
ar
X

iv
:2

30
5.

06
09

2v
3

 [
cs

.C
R

]
 2

 N
ov

 2
02

3

SafeLLVM: LLVM Without The ROP Gadgets!

Federico Cassano
Northeastern University

Charles Bershatsky
Northeastern University

Jacob Ginesin
Northeastern University

Sasha Bashenko
North Broward Preparatory School

Abstract

Memory safety is a cornerstone of secure and robust software
systems, as it prevents a wide range of vulnerabilities and
exploitation techniques. Among these, we focus on Return-
Oriented Programming (ROP). ROP works as such: the at-
tacker takes control of the program’s execution flow via a
memory corruption attack. Then, takes advantage of code
snippets already in the program’s memory, dubbed "gad-
gets," to achieve the attacker’s desired effect.

In this paper, we introduce SafeLLVM, an approach to
minimize the number of gadgets in x86-64 binaries compiled
with the LLVM infrastructure [17]. Building upon the tech-
niques outlined in previous works, we implement a series
of passes within the LLVM compiler’s backend to minimize
the number of gadgets present, thus preventing ROP attacks.
We evaluated our approach by compiling a number of real-
world applications, including cJSON, zlib, curl, and mimal-
loc. The results from said evaluations demonstrated our so-
lution’s ability to prevent any form of ROP on the binaries
compiled with SafeLLVM while maintaining the same func-
tionality as the original binaries.

1 Introduction

Stack-based memory corruption vulnerabilities are a major
security issue in modern software. Through such vulnerabili-
ties, attackers can gain control over the execution of a pro-
gram, potentially leading to the compromise of the entire
system running it. Originally, these vulnerabilities were ex-
ploited by overwriting the return address of a function call
with the address of a malicious payload inserted in the stack
region of the program’s memory [23]. When the function re-
turned, the execution would continue from the malicious pay-
load, allowing the attacker to execute arbitrary code with the
privileges of the compromised program. This kind of attack
has been mitigated by the introduction of non-executable
stack protection mechanisms (NX on Linux or DEP or Win-
dows) [4], which prevent the execution of code in the stack

region. However, these mechanisms are not effective against
other types of memory corruption vulnerabilities, such as
those that utilize code already present in the program’s mem-
ory [5]. Return-oriented programming (ROP) is a technique
that exploits such vulnerabilities by chaining snippets of ex-
isting code in the program’s memory to form a malicious pay-
load [27]. These snippets, called gadgets, are mostly small
pieces of code that perform a single operation and end with a
free-branch instruction [22], such as ret or jmp %reg. With
a sufficient number of gadgets, an attacker can construct a
malicious payload that performs a sequence of operations
that would be semantically equivalent to the execution of ar-
bitrary code, even reaching turing completeness [11]. This
brings us to a key idea: if we can remove the gadgets from
the program’s memory, ROP would not be possible. G-Free
is a technique that expands on this idea and removes usable
gadgets for x86 32-bit binaries [22].

In this paper, our goal is to modernize the G-Free tech-
nique by introducing a set of optimizations in the LLVM
compiler’s backend. These optimizations aim to reduce the
presence of gadgets in program memory. Our primary focus
during this process is set on x86 64-bit binaries, given that
they are a contemporary standard in most operating systems.
We also focus on performance and reliability, as we want to
minimize the impact of our technique on the original pro-
gram’s functionality. Furthermore, we want to make our tool
easily portable to various operating systems and compilers.
We achieve this by implementing our passes in the LLVM in-
frastructure, which is a widely used compiler framework that
is portable to many architectures, operating systems, and pro-
gramming languages.

This paper provides the following contributions:

• Exploration of the techniques used in G-Free, tailored
for x86 64-bit binaries, as well as newer techniques that
are more effective in the 64-bit context.

• Implementation of several passes in the x86 LLVM
backend that utilize the techniques proposed in the pre-
vious point, and the public release of our tool’s, SafeL-

http://arxiv.org/abs/2305.06092v3

LVM, source code. 1.

• We assess our technique’s effectiveness by comparing
the number of gadgets in a program’s memory before
and after our passes are applied, as well as evaluating
the tool’s performance and reliability through testing it
on various real-world test suites.

2 Related Work

A lot of work has been done in the field of ROP mitigation
and other memory corruption vulnerabilities. The techniques
that prevent the exploitation of memory corruption vulnera-
bilities and the techniques that bypass said protections are
two sides of the same coin. In this section we will discuss
them both, highlighting the techniques that are most relevant
to our work.

