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ABSTRACT

Coarse-grained reconfigurable architectures (CGRAs) present an
appealing hardware platform by providing the potential for high
computation throughput, scalability, low cost and energy efficiency.
CGRAs consist of an array of function units and register files gen-
erally organized as a two dimensional grid. The most difficult chal-
lenge with deploying CGRAs is compiler scheduling technology
that can map software implementations of compute intensive loops
onto the array. Traditional schedulers are not suitable because they
do not take into account the explicit routing of operand values that
is necessary. In essence, the problem of binding operations to time
slots and resources is extended to also include explicit routing of
operands from producers to consumers. To tackle this problem,
this paper introduces a software pipelining technique for mapping
loop bodies onto CGRAs, referred to as modulo graph embedding.
We leverage graph embedding from graph theory, which is used
to draw graphs onto a target space. The loop body is essentially
drawn onto the CGRA mesh, subject to modulo resource usage con-
straints. Modulo graph embedding is effective because it can take
into account the communication structure of the loop body during
mapping. On average, a compute utilization of 56-68% is achieved
for a set of loop kernels across three 4x4 CGRA designs.
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1. INTRODUCTION

The embedded computing systems that power today’s portable
devices demand high performance and energy efficiency. Tradi-
tionally, application specific hardware in the form of ASICs has
been used on the compute-intensive kernels to meet these demands.
However, increasing convergence of different functionalities, such
as voice/data communication, high definition video, and digital pho-
tography on a single device, combined with high non-recurring
costs involved in designing ASICs have pushed designers towards
more flexible solutions. Coarse-grained reconfigurable architec-
tures (CGRAs) are becoming attractive alternatives because they
offer large raw computation capabilities with low cost/energy im-
plementations [13, 18, 14]. Furthermore, CGRAs are programmable,
thus software implementations of compute intensive kernels can be
mapped onto them.

CGRAs consist of an array of a large number of function units
(FUs) interconnected by a mesh style network. Register files are
distributed throughout the CGRAs to hold temporary values and are
accessible only by a subset of FUs. The FUs can execute common
word-level operations, including addition, subtraction, and multi-
plication. In contrast to FPGAs, CGRAs have short reconfigura-
tion times, low delay characteristics, and low power consumption
as they are constructed from standard cell implementations. Thus,
gate-level reconfigurability is sacrificed, but the result is a large in-
crease in hardware efficiency.

A good compiler is essential for exploiting the abundance of
computing resources available on a CGRA. However, sparse con-
nectivity and distributed register files present difficult challenges
to the scheduling phase of a compiler. The sparse connectivity puts
the burden of routing operands from producers to consumers on the
compiler. Traditional schedulers that just assign an FU and time to
every operation in the program are unsuitable because they do not
take routability into consideration. Operand values must be explic-
itly routed between producing and consuming FUs. Further, dedi-
cated routing resources are not provided. Rather, an FU can serve
either as a compute resource or as a routing resource at a given
time. A compiler scheduler must thus manage the computation and
flow of operands across the array to effectively map applications
onto CGRAs.

Previous efforts at compilation tools for CGRA style architec-
tures have focused on exploiting instruction-level parallelism (ILP)
[10, 1]. However, ILP is limited in scope, and fails to efficiently
make use of resources in CGRAs. Recent research [14] has fo-
cused on exploiting loop-level parallelism on CGRAs. They pro-
pose a modulo scheduling algorithm based on simulated annealing.
It begins with a random placement of operations on the FUs of a
CGRA, which may not be a valid modulo schedule. Operations are
randomly moved between FUs until a valid schedule is achieved.
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The random movement of operations in the simulated annealing
technique results in a long convergence time for loops with large
numbers of operations. Also, the algorithm is ad-hoc in the sense
that no information about the structure of the dataflow graph is uti-
lized in making scheduling decisions.

In this paper, we propose a modulo scheduling technique for
CGRA architectures that leverages graph embedding commonly
used in graph layout and visualization [12], referred to as modulo
graph embedding. Graph embedding is a technique in graph theory
in which a guest graph is mapped onto a host graph. With CGRAs,
scheduling is reduced to placing operations of a loop body on a
three dimensional grid. The three dimensions consist of the FU ar-
ray that comprises two dimensions and the time slots of a modulo
scheduled loop that form the third dimension.

Modulo scheduling is performed by considering groups of equal
height operations from the top of the dataflow graph (DFG) to the
bottom. The three dimensional scheduling grid is filled in a skewed
manner by restricting the subset of FUs and time slots available
for each group of operations. This stylization increases routability
of operands and can dynamically adapt to different shape DFGs.
A discrete cost function between pairs of DFG nodes is designed
and the placement algorithm tries to reduce this cost function. The
cost function consists of different components: routing cost, which
ensures that producers and consumers are placed close to one an-
other; affinity cost, which ensures that operations with common
consumers are placed close together; and, position cost, which en-

sures that operations are left-justified on the set of eligible resources.

Left justification ensures operations are tightly packed and enables
operand routing to subsequent operations using the righthand por-
tion of the array.

The central advantages of modulo graph embedding are summa-
rized as follows:

e It scales well with respect to number of operations in the
DFG and thus is capable of handling large loop bodies.

e [t handles a wide variety of CGRA configurations, including
sparse interconnectivity and fully distributed register files.

e [t is a systematic technique that assigns operations to the
nodes in a CGRA and thus convergence to a solution is faster
along with producing higher quality schedules.

2. BACKGROUND AND MOTIVATION

2.1 Architecture Overview

A CGRA consists of an array of compute nodes, each of which
executes word-level operations, communicating through an inter-
connection network. In general, CGRA designs can be described
by four characteristics: size, node functionality, network configu-
ration, and register file sharing. The size refers to the number of
nodes; commonly this can vary from 4 nodes arranged in a row up
to 64 nodes arranged in an 8x8 grid. The functionality of each node
can vary from a single FU (e.g. adder or subtracter), to an ALU, to
a full-blown processor. In addition, the functionality of nodes may
be homogeneous or heterogeneous. For example, only the nodes
on the edges of the array may access data memory.

