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Scenario

● You’ve intercepted a binary from a friend, and you want to hijack it

Friend

583_Rocks.exe

You



Step 1: Inspection

● Don’t run it yet!

● Hmmm… seems to be an x86_64 executable…
● Let’s use a reverse engineering tool made by NSA!



Step 2: Decompile



Step 3: Looks safe, let’s run it! (Don’t actually run an untrusted executable, ever)

Huh, segfault?



Refresh: x86_64 Calling Convention
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Revealing the source code

main’s FP

return address

local variables

buf

rsp

main

rbp

rip

safeFunction

583_Rocks.c



Revealing the source code

main’s FP gNameYES

return address AAAAAAAA

local variables
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So why does this matter?

syscall uid = 0
syscall execve “/bin/bash”, 0, 0

main’s FP AAAAAAAA

return address 0xf032

local variables

BenHasALon

0xf040

0xf032

0xf028

0xf010

0xf018

0xf020

main’s FP AAAAAAAA

return address 0xf032

local variables
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addr of destructive function

code injection return-to-lib-c



Defenses

● Data Execution Prevention (DEP)
○ Prevents anything on the stack from being executed as code

○ Defends against code injection

● Address Space Layout Randomization (ASLR)
○ Randomizes locations of key data areas in a binary

○ Makes it difficult to predict target addresses

○ Defends against code injection and return-to-lib-c



Return Oriented Programming

● What if DEP is enabled, and there are no functions that can open a shell?
○ Let’s use instructions that are still there!

● return-to-lib-c without calling entire functions
○ All the instructions of a function that opens a root shell are still probably somewhere in 

memory, just not sequential
○ These individual pieces/snippets of instructions are called gadgets

Original foo function

gadget

arg[10]=0x00
var -= 10



Gadgets

● Can come from anywhere in the binary

● Must end in a free-branch instruction (ret, jmp %reg)

○ This allows gadgets to be run sequentially, called ROP chains

● Don’t even have to be instructions from the program’s normal execution!



ROP Attack

● For simplicity, assume all you have to do to open a root shell is:
○ Perform a syscall with rax == 1 && rbx == 2 && rcx == 3

main’s FP AAAAAAAA

return address 0x85f12

0x01a12

AAAAAAAAAA
mov rcx, 3 ; ret

583_Rocks.exe

mov rax, 1 ; ret

syscall ; ret

mov rbx, 2 ; ret

0xab345

0x85f12

0x7001a

0x01a12
0xab345

0x7001a



Defending Against ROP

● Stack Canary
○ Place a small integer before the return address
○ Detect if it is overwritten

● G-Free
○ Technique that attempts to remove all gadgets from a program’s memory

■ Works by replacing all gadgets with semantically equivalent code that does not end in a 
free-branch instruction

○ Aligned gadgets must be treated differently by G-Free, as their removal would change the 
program’s semantics

main’s FP

return address

local variables

buf

canary



Protecting Aligned Gadgets
● Encrypt return address of function in stack every time function is entered, decrypt on exit

○ Encrypt with stack canary value
● If an attacker jumps into a function at an arbitrary position, the decryption routine processes the 

attacker’s unencrypted return address and computes an invalid value

SafeLLVM does this with 
SafeReturnMachinePass

Done before emitting machine code for a function 
(X86PassConfig::addPreEmitPass) 

XOR return 
addr with 
canary 
secret

XOR again 
with canary 
secret to 
undo



Removing Unaligned Gadgets

● Statically remove by substituting immediates with semantically equivalent instructions 
that do not contain any free branches

○ ret (0xc3), ret imm16 (0xc2), retf (0xcb), retf imm16 (0xca), iret (0xcf)

SafeLLVM does this with 
ImmediateReencodingMachinePass

Done before register allocation 
(X86PassConfig::addPreRegAlloc
)



Removing Unaligned Gadgets

● Restore Alignment with NO-OPs
○ Prepend aligned free branch byte with nop sled

SafeLLVM does this with 
SafeReturnMachinePass

Done before emitting machine code for a function 
(X86PassConfig::addPreEmitPass) 



Results

● Reduced ROP Gadgets ● Compiled Binary Performance



Limitations

● Code that depends on the return address
○ May lead to potential crash

● Stack Canary Leaks
○ The technique utilizes the stack canary as a source of randomness

● Jump-Oriented Programming (What we are doing for final project!)

Commentary

● Most of the computer security vulnerabilities are memory issues.
● Effective while not over complicated. 



Q&A