2.1 Stack Canary

A popular technique to mitigate ROP attacks is the use of
stack canaries: random values that are placed on the stack
before a function call and are checked before the function re-
turns. [3]. If the value has been modified the program will
halt, leaving the attacker with no control over the execution
of the program. However, if the attacker possesses the canary
value (e.g. from a memory leak), they can bypass the pro-
tection. Furthermore, on 32-bit binaries, the canary value is
small enough such that it can be brute-forced in a reasonable
amount of time [19]. Additionally, more sophisticated attacks
have been devised that bypass the canary, without the need to
know its value [26].

2.2 Address Randomization

Address randomization is a technique that randomizes the
memory addresses of the program’s code and data segments,
making it harder for an attacker to predict the addresses of the
gadgets they need to exploit a vulnerability. Sometimes, this
requires the attacker to find a memory leak in the program
[10].

2.2.1 Address Space Layout Randomization (ASLR)

The simplest form of address randomization is ASLR, which
shifts the base address of the program’s memory by a random
amount at each execution [34]. In the modern Linux kernel,
ASLR is enabled globally by default, randomizing the base
address of segments of all processes. However, if an attacker
possesses the address of a gadget, they can bypass ASLR by
calculating the offset between the gadget’s address and the
base address of the segment it belongs to, and then adding
the offset to the base address of the segment of the attacker’s
choice [21]. Alternatively, ASLR can be easily bypassed by

utilizing jmp %rsp gadgets, which allow the attacker to jump
to the stack region where another gadget resides [6]. Finally,
as ironic as it may sound, it has been shown that ASLR can
aid exploitation of memory corruption vulnerabilities by in-
troducing wild-card ROP gadgets in PIC environments [15].

2.2.2 Position Independent Code (PIC)

Position Independent Code (PIC) is a technique that allows
the program to be loaded at any address in memory, and still
be able to execute correctly. This is achieved by replacing
absolute addresses with relative addresses and using indirect
jumps and calls [29]. In Linux environments, Position Inde-
pendent Executables (PIE) can be compiled with the -pie

flag, which enables PIC for the program’s code and data
segments. In contrast to ASLR, which randomizes the base
address of the program’s memory, PIC randomizes the ad-
dresses of the program’s code and data segments. This makes
it even harder for an attacker to predict the addresses of the
gadgets [28]. However, this still doesn’t make it impossible
for an attacker to exploit gadgets that are already present in
the program’s memory, as the robustness of PIC is still lim-
ited to the source of randomness that ASLR uses [8]. For
example, in Linux environments, PIE binaries get loaded as
shared libraries and are all located side-by-side in memory,
which allows an attacker to predict the addresses of the gad-
gets in the shared libraries by calculating the distance be-
tween them. [9]. Finally, PIE has been shown to drastically
decrease the performance of compiled binaries due to the
overhead of the extra instructions that are required to imple-
ment PIC [24].

2.3 Control Flow Integrity

Control Flow Integrity (CFI) is a technique that prevents the
tampering with the control flow of a program by checking
the integrity of a program’s control flow graph at runtime [1],
making it harder for an attacker to jump to a gadget that is
not explicitly allowed by the control flow graph. Recently, In-
tel has introduced a new kind of CFI, Control Flow Enforce-
ment Technology (CET) [30], which is a hardware-based CFI
that is supported by the latest Intel processors. CET utilizes
a shadow stack to keep track of the return addresses of the
functions that are currently on the stack, and it checks the in-
tegrity of the stack at each function call and return. The Linux
kernel is slowly moving towards integrating with CET, and
it has been shown that CET can mitigate ROP attacks, but
not prevent them completely [33]. Additionally, it has been
shown that CFI can be bypassed by leveraging speculative
execution and write-what-where attacks of control-flow data,
where the information required for the write-what-where at-
tack is leaked by the speculative execution of a gadget acting
as a side channel send [18].

2

41 33 57 30 c0 c2 05 c3

Unaligned Gadget
push %rdi; xor %al, %al; ret $0xc305

Aligned Gadget
xor 0x30(%r15), %edx; rol $0x5, %dl; ret

Figure 1: Byte sequence encoding both a unaligned and an
aligned gadget.