There is a large number of potential network configurations, such
as connections between each node and its four (or eight diagonal)
nearest neighbors, buses connecting each node to (possibly to a
subset of) other nodes in the same row or column, hierarchical con-
nection schemes, and so on. Finally, the degree of register file
sharing ranges from small, individual register files at each node,
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to multiple register files each shared by a small number of nodes,
to a single central register file accessible by some or all nodes.

Figure 1 shows three CGRA designs. Each design contains 16
nodes arranged in a 4x4 mesh; each node can communicate with
its four nearest neighbors. The details of a node are shown in Fig-
ure 1(a). A FU reads inputs from neighboring nodes and writes to
a single output register; a small, dedicated register file can supply
operands to the FU and store the FU’s result; and a configuration
memory supplies control signals to the MUXes, FU, and register
file. Note that a node can either perform a computation or route
data each cycle, but not both, as routing is accomplished by pass-
ing data through the FU.

The CGRA designs shown in Figure 1 vary in terms of their reg-
ister file sharing. In design (a), there is no register file sharing as
all register storage is distributed across the nodes in the form of the
dedicated register files. The interconnect in this design is therefore
the most sparse of the three designs, as all communication between
nodes must be explicitly routed through the network. Design (b) is
an example of a shared register file design (four neighboring FUs
share a register file in this example), where some nodes have ac-
cess to the same register files. FUs that share a register file can
communicate values directly, without explicit routing through the
interconnection network. The downside of having shared register
files is that the files are larger and more highly ported, reducing the
efficiency of the hardware.

Finally in design (c), all nodes again have individual register
files, but now they are additionally connected to a central regis-
ter file via column buses. This machine is essentially equivalent
to a VLIW processor where all FUs can communicate with each
other by writing to the same register file. This design is richest in
terms of communication abilities, but it is also the least scalable as
the central register file must be large and highly ported to supply
operands to all FUs. Generally, the ports on the central register file
are limited to a small number to control cost and allow a subset of
the inter-FU communication to go through the central register file.
These three examples show only a small subset of possible CGRA
designs as many other variations are possible.

For this research, we assume a 4x4 CGRA with homogeneous
FUs in a mesh interconnection network as shown in Figure la.
Even though a richer interconnect (e.g., mesh plus [14]) can make
scheduling easier and usually leads to better schedules, our objec-
tive is to develop a scheduler that can achieve good performance
under the restrictions of a low-cost CGRA. For the basic scheduler
formulation, register files are fully distributed over a 4x4 array of
FUs (e.g., no shared register files). In the experiments, we vary the
register file configuration to evaluate the effectiveness of schedul-
ing across different CGRA configurations.

2.2 Modulo Scheduling for CGRAs

Modulo scheduling is a software pipelining technique that ex-
poses parallelism by overlapping successive iterations of a loop [16].
The goal is to find a valid schedule for a loop such that the inter-
val between successive iterations (initiation interval, or II) is mini-
mized. The II-cycle code region that achieves this maximal overlap
is called the kernel. When the number of iterations is large, the
performance of the loop is determined by the II to a first order;
thus, when modulo scheduling, it is more important to minimize
the II than to minimize schedule length. Initially, the scheduler
chooses the target II to be the maximum of the resource-constrained
lower bound (ResMII) and the recurrence-constrained lower bound
(RecMII). If a valid modulo schedule cannot be found, the target 11
is incremented and scheduling is attempted again.
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Figure 1: Three CGRA designs with varying register file connectivity: (a) dedicated register files, (b) shared register files, and (c)

dedicated register files and a single centralized register file.

Scheduling for CGRAs is quite different from scheduling for
general VLIW architectures due to the different hardware charac-
teristics. With the presence of the central register file in general
VLIW architectures, scheduling consists of finding available re-
sources for producers and consumers. Routing from a producer to
a consumer is implicitly guaranteed by storing intermediate values
in the central register file.

However, just finding resources for computation is not sufficient
when scheduling for a CGRA because of the sparse interconnect
and distributed register files. The intermediate values stored in the
distributed storage elements (either local register files or output reg-
isters of FUs) need to be routed explicitly to the consuming FUs.
As FUs are used for both computation and routing, the routability
of values has to be checked at schedule time. If this condition is
not checked, a situation could arise where a value is produced by
an FU but cannot be routed anywhere as all of the neighboring FUs
are busy in subsequent cycles. Thus, the scheduler should be aware
of these routing requirements not only to generate a valid schedule,
but also to minimize the number of routing resources used so that
more FUs are available for computation.

One approach to modulo scheduling for CGRA arrays was de-
scribed by Mei et al. [14]. In this approach, the architecture is rep-
resented by a modulo routing resource graph (MRRG), and the goal
of scheduling is to map the DFG and any necessary data transfer
operations to this MRRG through time. To accomplish this, all op-
erations are first scheduled on a subset of the FUs, over-committing
those resources. Then, using a simulated annealing approach, oper-
ations are iteratively removed from the existing schedule and ran-
domly placed on new FUs. A cost function, based on the degree
resources are over-committed, is used to decide whether or not to
accept each new schedule. The objective is to move towards sched-
ules with fewer over-committed resources, and a valid schedule is
found when no resources are over-committed.

