyTorch	65	62	60	3	0
TensorFlow Lite	11	8	8	2	1
TensorFlow-XLA	12	10	10	0	2
LLVM	8	2	2	3	3
Total	96	82	80	8	6

Results (comparison with baselines)

		# Optim.	# Triggered optim.	# Triggering tests	# Tests	Time (hour)
PyTorch Inductor	WHITEFOX	61	41	21,469	61,000	41.1
	WHITEFOX-Mini		39	1,737	6,100	4.2
	TitanFuzz		4	5,519	521,251	76.6
	NNSmith		5	47	12,084	4.9
TensorFlow Lite	WhiteFox	13	12	2,801	12,000	18.1
	WHITEFOX-Mini		10	305	1,200	1.1
	TitanFuzz		8	571	243,288	59.0
	NNSmith		7	4,666	117,381	6.8
TensorFlow-XLA	WhiteFox	49	20	12,990	49,000	59.7
	WHITEFOX-Mini		19	1,307	4,900	5.3
	TitanFuzz		22	45,762	243,288	63.2
	NNSmith		16	117,006	117,381	6.0
LLVM	WhiteFox	52	26	25,322	52,000	30.9
	YARPGen		3	3,352	6,948	28.1
	GrayC		4	8,353	107,234	30.6

Critique: Strengths

- **Overall Merit**: Current compiler fuzzing methods are lacking.
- **Experimental Methodology**: WhiteFox was evaluated against an already existing LLM fuzzer.
- **Experimental Methodology**: The paper features an extensive ablation study.

Critique: Weaknesses

- Writing Quality: The paper was written with very large paragraphs.
- **Novelty**: LLMs have already been used for fuzzing software systems.
- **Experimental Methodology**: Only 4 compilers are used for fuzzing evaluation, and 3 of which were deep learning python compilers.
- **Experimental Methodology**: WhiteFox was evaluated against only two non-NN based compiler fuzzers.

Questions?

Thank You!

Potential Papers

- 1. <u>Model, Design, and Evaluation of a Compiler for a Parallel Processing Environment</u> Very old (1977) and not ML
- 2. Machine Learning in Compiler Optimization
- 3. <u>White-box Compiler Fuzzing Empowered by Large Language Models</u> THE WINNER :)
- 4. <u>https://arxiv.org/abs/2312.04511</u> github:<u>https://github.com/SqueezeAILab/LLMCompiler</u>

https://www.when2meet.com/?24296983-vtlLt

Guidelines

13 minutes hard limit, then 2 minutes for questions

Max 20 slides, everyone must talk

Submit slides and paper by 9pm on tuesday!!!

- Don't just lift figures from the pdf (graphs/tables ok to lift)
- Don't have too many all text slides
- No long sentences on slides, don't just read the slides, look at audience
- Equations/proofs not very interesting to show, code examples are great points to discuss

Implementation/Set-up Details

- 1. Optimization Collection
 - a. Identify relevant source code
- 2. Instrumentation
 - a. Add logging to identified *compiler optimization* functions
- 3. Analysis & Generation LLMs
 - a. GPT4 for the analysis LLM, StarCoder for the generation LLM
- 4. Few-shot Prompting
 - a. Initialize with <u>one-shot prompting</u> (optimization, sample requirement description/test input), internally the feedback loop utilizes <u>three-shot prompting</u>