2.4 G-Free

G-Free is a technique that attempts to remove all gadgets
from the program’s memory, making it impossible for an
attacker to exploit a code reuse vulnerability [22]. G-Free
works by replacing all the gadgets in the program’s memory
with semantically equivalent code that does not contain us-
able free-branch instructions. To do this, G-Free makes a dis-
tinction between aligned and unaligned gadgets. As shown
in Figure 1, aligned gadgets are gadgets that contain the same
instructions that would be executed if the gadget was exe-
cuted normally, while unaligned gadgets are gadgets that con-
tain additional instructions that are not normally executed,
which are fetched by the processor due to a misalignment of
the program counter. Because aligned gadgets are part of the
program’s normal execution flow, they cannot be removed
without changing the program’s semantics. Instead, G-Free
protects them by enforcing the integrity of the program’s con-
trol flow around them. Moreover, since unaligned gadgets are
not normally executed, they can be simply removed without
changing the program’s semantics. G-Free manages to re-
move all the unaligned gadgets from the program’s by replac-
ing the instructions with semantically equivalent instructions
that do not contain any free branches. G-Free’s main draw-
back is that it performs transformations on the program’s as-
sembly code, and therefore it may not be compatible with
compilers of some programming languages. Furthermore, G-
Free was originally implemented for x86-32 binaries, and it
has not been extended to support x86-64 binaries. In this pa-
per, we extend G-Free to support x86-64 binaries, doing so
by introducing new LLVM backend passes that perform sim-
ilar transformations to those of G-Free. These passes can act
upon the LLVM MIR, and therefore can be used with any
compiler that targets LLVM.

3 Methodology

Following the methodology described by G-Free [22], we in-
troduce two core groups of techniques that remove or ren-
der useless all the gadgets from the program’s memory. The
first group’s goal is to protect aligned gadgets, and the second
group’s goal is to remove unaligned gadgets.

3.1 Protecting Aligned Gadgets

Aligned gadgets are part of the program’s normal execution
flow, and therefore they cannot be removed without changing
the program’s semantics. Instead, we must protect them by
enforcing the integrity of the program’s control flow around
them. By protecting aligned gadgets, we ensure that the in-
structions surrounding the gadgets are executed in the correct
order, and that the gadgets are executed only in their valid
context.

3.1.1 Encrypting the Return Address

0000000000001000 <add > :
; ; e n c r y p t r e t u r n a d d r e s s
1 0 0 0 : mov %f s : 0 x28 , %r1 1
1 0 0 9 : x o r %r11 , (% r s p)
; ; s t a r t o f t h e f u n c t i o n
100 d : push %rb p
100 e : mov %rsp , %rb p
1 0 1 1 : mov %ed i , −0x4(%rb p)
1 0 1 4 : mov %e s i , −0x8(%rb p)
1 0 1 7 : mov −0x4(%rb p) , %eax
101 a : add −0x8(%rb p) , %eax
101 d : pop %rb p
; ; d e c r y p t r e t u r n a d d r e s s
101 e : mov %f s : 0 x28 , %r1 1
1 0 2 7 : x o r %r11 , (% r s p)
; ; r e t u r n t o c a l l e r
102 b : r e t

Figure 2: Example assembly code of a function that uses the
encrypt and decrypt subroutines.

Similar to how a stack canary acts as a sentinel value on
the stack, we can encrypt the return address of a function
stored on the stack every time the function is entered, and
then decrypt it before returning from the function. If the re-
turn address is not properly decrypted, then the function will
return to an unexpected address, and the program will most
likely crash. This ensures that every single function contain-
ing a ret instruction will need to be executed in full, which
prevents attackers from exploiting code reuse vulnerabilities
by jumping to the middle of a function.

In our implementation we utilize the stack canary secret
stored at fs:0x28 as as source of randomness to encrypt the
return address, but one may use any other source of random-
ness. We chose to utilize the stack canary secret as it is al-
ready present in memory, and it only requires a single read
instruction to retrieve it. Meanwhile, G-Free utilizes a dif-
ferent source of randomness, and it requires a call to a sub-
routine reading a sequence of bytes from the /dev/random

device [22]. This makes the implementation of G-Free more

3

complex, and relies on the device being available on the sys-
tem, which is typically only available on Unix-like operating
systems.

As shown in Figure 2, the encryption and decryption sub-
routines utilize the same sequence of two instructions to en-
crypt and decrypt the return address. The first instruction is a
mov instruction that reads the stack canary secret from mem-
ory and stores it in a temporary register. The second instruc-
tion is a xor instruction that performs an exclusive-or opera-
tion between the temporary register and the return address
stored on the stack. The XOR operation is performed in-
place, and therefore it does not require any additional mem-
ory accesses.