The limitation of this approach is that it is not scalable with re-
spect to the size of the DFG. With larger graphs, the schedule time
increases significantly due to the time complexity of simulated an-
nealing, and the scheduler may not converge to a solution at the
desired II. In addition, the probability of convergence is lower for
CGRAs with sparser network connectivity schemes, as it becomes
more difficult to find a valid, routable schedule using random place-
ment. Our approach overcomes these problems by using informa-
tion available in the DFG, such as its overall shape and the relation-
ships between producers and consumers, to systematically schedule
the operations onto the CGRA.
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3. MODULO GRAPH EMBEDDING

This section describes modulo graph embedding, our approach
to modulo scheduling for CGRAs. We break the description down
into two parts: Section 3.1 presents the important concepts of the
approach in isolation, and Section 3.2 brings everything together to
discuss the complete scheduling algorithm.

3.1 General Concepts

3.1.1 Resource and Connectivity Management

During instruction scheduling, a reservation table is maintained
to keep track of which resources are used in each time slot. As re-
sources are repeatedly used every II cycles by successive iterations
of the loop, the modulo scheduler maintains a Modulo Reservation
Table (MRT) which has only II time slots [16]. Considering that
the scheduler for a CGRA must perform routing of values as well
as placement of operations, routing information should be recorded
by the scheduler. This routing information can be included in the
reservation table because FUs are used both for computation and
routing. Management of the interconnect network is not necessary
as all of the connections are dedicated point-to-point connections,
meaning that no congestion can occur in the network.

For resource management, the concept of the Modulo Routing
Resource Graph (MRRG) from the DRESC compiler framework [14]
is used. The MRRG is a graphical representation of the scheduling
space where nodes represent routing resources and edges describe
the connectivity of those resources. Scheduling in the CGRA be-
comes a problem of placement and routing of each operation on the
MRRG.

The original MRRG has a detailed description of the CGRA [14].
MRRG nodes are created for each port on the FUs and register files,
in addition to the MRRG nodes for the FUs and register files them-
selves. We take a simplified approach to model the CGRA. A single
node is created for each FU and register file. Since port information
for FUs can be easily discovered by analyzing the resulting sched-
ule along with the instruction format, it is not necessary to create
nodes for the individual FU ports. Port information for register files
can also be discovered in the same way, but two additional nodes
are used to limit the number of read/write accesses to register files.
Our resource management model can be considered as a distributed
MRT with connectivity information. Each node represents either an
FU or register file and is equipped with a MRT to keep track of the
resource usage.

Figure 2(b) shows our resource management model constructed
for the 2x2 CGRA in Figure 2(a) with II = 3. Nodes for register
files and wrap-around edges were omitted for simplicity. Each of
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Figure 2: Modelling resources in a CGRA: (a) example 2x2
CGRA, (b) resource management model for 2x2 CGRA with
11=3.

the four nodes in the CGRA has a 3-entry MRT, and each edge
specifies that a value can be routed from the source to the desti-
nation resource. When an operation is placed on an FU, the MRT
in the corresponding node is marked as occupied at the schedule
time. If there are any placed producers or consumers, a valid route
is discovered by traversing nodes along the edges.

3.1.2 Register Assignment and Allocation

With modulo scheduling, the number of registers required by a
loop is not known before scheduling. In addition to conventional
register allocation constraints, it may be necessary to keep multiple
copies of registers depending on how many iterations separate the
first producer and last consumer. This can cause a problem for the
small, distributed register files in CGRAs as the number of total
registers required at a single FU can exceed the local register file
capacity. The available storage must be carefully considered during
scheduling as simply pushing register allocation to after scheduling
can result in costly spilling and may require complete rescheduling
of the loop.

Our approach is to perform a simple register allocation and as-
signment during modulo scheduling. The modulo constraint that
is enforced for FUs is also enforced for registers, i.e., there is an
MRT kept for the each register file. A register value can stay in
the same register up to II cycles, but the value will be overwritten
by the same instruction in the next iteration II cycles later. When
a register value is live for longer than II cycles, it has to be explic-
itly routed to another register file (or to another register in the same
file). Specific entries in the register file are allocated for each vir-
tual register using a simple greedy algorithm. While this approach
may seem overly simplistic, it effectively guides the scheduler to
distribute register usage across the CGRA.

3.1.3 Height-based Scheduling

The problem of modulo scheduling for a CGRA can be viewed as
mapping applications onto the 3-D space consisting of the FU array
stacked up II times. With this finite scheduling space, minimizing
the routing cost is a critical issue in scheduling, as fewer resources
being used for routing leads to more resources being available for
computation. Routing cost is defined as the number of FUs being
used for routing (passing data from one node to another) rather than
computation. This cost depends on the positions of producer and
consumer operations in the CGRA due to the sparse interconnect
network. This requires the scheduler to be cognizant of producer
and consumer relations so that they can be placed close to each
other.

Figure 3 shows how the placement of operations impacts the
routing cost of their consumers. Figure 3(a) is an example DFG
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Figure 3: Example showing the placement of producers affects
the routing cost of consumers: (a) DFG for loop, (b) target ar-
chitecture which is a 1x4 CGRA, (c) poor schedule that results
in an extra cycle for routing values to Op 6, and (d) good sched-
ule that results in no additional routing.

and Figure 3(b) is a hypothetical architecture with sparse intercon-
nect where FUs are allowed to communicate only with adjacent
FUs. Figures 3(c) and Figure 3(d) show two different schedules,
both minimizing the routing cost for operations 4 and 5. When
operation 6 is placed, the minimal routing cost is affected by the
positions of its two producers (operations 4 and 5). This suggests
that the scheduler must proactively choose placements to reduce
routing costs.

To effectively manage routing costs, we employ two comple-
mentary techniques: height-based scheduling and the affinity-based
placement which is discussed in the next section. Height-based
scheduling is a common heuristic used in list scheduling where op-
erations are scheduled in the order of dependence height. Oper-
ations with greater height are scheduled first, followed by opera-
tions with lower height. But, for operations with the same height, a
CGRA scheduler cannot process them individually because place-
ment of one operation has cost implications on the placement of
others. Careless placement of one operation might increase the
routing cost of other operations, or even make it impossible to place
by blocking all of its routing possibilities. Therefore, operations
with the same height are considered together to achieve an optimal
placement rather than being scheduled separately. Possible sched-
ule slots (resource/time pairs) are identified for each operation, and
a combination of schedule slots (called a layour) that minimizes the
total routing cost is selected.

