
Presented by Group 2:
Advait Iyer, Sam Jaehnig, Leah MacKay, Julianne Shah & Daphne Tsai

Motivation

Compilers are huge, complex software systems

● Optimizations triggered by small edge cases

● LLVM 14M Lines of Code

● Needs to be tested, but how?

2

Types of Fuzzing

Black Box

Grey Box

White Box

3SUT Fuzzed Input

Studied in Compilers?

✅

✅

❌

LLMs for Generating Software Tests

4

Module Unit Testers:
✅

System Fuzzers:
✅

Compiler Fuzzers:
❌

WhiteFox and Dual Model Framework

● WhiteFox: test compiler optimizations by leveraging LLMs

● Dual-Model Approach:

(1) Analysis LLM

(2) Generation LLM

● Feedback loop: incorporating successful test cases back into the model

5

Compiler White Box Fuzzing through WhiteFox

● Requirement:

● LLM: generated test cases

● Test Generation:

● Generation LLM

● Employs a feedback loop

● Thompson Sampling

● Test generation

● Exploitation to optimize test

generation

6

Evaluation Overview

Evaluate WhiteFox from these perspectives:
● How is each component of the architecture relevant? (ablation study)

● How does it perform relative to existing compiler fuzzing technologies?

● Is it useful in detecting “real-world” bugs?

7

Evaluation (Ablation Study)

Requirement Formatting:
● WF-mix = default

● WF-NL = natural language

● WF-Code = pseudo-code

● WF-Impl = source code

Loop Configurations:
● default (Thompson Sampling)

● Wf-No-Feedback: no feedback loop

● Wf-Random: random feedback

Other:
● WF-StarCoder: StarCoder replaces GPT4 in analysis LLM

8

Results (Ablation Study)

9

● WF-mix (natural language & pseudo-code hybrid) tests triggered the most compiler

optimizations

● Using GPT4 performs better than StarCoder for the analysis step

Results (Ablation Study)

10

● A feedback loop (specifically Thompson Sampling) performs best

Evaluation (Relative Performance)

Compiler Frameworks:
● 3 deep learning compilers (PyTorch Inductor, TensorFlow Lite, TensorFlow-XLA) &

LLVM for C/C++

Existing Fuzzers:
● TitanFuzz (LLM-based) & NNSmith (symbolic rule based) DL fuzzers

● YarpGen for C/C++ fuzzing & GrayC for grey-box C fuzzing

11

Evaluation (Real-world Applications)

Main Goal:
● # of detected bugs

WhiteFox Sub-goals:

● # of triggered optimizations

● # of optimization-triggering tests

12

Results (Real-world Applications)

● WhiteFox detects 65 bugs in PyTorch

i. 10 detected by TitanFuzz, 3 by NNSmith

● 51 bugs (of 65) have been fixed

i. 5 are high-priority

ii. 32 are compiler-opt related; 2 detected by competitors

13

Results (comparison with baselines)

14

Critique: Strengths

● Overall Merit: Current compiler fuzzing methods are lacking.

● Experimental Methodology: WhiteFox was evaluated against an already existing LLM

fuzzer.

● Experimental Methodology: The paper features an extensive ablation study.

15

Critique: Weaknesses

● Writing Quality: The paper was written with very large paragraphs.

● Novelty: LLMs have already been used for fuzzing software systems.

● Experimental Methodology: Only 4 compilers are used for fuzzing evaluation, and 3

of which were deep learning python compilers.

● Experimental Methodology: WhiteFox was evaluated against only two non-NN

based compiler fuzzers.

16

Questions?

17

Thank You!

18

Potential Papers

1. Model, Design, and Evaluation of a Compiler for a Parallel Processing Environment Very old (1977) and not ML

2. Machine Learning in Compiler Optimization

3. White-box Compiler Fuzzing Empowered by Large Language Models THE WINNER :)
4. https://arxiv.org/abs/2312.04511 github:https://github.com/SqueezeAILab/LLMCompiler

https://www.when2meet.com/?24296983-vtlLt

19

https://ieeexplore.ieee.org/document/1702471
https://ieeexplore.ieee.org/document/8357388
https://arxiv.org/abs/2310.15991#:~:text=White%2Dbox%20Compiler%20Fuzzing%20Empowered%20by%20Large%20Language%20Models,-Chenyuan%20Yang%2C%20Yinlin&text=Compiler%20correctness%20is%20crucial%2C%20as,studied%20to%20uncover%20compiler%20defects
https://arxiv.org/abs/2312.04511
https://github.com/SqueezeAILab/LLMCompiler
https://www.when2meet.com/?24296983-vtlLt

Guidelines

13 minutes hard limit, then 2 minutes for questions

Max 20 slides, everyone must talk

Submit slides and paper by 9pm on tuesday!!!

● Don’t just lift figures from the pdf (graphs/tables ok to lift)

● Don’t have too many all text slides

● No long sentences on slides, don’t just read the slides, look at audience

● Equations/proofs not very interesting to show, code examples are great points to

discuss

20

Implementation/Set-up Details

1. Optimization Collection
a. Identify relevant source code

2. Instrumentation
a. Add logging to identified compiler optimization functions

3. Analysis & Generation LLMs
a. GPT4 for the analysis LLM, StarCoder for the generation LLM

4. Few-shot Prompting
a. Initialize with one-shot prompting (optimization, sample requirement description/test input), internally

the feedback loop utilizes three-shot prompting

21