3.2 Removing Unaligned Gadgets

Having dealt with aligned gadgets, we now turn our atten-
tion to unaligned gadgets. If an attacker were to move the
instruction pointer to the middle of an instruction, the pro-
cessor would fetch and execute a sequence of unintended
instructions. An attacker could craft a program that would
be able to determine the exact sequence of instructions that
would be executed, and therefore the attacker could use this
to find gadgets that wouldn’t normally be executed. For ex-
ample, the instruction mov $0xc3, %r11, encoded as 49 c7

c3 c3 00 00 00, would normally be executed as a single
instruction. However, this instruction hides two ret instruc-
tions, encoded as c3, which would be executed if the instruc-
tion pointer were to be moved to the middle of the instruc-
tion.

Our primary solution for aligned gadgets is to add pro-
tection to the gadget that would act at runtime; this would
protect the code without modifying any of the existing in-
structions. However, for unaligned gadgets, we can statically

remove the gadgets from the program’s memory by modify-
ing the program’s instructions directly and substituting them
with semantically equivalent instructions that do not contain
any free branches.

Critically, we need to remove all ret-based free-branch in-
structions in unaligned gadgets, which includes the following
instructions:

• ret (0xc3)

• ret imm16 (0xc2)

• retf (0xcb)

• retf imm16 (0xca)

• iret (0xcf)

Because only one byte is needed to encode the actual free
branch instruction, a free branch could be hiding anywhere
throughout a larger instruction - in the instruction sequence,
the MOD R/M, SIB bytes, or any arguments (displacements,

immediates, or registers). For example, the following byte se-
quences all encode free-branch instructions:

• c3

• 13 37 c3

• 13 c3 37

This means that in removing all unaligned gadgets, we
need to ensure that we check every byte of the target instruc-
tion for the presence of a free branch.

3.2.1 Restoring Alignment With NO-OP Instructions

Having added an XOR protection to every aligned gadget, we
now find ourselves wondering how we can defend against
any unaligned gadgets that may be present in our modified
function. Changing the code would, again, run the risk of af-
fecting its functionality. As such, we prepend each aligned
ret with a nop sled.

A nop sled is a series of no-op instructions, each of which
is only a single byte. When the processor fetches and exe-
cutes a no-op instruction, it will simply increment the instruc-
tion pointer by one byte, and continue to the next instruction.
While nop sleds are often found in the context of exploita-
tion [16, 20, 32], the sole purpose of this application is to
ensure that by the end of the sled, the instruction pointer is
correctly aligned.

We follow the same methodology as G-Free in determin-
ing the length of the sled, where the length of the sled is calcu-
lated as the maximum length of an instruction. Additionally,
we add one byte due to the possibility of a nop instruction be-
ing read as a MOD R/M or SIB byte instead. In the original
implementation of G-Free, a nop sled of length 9 was used
since the maximum length of a 32-bit instruction is a mere 8
bytes. We came up with a sled length of 16 bytes, which is
the maximum length of an instruction on a x86-64 processor,
plus one byte to accommodate for the possibility of a SIB or
MOD R/M byte.

A common concern in using sleds like this for alignment
is the possible performance costs. As such, a seemingly intu-
itive addition would be to add a jmp instruction at the start of
the nop sled, which would allow execution with a properly
aligned instruction pointer to skip over the 16 instructions
that are prepended to every ret. However, since modern pro-
cessors are superscalar, the processor is able to execute mul-
tiple instructions in parallel [31], so the performance cost of
the sled is negligible. Therefore, we opt to not include the
jmp optimization, as it would add an additional instruction to
every aligned gadget, which would increase the size of the
code and therefore the size of the code cache [13].

3.2.2 Re-encoding Immediate Values

4

mov $0xc3 , %r a x

(a) Instruction before the
transformation. 0xc3 is the
opcode for ret, and it is be-
ing moved into the %rax reg-
ister.

mov $0x62 , %r1 1
add $0x61 , %r1 1
mov %r11 , %r a x

(b) Sequence of instruc-
tions after the transforma-
tion. 0xc3 is divided into
0x62 and 0x61.

Figure 3: Example of dividing an immediate value into two
smaller values, and reconstructing the original value at run-
time.