3.1.4 Affinity Graph

Routing cost is difficult to minimize during scheduling because
the true cost is not known until all producer-consumer pairs are
placed. With height-based scheduling, consumers are generally
placed after the producers (except for operations on a recurrence
cycle). Therefore, routing cost associated with just the producers
is considered when an operation is placed. Even though the rout-
ing cost associated with consumers cannot be measured at the time
that the producers are scheduled, it is desirable to account for these
consumers in some way to avoid making greedy decisions. Ideally,
operations with a common consumer should be placed close to each
other so that the routing cost can be minimized later.

A measure of affinity is utilized to perform more intelligent schedul-

ing by using information about common consumers. The affinity
between a pair of operations with the same height is a measure
of how close their common consumer is in the DFG. Operations
with an immediate common consumer have the highest affinity be-



Op0|Op1|Op2|Op3|Op4|0Op5

QOOOO®® |emofal o]0
Op1| 2 0 1 1 0 0

op2| 1 |1 o200

Op3| 1 1 2 0 0 0

Op4| 0 0 0 0 0 2

Op5| 0 0 0 0 2 0

(a)

Yo)
0)iO,

Bad

Q)
6430

Good

Q
®

(d)

Figure 4: Example affinity graph: (a) DFG for loop, (b) cal-
culated affinities between each pair of operations, (c) affinity
graph, and (d) possible operation assignments to a 2x4 CGRA.

tween them, while operations without a common consumer have
zero affinity. Operations with indirect common consumers have
moderate affinities that decrease based on the distance to the com-
mon consumer. The goal is to place operations with high affinity
close together to minimize the routing cost of the common con-
sumers.

For each pair of operations, the affinity is calculated by looking
at their common consumers. An affinity graph is then constructed
that consists of nodes representing operations and edges represent-
ing affinity between operations. An example of the affinity graph
is shown in Figure 4. The affinity graph is constructed for the op-
erations in the first row of the DFG in Figure 4(a). Figure 4(c) is
the resulting affinity graph where solid edges represent high affinity
between operations (a value of 2 in the example) and dotted edges
represent low affinity between operations (a value of 1). Pairs of
operations without edges have an affinity of zero.

For each pair of operations A and B with the same height, the
affinity value is calculated using the following equation. Only the
common consumers within the range of max_dist are considered in
the calculation of the affinity value. The variable num_cons(A,B,d)
denotes number of common consumers of A and B whose distance
from A and B in the dataflow graph equals d.

maz.-dist ]
Z gmaz-dist—d o num_cons(A, B,d) (1)
d=1

af finity(A, B) =

When scheduling operations, the scheduler attempts to place op-
erations close together according to their affinity. Two alternate
schedules for the operations are shown in Figure 4(d) that illustrate
the use of affinity to eliminate explicit routing operations by per-
forming more intelligent assignment of operations to nodes in the
CGRA. The schedule on the left is better because operations with
affinity edges are placed closer on the array.

3.1.5 Graph Embedding

In this work, we leverage graph embedding that is commonly
used in graph layout and visualization. Graph embedding is a par-
ticular drawing of a graph onto a target space (usually a planar
space). Drawing large graphs “nicely” is not an easy task. Here,
a nice graph usually refers to non-crossing edges and a regular dis-
tribution of nodes. The spring embedder model [3] is a well known
heuristic approach to graph embedding. It simulates a mechanical
model of rings attached with springs. Each ring represents a node
in the graph and each spring between two rings represents forces
that attract or repel the nodes in the graph. The spring embedder
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is a suitable model for our scheduling. Each weighted edge in the
affinity graph can be thought of as a spring that attracts two nodes
in the graph. An edge with high affinity will attract two operations
so that they are placed on the same or nearby resources.

A large amount of research has been conducted for effective
graph drawing using the spring model. Kamada and Kawai pro-
posed an iterative algorithm that calculates attractive and repulsive
forces for each node and gradually moves the nodes with respect
to the calculated forces [7]. Davidson and Harel employed a sim-
ulated annealing method that improves the cost of the graph based
on the spring model [2]. However, most works do not fit into our
scheduling problem as they assume a continuous space rather than
the discrete, finite 3-D scheduling space. Graph embedding onto
a grid-based space is well studied in the area of VLSI cell layout,
known as force-directed placement. These works have somewhat
different objectives, such as minimum edge bends. Li and Kurata
proposed a grid layout algorithm of biochemical networks [12]. It
uses simulated annealing for embedding complicated biochemical
graphs onto the grid space. We found this solution best suited for
our problem as its target space is discrete and the objective is plac-
ing nodes with edges close together.

Compared to the target graphs of typical graph embedding algo-
rithms, our affinity graph has quite a small number of nodes. This
is because we are not scheduling the whole application at one time.
Instead, graph embedding is performed for each height level of the
DFG and it is unusual for more than 20 operations to have the same
height. Also, the search space is limited by pre-placed operations
because pre-placed producers limit the possible slots of their con-
sumers due to the sparse interconnect. For the search space that
is sufficiently constrained, a simple exhaustive search can find an
optimal layout of operations quickly. Li and Kurata’s algorithm is
employed only for large search spaces where the exhaustive search
cannot finish in a reasonable time.

