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Motivation

Compilers are huge, complex software systems

e Optimizations triggered by small edge cases
e LLVM 14M Lines of Code
® Needs to be tested, but how?



Types of Fuzzing
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LLMs for Generating Software Tests

System Fuzzers: Module Unit Testers: Compiler Fuzzers:
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WhiteFox and Dual Model Framework

WhiteFox: test compiler optimizations by leveraging LLMs

Dual-Model Approach:

(1) Analysis LLM

(2) Generation LLM

Feedback loop: incorporating successful test cases back into the model

Feedback Loop
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Compiler White Box Fuzzing through WhiteFox

Requirement:

LLM: generated test cases

Test Generation:

Generation LLM
Employs a feedback loop

Thompson Sampling

Test generation
Exploitation to optimize test
generation

Target Optimization

### Please generate different valid [TARGET INPUT] example with
[INPUT SPECIFICATION] meets the specified requirements.

# Description
The [TARGET INPUT] should contain the following pattern:

[PSEUDO CODE]

This pattern characterizes scenarios where [NL DESCRIPTION].

# [TARGET INPUT]
[EXAMPLE TRIGGERING INPUT #1]

# [TARGET INPUT]
[EXAMPLE TRIGGERING INPUT #2]

# [TARGET INPUT]
[EXAMPLE TRIGGERING INPUT #3]

# [TARGET INPUT] [TO BE GENERATED]

Prompting for test generation with feedback.



Evaluation Overview

Evaluate WhiteFox from these perspectives:
e How is each component of the architecture relevant? (ablation study)
e How does it perform relative to existing compiler fuzzing technologies?
® Isit useful in detecting “real-world” bugs?



Evaluation (Ablation Study)

Requirement Formatting: Loop Configurations:
e WF-mix = default e default (Thompson Sampling)
® WHF-NL = natural language e Wf-No-Feedback: no feedback loop
e WHF-Code = pseudo-code e Wf-Random: random feedback
e WHF-Impl = source code

Other:

WEF-StarCoder: StarCoder replaces GPT4 in analysis LLM



Results (Ablation Study)

e WF-mix (natural language & pseudo-code hybrid) tests triggered the most compiler
optimizations
® Using GPT4 performs better than StarCoder for the analysis step

| #Triggered optim. | % Total optim. | # Triggering tests | % Total tests

WF-Mix 39 60.9% 1,113 17.4%
WF-NL 37 57.8% 940 14.7%
WF-Code 32 50.0% 1,055 16.5%
WF-Impl 32 50.0% 638 10.0%

WPEF-Starcoder 32 50.0% 745 11.6%




Results (Ablation Study)

e A feedback loop (specifically Thompson Sampling) performs best
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Evaluation (Relative Performance)

Compiler Frameworks:

e 3 deep learning compilers (PyTorch Inductor, TensorFlow Lite, TensorFlow-XLA) &
LLVM for C/C++

Existing Fuzzers:
e TitanFuzz (LLM-based) & NNSmith (symbolic rule based) DL fuzzers
e YarpGen for C/C++ fuzzing & GrayC for grey-box C fuzzing
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Evaluation (Real-world Applications)

Main Goal:
e # of detected bugs

WhiteFox Sub-goals:
e # of triggered optimizations
® # of optimization-triggering tests
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Results (Real-world Applications)

WhiteFox detects 65 bugs in PyTorch

10 detected by TitanFuzz, 3 by NNSmith
® 51 bugs (of 65) have been fixed

5 are high-priority

32 are compiler-opt related; 2 detected by competitors

| Total Confirmed New Won'tfix Pending
PyTorch 65 62 60 3 0
TensorFlow Lite 11 8 8 2 1
TensorFlow-XLA 12 10 10 0 2
LLVM 8 2 2 3 3
Total | 9% 82 80 8 6

13



Results (comparison with baselines)

| #Optim. | # Triggered optim. | # Triggering tests | # Tests | Time (hour)

WHaiITeFox 41 21,469 61,000 41.1

WHITEFOX-Mini 39 1,737 6,100 4.2

EyTatchnductor TrtanFuzz ik 4 5519 | 521,251 76.6
NNSMITH 5 47 12,084 49

WHiITEFOX 12 2,801 12,000 18.1

. WHITEFOX-Mini 10 305 1,200 1.1

Tensorklow Lite TrranFuzz L2 8 571 | 243,288 59.0
NNSMITH 7 4,666 | 117,381 6.8

WHuiTeFox 20 12,990 49,000 59.7

WHITEFOX-Mini 19 1,307 4,900 5.3

TensOREl v XLA TrtanFuzz e 22 45762 | 243,288 63.2
NNSMITH 16 117,006 117,381 6.0

WHiITEFOX 26 25,322 52,000 30.9

LLVM YARPGen 52 3 3,352 6,948 28.1
GrayC 4 8,353 107,234 30.6
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Critique: Strengths
e Overall Merit: Current compiler fuzzing methods are lacking.

e Experimental Methodology: WhiteFox was evaluated against an already existing LLM
fuzzer.

e Experimental Methodology: The paper features an extensive ablation study.
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Critique: Weaknesses
e Writing Quality: The paper was written with very large paragraphs.
® Novelty: LLMs have already been used for fuzzing software systems.

e Experimental Methodology: Only 4 compilers are used for fuzzing evaluation, and 3
of which were deep learning python compilers.

e Experimental Methodology: WhiteFox was evaluated against only two non-NN
based compiler fuzzers.
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Questions?
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Thank Youl!



Potential Papers

1. Model, Design, and Evaluation of a Compiler for a Parallel Processing Environment Very old (1977) and not ML
Machine Learning in Compiler Optimization

3. White-box Compiler Fuzzing Empowered by Large Language Models | HE WWINNER Z)
4.  https://arxiv.org/abs/2312.04511 github:https://github.com/SqueezeAlLab/LLMCompiler

https://www.when2meet.com/?24296983-vtlLt
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https://ieeexplore.ieee.org/document/1702471
https://ieeexplore.ieee.org/document/8357388
https://arxiv.org/abs/2310.15991#:~:text=White%2Dbox%20Compiler%20Fuzzing%20Empowered%20by%20Large%20Language%20Models,-Chenyuan%20Yang%2C%20Yinlin&text=Compiler%20correctness%20is%20crucial%2C%20as,studied%20to%20uncover%20compiler%20defects
https://arxiv.org/abs/2312.04511
https://github.com/SqueezeAILab/LLMCompiler
https://www.when2meet.com/?24296983-vtlLt

Guidelines

13 minutes hard limit, then 2 minutes for questions
Max 20 slides, everyone must talk
Submit slides and paper by 9pm on tuesday!!!

Don’t just lift figures from the pdf (graphs/tables ok to lift)
Don’t have too many all text slides
No long sentences on slides, don’t just read the slides, look at audience

Equations/proofs not very interesting to show, code examples are great points to
discuss
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Implementation/Set-up Details

1. Optimization Collection

a. ldentify relevant source code

2. Instrumentation
a. Add logging to identified compiler optimization functions

3. Analysis & Generation LLMs
a. GPT4 for the analysis LLM, StarCoder for the generation LLM

4. Few-shot Prompting

a. Initialize with one-shot prompting (optimization, sample requirement description/test input), internally

the feedback loop utilizes three-shot prompting
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