Instructions that contain immediate values may encode
one or more gadgets. For example, the mov instruction in Fig-
ure 3a contains the ret gadget in its immediate value, as the
instruction is assembled as 48 c7 c0 c3 00 00 00, where
c3 is the opcode for ret. To eliminate this gadget, we can di-
vide the immediate into two parts and reconstruct the original
value at runtime by adding the two parts together using a tem-
porary register (see Figure 3b). The original mov instruction
that moves the immediate is replaced with one that moves the
temporary register into the destination register.

When we divide the immediate into two parts, we need to
make sure that neither of the two parts can encode a free-
branch gadget. For example, the 2a c3 85 sequence con-
tains the c3 byte, which is the opcode for ret. If we naively
divide the immediate by two, we will be left with 15 61 c2

and 15 61 c3, which both contain a free-branch (c2 and c3

respectively). A solution to this problem is to use an algo-
rithm that divides the immediate into two parts such that the
sum of the two parts is equal to the original immediate value
and the two parts do not contain any free-branch gadgets. A
robust algorithm for this problem can be described utilizing
satisfiability modulo theories [2].

G-Free utilizes a very similar technique to ours, where the
immediate value is reconstructed at runtime [22]. However,
G-Free does not generalize the process and utilizes a differ-
ent sequence of instructions for each instruction. In contrast,
we have implemented a generic solution that can be applied
to any instruction that contains an immediate value.

3.3 LLVM Backend Passes

To implement the techniques described in Section 3, we in-
troduce multiple LLVM backend passes that act upon the
LLVM MIR [25]. For implementing the passes, we used
LLVM 16 as a base and modified the code of the x86 target
machine to call our passes at the appropriate time. Currently,
we have implemented two core passes.

3.3.1 SafeReturnMachinePass

SafeReturnMachinePass is responsible for implementing
the encrypt/decrypt subroutines described in Section 3.1.1.
The pass is called before emitting the machine code for a
function (X86PassConfig::addPreEmitPass), as we want
to transform the MIR after the LLVM optimizations have
been applied and the prologue and epilogue for every func-
tion have been generated. The pass inserts the encryption
subroutine at the beginning of every function that contains
a ret, and the decryption subroutine before every ret along
with a sled of nop instructions, as described in Section 3.2.1.

3.3.2 ImmediateReencodingMachinePass

ImmediateReencodingMachinePass is the pass that per-
forms the re-encoding of immediate values that en-
code a free-branch instruction, as described in Sec-
tion 3.2.2. The pass is called before register allocation
(X86PassConfig::addPreRegAlloc), as we will need to al-
locate virtual registers to store the re-encoded immediate
values, such that registers will not be clobbered by the re-
encoding process. The pass scans the MIR for instructions
that contain a free-branch-encoding immediate value as an
operand and it re-encodes the immediate value dynamically
as described in Section 3.2.2. We only re-encode immediate
values of instructions in the ri, ri8, and ri32 classes, as
these are the only classes that contain instructions that can
be used to encode a free-branch instruction in their immedi-
ate operand. In order to re-encode the ri* instructions, we
will need to convert them to their rr counterparts, as the im-
mediate value will be replaced with a virtual register. Cur-
rently, we only re-encode these following instructions: add,
sub, and, or, xor, cmp, test, and mov.

Our process to re-encode the immediate value utilizes the
add instruction to combine both parts of the immediate value
into a single immediate value stored in a virtual register. Be-
cause of this, our add instruction may modify the flags regis-
ter, which may affect the execution of the following instruc-
tions. Therefore, we insert a pushf instruction before the add
instruction, and we insert a popf instruction after the add

instruction, such that the flags register will be saved and re-
stored before and after the add instruction.

4 Results

In this section, we present the results of our evaluation of
SafeLLVM, focusing on two key aspects: the reduction of
ROP gadgets in then compiled binaries, and the performance
impact of SafeLLVM on the respective test suites. Our goal is
to demonstrate the effectiveness of SafeLLVM in mitigating
ROP attacks while assessing any potential trade-offs between
enhanced security and performance. We compiled 8 widely-
used software projects — zlib, cJSON, mimalloc, curl, surf

5

browser, Suckless Terminal (ST), Doom Chocolate, and Lit-
tleFS — Using SafeLLVM and analyzed the results in terms
of these two aspects.

The following subsections detail our findings, discussing
the reduction in ROP gadgets and the performance of the
compiled binaries when running their respective test suites.