3.1.6  Skewed Scheduling Space

One of the difficult challenges of scheduling for CGRAs is ensur-
ing that the necessary routing can take place as the CGRA is filled
up with more operations. At the start of scheduling, the CGRA is
empty, thus routing is not difficult. But, as scheduling proceeds, the
scheduler can easily back itself into a corner and get stuck where
the necessary routing cannot be performed. The affinity heuristic
tries to minimize the overall number of resources used for routing,
but this is not enough. When schedule times get larger than II, diffi-
culties often result due to pre-placed operations (repeated resource
use by the same operation every II cycles) and already-placed pro-
ducers.

The conventional approach used in modulo scheduling is back-
tracking, where one or more operations are unscheduled to allow
the current operation to successfully schedule [16]. However, back-
tracking for CGRAs is much more complicated. First, placing an
operation usually requires more than one resource as routing is in-
volved. This means that many operations can be unscheduled to
overcome a routing failure. Moreover, re-scheduling operations re-
quires both routing to its consumers as well as from its producers.
It’s difficult for the scheduler to make forward progress with back-
tracking.

A different approach is to prevent routing failures in advance. In
general, routing failures to a consumer can be avoided if all the re-
sources are free in time slots later than a producer’s time slot. This
is why the acyclic scheduling does not suffer from routing failures
as it has an infinite scheduling space. Likewise, modulo schedul-
ing does not suffer from routing failures within an II cycle window.
Further, most applications don’t have enough parallelism that re-
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Figure 5: CGRA scheduling spaces: (a) normal scheduling space, (b) skewed scheduling space, (c,d,e) variations of skewed scheduling

space.

quires all the CGRA FUs in one cycle. These two observations
encourage clustering of the CGRA. With clustering, the FUs in the
CGRA are partitioned into subsets. The scheduler can utilize one
subset, or cluster, without any routing failures for II cycles. When
the cluster is full, the scheduler can then use another cluster for the
remaining operations, and so on.

Instead of partitioning the CGRA statically, our approach clus-
ters the CGRA dynamically where the cluster boundaries are not
strictly defined. The clusters are formed in a left-to-right manner
on the array. The scheduler gives priority to the leftmost available
FUs. But when the application parallelism is high, the cluster is
dynamically enlarged by being forced to assign operations to lower
priority FUs on the right. The scheduler utilizes a position cost to
accomplish dynamic partitioning. When an operation is considered
on an FU, its position cost is computed. The position cost is deter-
mined by the column in which the FU lies. Low cost is assigned to
the leftmost available FUs, while higher cost is assigned to the FUs
that lie further to the right.

When a partition of FUs to the left becomes full, values must be
routed to FUs to the right. To guarantee this is possible, the concept
of a skewed scheduling space is introduced as shown in Figure 5(b).
Unlike the traditional scheduling space (see Figure 5(a)) where all
the slots are available at the given schedule time, the start times of
FUs are restricted such that they stagger down the right side of the
CGRA. Since each FU is only available later than the FU on its
left, the last schedule slot is always available to the output value of
the last schedule slot of its left FU. When no operation is placed
on an FU at the original start time, the start time increases, which
slides down the scheduling space of the FU. When the scheduling
space of an FU is lowered, scheduling spaces of FUs to its right are
also lowered to guarantee the routability. Therefore, the skewed
scheduling space dynamically changes as operations are placed in
the CGRA. As the operations at the same height are considered to-
gether to get an optimal layout, the parallelism in the application
at the given height determines the shape of the scheduling space.
Some applications may not even require all four FUs in one col-
umn. In this case, the position cost is augmented with the row cost
and the FUs in the upper rows are utilized first. Figure 5(c), (d) and
(e) show several other possible skewed scheduling spaces.

Assignment of operations to the skewed scheduling space works
well for forward dependence patterns, but difficulties arise with re-
currence cycles. Recurrence cycles contain a communication pat-
tern where a producer is scheduled after its consumer. Thus, the
producer will be likely to be placed on the right of its consumer
and routing becomes difficult since most schedule slots on the left
are already utilized. To address this routing problem, our approach
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is to reserve in advance slots for such cycles when the consumer
is placed. When a producer is placed later, it can use this reserved
route. Again, we take the preventative approach to avoiding routing
problems rather than solving them when they occur.

3.2 Implementation

Figure 6 presents an overview of our system. It takes the target
loop body and description of the CGRA as input. The scheduling
process consists of an initial preprocessing step to analyze the DFG
and set up the skewed scheduling space. This is followed by the
main scheduling loop that iterates over each level of the DFG to
find a placement of all the operations at a particular height using
modulo graph embedding.

3.2.1 Preprocessing

The target application is first preprocessed to calculate the heights
of all operations based on the distance from the terminating op-
eration (e.g., the loop back branch). The height of an operation
determines when it is considered for scheduling and the height dif-
ference between producer and consumer is a rough estimation of
the live range of the intermediate values.

The scheduling space is skewed by assigning different start times
to FUs. The same start time is assigned to all FUs in one column.
Starting from zero for the first column on the left, the start time
staggers downward with each increasing column number.

3.2.2  Scheduling Process

Scheduling proceeds through successive dependence height lev-
els of the DFG considering all operations at a level simultaneously.
Scheduling is converted into a graph embedding problem that maps
the affinity graph onto the skewed scheduling space. Our modulo
scheduler is implemented based on Li & Kurata’s grid layout algo-
rithm [12]. In the remainder of this section, we review basic ideas
behind grid layout and describe our modified algorithm.

Grid Layout: Grid layout treats graph embedding as an opti-
mization problem. A discrete cost function is defined for each pair
of nodes based on the topological relation and the geometric posi-
tions of the nodes in the layout. Namely, high cost is given when
two nodes connected by an edge are placed far apart and low cost
is given when they are placed close together. The cost of a lay-
out is given as a summation of costs for all node pairs. Simulated
annealing is employed to find the layout with the lowest cost.

