
SafeLLVM: LLVM Without The 
ROP Gadgets!

Group 19 

Aidan Delwiche, Ben Schwartz, John Kim, Nina Moyski, Sydney Zhong



Scenario

● You’ve intercepted a binary from a friend, and you want to hijack it

Friend

583_Rocks.exe

You



Step 1: Inspection

● Don’t run it yet!

● Hmmm… seems to be an x86_64 executable…
● Let’s use a reverse engineering tool made by NSA!



Step 2: Decompile



Step 3: Looks safe, let’s run it! (Don’t actually run an untrusted executable, ever)

Huh, segfault?



Refresh: x86_64 Calling Convention

rip

5

main’s FP

return address

4

buf

rsp

rbp

main

do_dumb_thing



Revealing the source code

main’s FP

return address

local variables

buf

rsp

main

rbp

rip

safeFunction

583_Rocks.c



Revealing the source code

main’s FP gNameYES

return address AAAAAAAA

local variables

BenHasALon

rsp

main

rbp

rip

safeFunction

583_Rocks.c



So why does this matter?

syscall uid = 0
syscall execve “/bin/bash”, 0, 0

main’s FP AAAAAAAA

return address 0xf032

local variables

BenHasALon

0xf040

0xf032

0xf028

0xf010

0xf018

0xf020

main’s FP AAAAAAAA

return address 0xf032

local variables

AAAAAAAAAA

0xf040

0xf032

0xf028

0xf010

0xf018

0xf020

addr of destructive function

code injection return-to-lib-c



Defenses

● Data Execution Prevention (DEP)
○ Prevents anything on the stack from being executed as code

○ Defends against code injection

● Address Space Layout Randomization (ASLR)
○ Randomizes locations of key data areas in a binary

○ Makes it difficult to predict target addresses

○ Defends against code injection and return-to-lib-c



Return Oriented Programming

● What if DEP is enabled, and there are no functions that can open a shell?
○ Let’s use instructions that are still there!

● return-to-lib-c without calling entire functions
○ All the instructions of a function that opens a root shell are still probably somewhere in 

memory, just not sequential
○ These individual pieces/snippets of instructions are called gadgets

Original foo function

gadget

arg[10]=0x00
var -= 10



Gadgets

● Can come from anywhere in the binary

● Must end in a free-branch instruction (ret, jmp %reg)

○ This allows gadgets to be run sequentially, called ROP chains

● Don’t even have to be instructions from the program’s normal execution!



ROP Attack

● For simplicity, assume all you have to do to open a root shell is:
○ Perform a syscall with rax == 1 && rbx == 2 && rcx == 3

main’s FP AAAAAAAA

return address 0x85f12

0x01a12

AAAAAAAAAA
mov rcx, 3 ; ret

583_Rocks.exe

mov rax, 1 ; ret

syscall ; ret

mov rbx, 2 ; ret

0xab345

0x85f12

0x7001a

0x01a12
0xab345

0x7001a



Defending Against ROP

● Stack Canary
○ Place a small integer before the return address
○ Detect if it is overwritten

● G-Free
○ Technique that attempts to remove all gadgets from a program’s memory

■ Works by replacing all gadgets with semantically equivalent code that does not end in a 
free-branch instruction

○ Aligned gadgets must be treated differently by G-Free, as their removal would change the 
program’s semantics

main’s FP

return address

local variables

buf

canary



Protecting Aligned Gadgets
● Encrypt return address of function in stack every time function is entered, decrypt on exit

○ Encrypt with stack canary value
● If an attacker jumps into a function at an arbitrary position, the decryption routine processes the 

attacker’s unencrypted return address and computes an invalid value

SafeLLVM does this with 
SafeReturnMachinePass

Done before emitting machine code for a function 
(X86PassConfig::addPreEmitPass) 

XOR return 
addr with 
canary 
secret

XOR again 
with canary 
secret to 
undo



Removing Unaligned Gadgets

● Statically remove by substituting immediates with semantically equivalent instructions 
that do not contain any free branches

○ ret (0xc3), ret imm16 (0xc2), retf (0xcb), retf imm16 (0xca), iret (0xcf)

SafeLLVM does this with 
ImmediateReencodingMachinePass

Done before register allocation 
(X86PassConfig::addPreRegAlloc
)



Removing Unaligned Gadgets

● Restore Alignment with NO-OPs
○ Prepend aligned free branch byte with nop sled

SafeLLVM does this with 
SafeReturnMachinePass

Done before emitting machine code for a function 
(X86PassConfig::addPreEmitPass) 



Results

● Reduced ROP Gadgets ● Compiled Binary Performance



Limitations

● Code that depends on the return address
○ May lead to potential crash

● Stack Canary Leaks
○ The technique utilizes the stack canary as a source of randomness

● Jump-Oriented Programming (What we are doing for final project!)

Commentary

● Most of the computer security vulnerabilities are memory issues.
● Effective while not over complicated. 



Q&A