4.1 Reducing ROP Gadgets

We compiled each project with both LLVM (version 16)
and SafeLLVM and compared the number of ROP gadgets
present in their respective binaries. We also employ Ropper,
a tool that automatically discovers ROP chains to determine
if compilation through SafeLLVM can prevent the automatic
discovery of ROP attacks.

Toolchain LLVM SafeLLVM
Gadgets ROP Chain Gadgets ROP Chain

zlib 1169 yes 194 no
cJSON 525 no 64 no
mimalloc 2014 yes 377 no
curl 1268 yes 166 no
SURF 343 no 105 no
ST 999 no 306 no
Doom 7735 yes 1528 no
LittleFS 414 no 60 no

Table 1: Comparison of ROP gadgets and ROP chain dis-
coverability between regular LLVM and SafeLLVM compi-
lation.

As shown in Table 1, compiling with SafeLLVM as op-
posed to LLVM results in a significant reduction in the num-
ber of ROP gadgets across all tested projects. Moreover,
when using Ropper, we observed that an exploitable ROP
chain could not be found in any of the projects compiled
with SafeLLVM, thus effectively increasing the security of
the compiled binaries.

4.2 Compiled Binary Performance

To analyze the performance impact of SafeLLVM on the
compiled projects, we ran their respective test suites and mea-
sured the average completion time across 10 runs for both
regular compilation and compilation using SafeLLVM. This
allows us to gauge the trade-off between the enhanced se-
curity provided by SafeLLVM and the performance of the
resulting binaries.

As shown in Table 2, SafeLLVM has a minimal impact on
the execution times of the test suits for cJSON and LittleFS.
Interestingly, the mimalloc project exhibits a significant im-
provement in the test suite completion time when compiled
with SafeLLVM, reducing the average time from 4,706ms to
1,395ms. At this time we are unable to pin this performance

Toolchain LLVM SafeLLVM
Tests Time (ms) Tests Time (ms)

cJSON 19/19 40 19/19 40
mimalloc 3/3 4,706 3/3 1,395
LittleFS 817/817 6,420 817/817 6,505

Table 2: Performance comparison of test suite completion
time and test results between regular LLVM and SafeLLVM
compilation.

improvement to a specific characteristic of SafeLLVM, and
we plan to investigate this further in the future.

Lastly, we ran the compiler-benchmark suite on both C
and C++ benchmarks with a function count of 30 and a depth
of 4. On this suite, we found that SafeLLVM has a negligible
impact on the performance of the compiled binaries, with an
average slowdown of 0.2% for C benchmarks and 0.1% for
C++ benchmarks.

Thus, SafeLLVM effectively reduces the number of ROP
gadgets and prevents the automatic discovery of ROP chains
without causing substantial performance overhead or nega-
tively affecting the functionality of the compiled projects.

5 Discussion

We have demonstrated that SafeLLVM is able to reduce the
number of gadgets in a binary, and in most cases, prevent
the automatic generation of ROP chains. However, there are
some limitations to our approach and some potential avenues
for future work, which we discuss in this section.

5.1 Limitations

5.1.1 Code that depends on the return address

In our LLVM pass, we haven’t adopted a mechanism to de-
tect the presence of any code that depends on accessing the
return address. For example, setjmp and longjmp are func-
tions that save and restore the return address of a function
call in order to implement non-local jumps, which unwind
the stack and return to a previous function call [12]. When
using our technique, the return address accessed by setjmp

is encrypted, and therefore the longjmp call will not be able
to restore the correct return address, potentially leading to a
crash.

5.1.2 Stack Canary Leaks

Our technique utilizes the stack canary secret (stored at
%fs:0x28) to encrypt the return address. This means that
if the attacker can leak the canary secret, they can also de-
crypt the return address, rendering our technique useless. A
possible solution to this problem is to create a unique key
for every function call and store it in the stack frame of the

6

function. This way, even if the attacker possesses a mem-
ory read primitive, they will not be able to decrypt the re-
turn address since calling the same function twice will result
in two different keys. However, this method decreases the
performance of programs that make a large number of func-
tion calls dramatically. The most efficient solution would
be one that utilizes the RDRAND %reg instruction, which is
a hardware-based cryptographically secure pseudo-random
number generator [14]. Depending on the processor vendor,
this instruction can take more than 1000 CPU cycles to exe-
cute [7], which is much slower than the execution of a typical
function call. However, such a performance penalty may be
acceptable when the goal is to protect critical services that
are not performance-critical.