Modulo Graph Embedding: Unlike the original problem in
grid layout, our problem has more constraints and costs to consider.
Specifically, scheduling operations at each height has the following
objectives:



Target Application(sobel) and CGRA Preprocess DFG and

Initialize Scheduling Space

Schedule Each Height using Graph Embedding Algorithm
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Construct Affinity Graph

Search Opimal Layout Update Scheduling Space
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Figure 6: Overview of the CGRA scheduling system: input is the assembly code for the loop body and a description of the CGRA;
preprocessing analyzes the loop to compute heights and skew the available scheduling cycles for the FUs; the graph is iteratevely
scheduled at successive dependence height levels by constructing the affinity graph and performing modulo graph embedding of the

affinity graph on the CGRA.

e Place operations with a common consumer close to each other
e Minimize the routing cost for values from producers
e Ensure the routability of values to consumers

To achieve the objectives above, the scheduling concepts in Sec-
tion 3.1 are realized in a cost function composed of three terms:
routing cost, affinity cost, and position cost. They are calculated
for operations by the following equations. where A and B are op-
erations to be placed and af finity(A, B) is given by Equation 1
from Section 3.1.4:

routing-cost(A) = # FUs used for routing values ?2)
from producers to A
af finity-cost(A, B) = distance(FU(A), FU(B)) 3)
X af finity(A, B)
position_cost(A) = column # of FU(A) x BASE_.COST (4)

layout_cost = Z (routing_cost(A)+position_cost(A)) 5)
A€ op:
+
A,B€ops

af finity_-cost(A, B)

Grid layout employs a simulated annealing search to find an opti-
mal layout of operations at each level by minimizing layout_cost.
While the original grid layout maps a graph onto a 2-D plane, our
target space is 3-D scheduling space which can have an infinite
search space with varying schedule times. Therefore, we limit the
search space by placing operations only in slots that minimize rout-
ing cost, called primary slots. Primary slots are identified before
placing any operations. Even though each individual primary slot
has the same routing cost, the total routing cost of a layout might
vary because routing for one operation might block routing for an-
other. Therefore, the routing cost is still considered in the cost
function.

Once primary slots are identified, the size of search space is the
product of the size of each operation’s primary slots. Sometimes
the search space can be quite small since pre-placed producers limit
the placement of consumers. For small search spaces, exhaustive
search is employed rather than using the grid layout. A flow chart
of the scheduling process is presented in Figure 7.

The grid layout process begins with an initial layout obtained by
randomly placing operations in one of their primary slots. Begin-
ning with the initial layout, the scheduler enters a loop where the
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Figure 7: Scheduling process for operations at each successive
dependence height.

cost of current layout is iteratively reduced using simulated anneal-
ing. First, operations are randomly moved or swapped with other
operations to generate a neighbor of the current layout. The neigh-
bor layout is then locally optimized. Local optimization greedily
performs moving or swapping operations whenever the cost is re-
duced, and these actions are repeated until no further improvement
can be achieved. The locally minimized layout is evaluated for ac-
ceptance as an optimal layout. At some points, an uphill movement
is taken to escape from a local minima. After the optimal layout
is discovered, the scheduling space is adjusted to reflect the cho-
sen placement of operations at the current height and the scheduler
proceeds to the next height.

3.2.3  Scheduling Example

The process of scheduling each height of the application onto
the skewed scheduling space is illustrated in Figure 8 with sobel,
an image edge detection algorithm. The II in this example is 4.
Due to space limitations, scheduling of operations for the first three
heights is presented. Figure 8(a) shows the DFG of sobel and the
target 4x4 CGRA. Scheduling for the selected heights is illustrated
in Figure 8(b).

For each height, the affinity graph for the operations is shown
at the top with solid edges representing high affinity and dotted
edges representing low affinity. The table in the middle, where FUs
are represented horizontally and time vertically, shows the resulting
layout of operations. Note that the FUs in the left two columns
only appear in the table since the other FUs are not used in this
example. Each entry in the table represents a schedule slot and
shaded entries constitute the scheduling space of the CGRA (also
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Figure 8: Example of modulo graph embedding: (a) DFG of sobel and target CGRA, (b) scheduling results of first three heights.

shown in 3-D graph at the bottom). Since FUs are repeatedly used
every Il cycles, entries are marked with X’s when they are occupied
by previously scheduled operations.

At height 11, operations are placed only in the first column due
to the limit of the skewed scheduling space. Also, operations with
high affinity represented in solid edges are placed in adjacent sched-
ule slots. For example, 145 is placed adjacent to 165 and 143 due
to its high affinity with these operations. Conversely, 145 is placed
apart from 157 because there is no affinity between 145 and 157.
Note that routing cost is not considered at this height since there
are no producers placed.

At height 10, all the costs, including routing cost, are considered.
As the operations at height 11 were intelligently placed based on
the affinity, the scheduler places operations at height 10 without
using any resources for routing. FUs in the second column are
also utilized to support the parallelism in the application. Since no
operation is placed on FU 7 at its original start time of 1, FU 7’s
start time is increased by 1 and its scheduling space is slid down.
This also implies that the scheduling spaces of FU 11 and FU 15
are slid down to guarantee routability.

Operations at height 9 are scheduled similarly to those at height
10, again accounting for all costs. Note that the unoccupied slots
in the second column at time O can be utilized II cycles later when
output values of operations placed in the first column cannot oth-
erwise be routed due to the modulo constraint. For example, the
output values of operations 68 and 71 at height 9 can be routed
using schedule slots of the second column at time 4.

The final scheduling space of sobel is shown on the righthand
side of Figure 6.

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup

CGRAs can be characterized by many parameters. To evalu-
ate the performance of our scheduler, three designs were tested.
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Design Name #RFs #FUs | #Regs | #Read | #Write
per RF ports ports
Dedicated RF 16 1 4 2 1
Shared RF 4 4 12 8 4
16 local 1 4 2 1
Central RE ol T 16 k) g 7

Table 1: Register file configurations for three CGRA designs
used for evaluation.