5.1.3 Inline Assembly

Finally, our technique does not support inline assembly. This
is because the LLVM Backend does not provide constructs
to traverse the inline assembly code without implementing
a custom assembler and assembly printer. Inline assembly
code containing unaligned gadgets would remain untouched
by our technique, and therefore would still be exploitable.
Moreover, if the inline assembly code contains a ret instruc-
tion, our technique may encrypt the return address without
decrypting it, potentially leading to a crash.

5.2 Future Work

To address the limitations listed in 5.1, we plan to implement
a static analysis pass that marks machine functions that de-
pend on the return address. For each marked function, we
will decrypt the return address right before the basic block
that utilizes it, and re-encrypt it right after. Then, we will
implement an optional pass that generates a unique key for
every function call as described in 5.1.2. This pass will be
optional since it will drastically decrease the performance of
some programs.

Furthermore, our technique tries to minimize gadgets end-
ing with the ret free-branch instruction, mitigating ROP.
However, there are other gadgets that can be used to per-
form other attacks, such as Jump-Oriented Programming
(JOP), which utilizes gadgets ending with call %reg and
jmp %reg free-branch instructions. In the future, we plan to
extend our technique to also remove these gadgets.

Implementing our own assembler would be a very com-
plex task, but it would allow us to support inline assembly
and perform more complex analysis on the low-level IR that
is generated by the compiler. Therefore, we decided to leave
this as future work.

Since the ARM architecture is starting to be used more and
more, and is heavily used in mobile and embedded devices,
we plan to extend our technique to the ARM architecture too.
Additionally, we plan to generalize our technique in order to

be able to make it easy to implement for an arbitrary archi-
tecture.

References

[1] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.
Control-flow integrity principles, implementations, and applications.
ACM Trans. Inf. Syst. Secur. 13, 1 (nov 2009).

[2] BARRETT, C., AND TINELLI, C. Satisfiability modulo theories.
Springer, 2018.

[3] COWAN, C., PU, C., MAIER, D., WALPOLE, J., BAKKE, P., BEAT-
TIE, S., GRIER, A., WAGLE, P., ZHANG, Q., AND HINTON, H.
StackGuard: Automatic adaptive detection and prevention of Buffer-
Overflow attacks. In 7th USENIX Security Symposium (USENIX Se-

curity 98) (San Antonio, TX, Jan. 1998), USENIX Association.

[4] DESIGNER, S. Non-executable stack, 1997.

[5] DESIGNER, S. return-to-libc attack, 1997.

[6] DUSTY. Vulnerability development: Buffer overflows: How to bypass
aslr. . . , 2011.

[7] FOG, A., ET AL. Instruction tables: Lists of instruction latencies,
throughputs and micro-operation breakdowns for intel, amd and via
cpus. Copenhagen University College of Engineering 93 (2011), 110.

[8] GANZ, J., AND PEISERT, S. Aslr: How robust is the randomness? In
2017 IEEE Cybersecurity Development (SecDev) (2017), pp. 34–41.

[9] GISBERT, H. M., AND RIPOLI, I. On the effectiveness of full-aslr on
64-bit linux.

[10] GÖKTAS, E., KOLLENDA, B., KOPPE, P., BOSMAN, E., PORTOKA-
LIDIS, G., HOLZ, T., BOS, H., AND GIUFFRIDA, C. Position-
independent code reuse: On the effectiveness of ASLR in the absence
of information disclosure. In 2018 IEEE European Symposium on

Security and Privacy (EuroS&P) (2018), pp. 227–242.

[11] HOMESCU, A., STEWART, M., LARSEN, P., BRUNTHALER, S., AND

FRANZ, M. Microgadgets: Size does matter in Turing-Complete
Return-Oriented programming. In 6th USENIX Workshop on Offen-

sive Technologies (WOOT 12) (Bellevue, WA, Aug. 2012), USENIX
Association.

[12] HOPKINSON, K. Understanding setjmp/longjmp, 2004.

[13] HU, S., KIM, I., LIPASTI, M. H., AND SMITH, J. E. An approach for
implementing efficient superscalar cisc processors. In The Twelfth In-

ternational Symposium on High-Performance Computer Architecture,

2006. (2006), IEEE, pp. 41–52.

[14] INTEL. Intel® digital random number generator (drng) software im-
plementation guide, 2019.

[15] JANG, D. Badaslr: Exceptional cases of aslr aiding exploitation. Com-

puters & Security 112 (2022), 102510.

[16] KOLESNIKOV, O., AND LEE, W. Advanced polymorphic worms:
Evading ids by blending in with normal traffic. Tech. rep., Georgia
Institute of Technology, 2005.

[17] LATTNER, C., AND ADVE, V. LLVM: A compilation framework for
lifelong program analysis and transformation. In CGO (San Jose, CA,
USA, Mar 2004), pp. 75–88.

[18] MAMBRETTI, A., SANDULESCU, A., SORNIOTTI, A., ROBERTSON,
W., KIRDA, E., AND KURMUS, A. Bypassing memory safety mech-
anisms through speculative control flow hijacks, 2021.

[19] MARCO-GISBERT, H., AND RIPOLL, I. Preventing brute force at-
tacks against stack canary protection on networking servers. In 2013

IEEE 12th International Symposium on Network Computing and Ap-

plications (2013), pp. 243–250.

[20] MOMOT, F. D. Creatively avoiding work: Techniques for generating
evasive nop sleds.

7

[21] MULLER, T. Aslr smack & laugh reference, 2008.

[22] ONARLIOGLU, K., BILGE, L., LANZI, A., BALZAROTTI, D., AND

KIRDA, E. G-free: Defeating return-oriented programming through
gadget-less binaries. In Proceedings of the 26th Annual Computer Se-

curity Applications Conference (New York, NY, USA, 2010), ACSAC
’10, Association for Computing Machinery, p. 49–58.

[23] ONE, A. Smashing the stack for fun and profit. Phrack Magazine 49

(1996).

[24] PAYER, M. Too much pie is bad for performance. Technical report

766 (2012).

[25] PROJECT, T. L. Machine ir (mir) format reference manual, 2023.

[26] RICHARTE, G. Four different tricks to bypass stackshield and stack-
guard protection.

[27] ROEMER, R., BUCHANAN, E., SHACHAM, H., AND SAVAGE, S.
Return-oriented programming: Systems, languages, and applications.
ACM Trans. Inf. Syst. Secur. 15, 1 (mar 2012).

[28] ROGLIA, G. F., MARTIGNONI, L., PALEARI, R., AND BRUSCHI, D.
Surgically returning to randomized lib(c). In 2009 Annual Computer

Security Applications Conference (2009), pp. 60–69.

[29] SCHWARZ, B., DEBRAY, S., AND ANDREWS, G. Disassembly of ex-
ecutable code revisited. In Ninth Working Conference on Reverse En-

gineering, 2002. Proceedings. (2002), pp. 45–54.

[30] SHANBHOGUE, V., GUPTA, D., AND SAHITA, R. Security analysis
of processor instruction set architecture for enforcing control-flow in-
tegrity. In Proceedings of the 8th International Workshop on Hard-

ware and Architectural Support for Security and Privacy (2019), pp. 1–
11.

[31] SHEN, J. P., AND LIPASTI, M. H. Modern processor design: funda-

mentals of superscalar processors. Waveland Press, 2013.

[32] STEVENS, D. Malicious pdf documents explained. IEEE Security &

Privacy 9, 1 (2011), 80–82.

[33] SUN, B., LIU, J., AND XU, C. How to survive the hardware assisted
control flow integrity enforcement. Blackhat Asia 2019 (2019).

[34] TEAM, T. P. Pax address space layout randomization, 2007.

Notes

1The source code of SafeLLVM is available at https://github.com/
cassanof/safe-llvm

8

https://github.com/cassanof/safe-llvm
https://github.com/cassanof/safe-llvm

	Introduction
	Related Work
	Stack Canary
	Address Randomization
	Address Space Layout Randomization (ASLR)
	Position Independent Code (PIC)

	Control Flow Integrity
	G-Free

	Methodology
	Protecting Aligned Gadgets
	Encrypting the Return Address

	Removing Unaligned Gadgets
	Restoring Alignment With NO-OP Instructions
	Re-encoding Immediate Values

	LLVM Backend Passes
	SafeReturnMachinePass
	ImmediateReencodingMachinePass

	Results
	Reducing ROP Gadgets
	Compiled Binary Performance

	Discussion
	Limitations
	Code that depends on the return address
	Stack Canary Leaks
	Inline Assembly

	Future Work