All three designs have the same architectural parameters except for
their register file configuration. All are 4x4 homogeneous CGRAs
connected with a mesh network, with operation latencies of the
ARMD926 (e.g., 3 cycles for multiply, 2 cycles for load/store, and
1 cycle for simple arithmetic).

Table 1 shows the register file configurations for the three de-
signs. These designs are the same as those pictured in Figure 1.
The central RF design is the same as the dedicated RF design ex-
cept that it has an additional central register file shared by all 16
FUs.

To evaluate the modulo graph embedding scheduler, twelve loop
kernels are taken from various application domains: signal process-
ing (fft, fir, iir, viterbi), encryption (blowfish), image processing
(dct, fsed, sharp, sobel), network processing (channel), and video
compression (idct, dequant). Only the innermost loop is considered
for modulo scheduling for multidimensional loop nests.

4.2 Evaluation of Affinity Graph Heuristic

The main objective of the affinity graph heuristic is to minimize
total routing cost by using common consumer information. In mod-
ulo scheduling, total routing cost is affected by other factors, such
as recurrence cycles and the modulo constraint. In acyclic schedul-
ing, we can exclude the influence of the modulo constraint as we
can always find time slots where resources are available by increas-
ing schedule time. Thus, we evaluated the performance of our affin-



With Affinity Without Affinity

Bench SchedLen | RouteFUs | SchedLen | RouteFUs
blowfish 32 4 34 14
channel 16 31 17 52
det 15 24 19 53
fft 12 22 14 35
fir 8 3 9 5
fsed 11 2 12 6
sharp 21 19 25 23
sobel 11 2 13 12
viterbi 20 52 20 57

Table 2: Effectiveness of the affinity heuristic using acyclic
scheduling.

ity graph heuristic in the domain of acyclic scheduling; only loop
kernels without a constraining recurrence cycle were tested. The
dedicated RF design in Figure 1(a) was used as the target archi-
tecture because it has the sparsest interconnect and therefore is the
most affected by the placement heuristic.

Two cost models were compared to evaluate the affinity graph
heuristic. One is implemented with both routing cost and affinity
cost. (Position cost is not considered as the scheduling space is
not skewed in this experiment.) The other model does not consider
affinity in its cost function, and only tries to minimize routing cost
when operations are placed. The quality of the schedule is mea-
sured by schedule length and number of FUs used for routing. The
second and third columns of Table 2 show the quality of the sched-
ules obtained with the affinity graph heuristic, while the fourth and
fifth columns show the result without it. For all of the benchmarks,
the affinity graph heuristic works well in reducing both the sched-
ule length and number of FUs used for routing. Clearly, guiding
placement using downstream information about consumers is im-
portant for CGRAs.

4.3 Evaluation of Modulo Scheduler

Two experiments are performed to evaluate the effectiveness of
modulo graph embedding. First, a detailed analysis using the ded-
icated RF CGRA is presented. Then, we compare the most impor-
tant parameter in scheduling for CGRAs, utilization or fraction of
the cycles the FUs in the array perform useful computation, for all
three register file configurations.

Scheduling results for the dedicated RF design are shown in Ta-
ble 3. The second and third columns show the number of opera-
tions and the number of communication edges in the applications,
respectively. These numbers roughly describe the communication
patterns of the application. The fourth column shows the effective
number of operations; for this metric, multi-cycle operations are
counted multiple times according to their latency. Even if these op-
erations can be pipelined with other operations of the same opcode,
they increase the difficulty of the scheduling problem as the write-
back resources of the node must be used at operation completion.
The fifth and sixth columns in the table contain the minimum IIs for
each benchmark. The maximum utilization that can be achieved is
limited by these IIs.

The next two columns show the II and schedule length achieved
by the modulo graph embedding scheduler. Unlike acyclic schedul-
ing, Il is a better measurement of performance than schedule length.
The achieved II translates into the utilization of FUs shown in the
“util” column. The utilization is calculated by dividing the num-
ber of schedule slots used for computation by the total number of
slots which equals to (# FUs x II). “Total util,” shown in the next
column, takes into account the FUs being used for routing. All
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benchmarks show a utilization of greater than 43%. Fir has the
lowest utilization, but more than half of the operations are multi-
cycle operations, including four multiply operations. Iir also has
low utilization, but its RecMII is 4, which limits the achievable uti-
lization. Fft and sharp have relatively low utilization because they
have a high number of one-to-many communication patterns. Rout-
ing cost increases with the number of consumers, as the value has
to be individually routed to each consumer.

On average, the scheduler achieves 56% utilization for all bench-
marks, with individual values ranging from 44% to 69%. This aver-
age utilization is similar to that achieved by the DRESC compiler,
even though the target architecture of DRESC had a central register
file and denser network connectivity. This shows that the modulo
graph embedding scheduler is able to achieve quality solutions for
significantly lower cost CGRAs.

The modulo scheduler runtimes (last column of Table 3) are rea-
sonably fast, as all benchmarks are scheduled within 5 seconds on
a 3 GHz Pentium-4 machine with 1G of RAM. This is because
the search space is limited to operations in the DFG with the same
height; thus, fewer than 20 operations are generally considered at
a time. Also, scheduling does not employ backtracking, nor ran-
dom movement of operations. Rather, systematic heuristics derived
from the DFG guide the scheduler.

The impact of different register file configurations was evaluated
by scheduling the same set of benchmarks on the other two CGRA
designs (shared RF and central RF). The utilizations of the result-
ing schedules are shown in Figure 9. For all the benchmarks, the
smallest II was achieved for the central RF, showing highest uti-
lization in the graph except for blowfish and dequant. Blowfish and
dequant were scheduled at the same II for shared RF and central
REF, but utilizations are slightly higher for shared RF because dif-
ferent number of multi-cycle operations are pipelined. Since the
central RF is connected to all 16 FUs, each FU can communicate
with any other FU in 1 cycle, subject only to the availability of ports
and register entries. With these additional routing resources, more
FUs can be used for computation. The shared RF design achieves
higher utilization than the dedicated RF design, as each register file
can be used as a routing resource among the four FUs that share
it. This result shows how increasing register file sharing can im-
prove the quality of the schedule, giving more routing options to
the scheduler.

S. RELATED WORK

5.1 Architectures

Many CGRA-like designs have been proposed in the literature.
The designs have different scalability, performance, and compil-
ability characteristics as discussed in Section 2.1. The ADRES
architecture [14] is an example of an 8x8 mesh of processing ele-
ments with both individual and central register files. MorphoSys [13]
is another example of an 8x8 grid with a more sophisticated inter-
connect network; each node contains an ALU and a small local
register file. In the RAW architecture [18], each node is actually
a MIPS processor, including memory, registers, and a processor
pipeline. In addition, there are both dynamic and static routing net-
works. PipeRench [6] is a 1-D architecture in which processing
elements are arranged in stripes to facilitate pipelining. RaPiD [4]
consists of heterogeneous elements (ALUs and registers) in a 1-D
layout, connected by a reconfigurable interconnection network.

5.2 Compilation Techniques

Many techniques have been proposed for compiling to CGRAs.
Lee et al. [9] propose a compilation approach for a generic CGRA.



Benchmark | #ops | #edges | eff # ops | ResMII | RecMII | II | sched len util total util | time (s)
blowfish 85 99 107 6 1 10 46 0.6500 | 0.8000 2
channel 121 180 187 8 1 16 30 0.6172 | 0.8789 4
det 114 150 142 8 1 13 30 0.6250 | 0.8365 5
fft 52 78 78 4 1 9 25 0.4792 | 0.7986 1
fir 23 30 41 2 1 4 14 0.4375 | 0.7344 1
fsed 38 48 45 3 1 4 16 0.6875 | 0.9062 1
iir 23 33 32 2 4 4 15 0.4531 0.6250 1
sharp 56 95 72 4 4 9 37 0.4861 0.8542 1
sobel 39 59 52 3 1 5 17 0.6125 | 0.6750 1
viterbi 104 181 124 7 1 14 30 0.5268 | 0.8438 1
idct 119 200 215 8 2 18 41 0.5764 | 0.8333 5
dequant 84 141 106 6 3 10 25 0.6000 | 0.8063 1

Table 3: Modulo graph embedding results for the dedicated register file CGRA.

O dedicated
B shared

0.9

O central

utilization

blowfish
channel
det
fir
fsed
iir
sharp
sobel
viterbi
idct
dequant
average

Figure 9: Comparison of utilization rates for three register file
configurations.

They generate pipeline schedules for innermost loop bodies so that
iterations can be issued successively. The main focus of their work
is to enable memory sharing between operations of different itera-
tions placed on the same processing element. Our work proposes
a generic scheduling strategy, and memory sharing and other such
optimizations can be integrated into our system as a preprocess-
ing step. Convergent scheduling is proposed as a generic frame-
work for instruction scheduling on spatial architectures [11]. Their
framework comprises a series of heuristics that address indepen-
dent concerns like load balancing, communication minimization,
etc. Whereas convergent scheduling focuses on ILP and proposes
a scheduling method for acyclic regions of code, we focus on loop
level parallelism. The work of Mei et al. [14] is closest to our work.
They propose a modulo scheduling algorithm for CGRAs based on
simulated annealing. Our approach differs significantly in that we
apply systematic placement decisions and on a skewed scheduling
space to achieve better convergence and faster compilation times.
Similar to CGRAs, clustered VLIW machines are also spatial ar-
chitectures. Much work has been done towards compiling for clus-
tered VLIW machines [5, 15, 17]. Although some of the concepts
from these works can be adapted for CGRA compilation, they do
not consider the issue of routing values through the sparse inter-
connection network, which is a crucial step. The measure of affin-

145

ity used in our scheduler is similar to that used in Krishnamurthy’s
affinity-based clustering [8].

[19] employs similar concept of affinity to minimize commu-
nication penalty in the resource allocation phase. A graph is con-
structed where nodes are operations and edges are inserted between
nodes that have direct data dependences or common consumers.
This graph is then partitioned into cliques and resource allocation
is performed by assigning operations in each clique to the same
resource. Time slots for operations are later assigned in schedul-
ing phase. However, this approach that decouples resource alloca-
tion from scheduling is not suitable in modulo scheduling. Since
each resource can be utilized only II times, it is not always pos-
sible to find proper time slots for operations on their pre-assigned
resources. In our affinity graph heuristic, resource allocation is con-
sidered joinly with time slot assignment.

6. CONCLUSION

This paper proposes modulo graph embedding, an effective mod-
ulo scheduling technique for CGRAs. The sparse interconnect and
distributed register files of the CGRA present difficult challenges
to a compiler. Our approach leverages classic graph embedding to
draw loop bodies onto a three dimensional graph representing the
CGRA. We introduce two key concepts to generate high-quality
solutions by reducing routing cost. First, an affinity graph heuris-
tic analyzes producer/consumer relations to place operations with
common consumers closely. Second, the scheduling space is skewed
by restricting the assignable FUs and time slots available for each
group of operations to enable dense packing of operations onto
the array while still ensuring operand routing paths are available.
Overall, modulo graph embedding achieves average compute uti-
lizations of 56-68% for three different register file configurations,
including a CGRA with no shared register files. Prior approaches
have only achieved such utilization rates in CGRAs augmented
with multiported shared register files. Our scheduler also performs
substantially faster than existing solutions since we limit the search
space to operations at the same height and employ a systematic
placement based on the producer/consumer relations.
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