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Abstract
Rust is a multi-paradigm programming language developed

by Mozilla that focuses on performance and safety. Rust code

is arguably known best for its speed and memory safety, a

property essential while developing embedded systems. Thus,

it becomes one of the alternatives when developing operating

systems for embedded devices. How to convert an existing

C++ code base to Rust is also gaining greater attention.

In this work, we focus on the process of transpiling C++

code to a Rust codebase in a robust and safe manner. The

manual transpilation process is carried out to understand the

different constructs of the Rust language and how they cor-

respond to C++ constructs. Based on the learning from the

manual transpilation, a transpilation table is created to aid

in future transpilation efforts and to develop an automated

transpiler. We also studied the existing automated transpilers

and identified the problems and inefficiencies they involved.

The results of the transpilation process were closely moni-

tored and evaluated, showing improved memory safety with-

out compromising performance and reliability of the result-

ing codebase. The study concludes with a comprehensive

analysis of the findings, an evaluation of the implications for

future research, and recommendations for the same in this

area.
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1 Introduction

Rust [3, 13] is a systems programming language that pro-

vides developers with low-level access and control over sys-

tem resources such as memory, file systems, and network-

ing. This makes it ideal for building software applications

that require performance, efficiency, and reliability, such as

databases, compilers, and other low-level systems [8, 13].

Rust’s notable feature is its absence of a garbage collector,

distinguishing it from most other high-level languages. Rust

achieves memory safety through its sophisticated type sys-

tem that tracks variable lifetimes at compile-time. This en-

ables Rust to automatically insert optimized LLVM/assem-

bly instructions for memory deallocation, resulting in im-

proved performance and stability [3]. In addition to its low-

level control and performance, the automatic memory allo-

cation and deallocation also makes Rust a memory-safe lan-

guage, which prevents common programming errors such as

null pointer dereference and buffer overflows.

Why migrate to Rust?: Given these features, it is easy

to see why Rust is an attractive option for organizations that

need to migrate their existing infrastructure to a new plat-

form. By using Rust, organizations can take advantage of its

low-level control, performance, and memory safety to build

software that is faster, more efficient, and less prone to errors.

Rust also has a strong focus on safety and security. The

language enforces strict ownership and borrowing rules, mak-

ing it difficult for developers to write code that can result

in undefined behaviour, race conditions, and other security

issues. This helps organizations reduce the risk of security

vulnerabilities in their software and improve the overall re-

liability of their systems. Another important aspect of Rust

is its highly optimized runtime system. The Rust compiler

is designed to generate highly efficient machine code, mak-

ing it a good choice for performance-critical systems. Rust

also provides a number of performance-related features such

as inline functions and zero-cost abstractions, which can help

developers write high-performance code [4] that is both read-

able and maintainable. Given the range of benefits that Rust

offers, it is an excellent choice that can help an organization

achieve its goals and succeed in a rapidly changing techno-

logical landscape.

Problem and Contributions: Organizations such as Sam-

sung Electronics are interested in migrating their existing

C++ codebases to Rust without starting from scratch. There-

fore, a reliable auto transpiler for C++ to Rust is crucial. In

our study, we focused on the Tizen OS, which is utilized by

Samsung Electronics in their smart devices. We extensively

explored existing auto transpilers and evaluated their ability

to generate safe Rust code, using both simple programs and
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1 fn main() {

2 let v = vec![1, 2, 3];

3 let v2 = v;

4 println!("v[0] is: {}", v[0]);

5 /* error:use of moved value:`v`

6 println!("v[0] is:{}", v[0]);*/

7 }

8 Figure 1. Example of ownership in Rust

a full-scale Tizen’s gperf module. Our analysis included as-

sessing the accuracy and reliability of the generated code,

identifying strengths and weaknesses of each tool. Unfortu-

nately, our findings revealed that the existing transpilers were

inconsistent in producing reliable and safe Rust code.

Based on the study of the existing auto transpilers, there

is a need to explore further on building a safe and reliable

transpiler for C++ to Rust, that led to the following main

contributions of this work.

In this work, the focus is on understanding the different

constructs of Rust and how they correspond to the constructs

of C++. A deep dive into the language and its features is con-

ducted, including the correlation between these constructs

and how they can be implemented in Rust. For example, we

explored how Rust’s concept of references and borrowing re-

places C++’s raw pointers and null pointers.

We then proceeded to manually transpile a module, the

gperf module of Tizen platform (originally written in C++),

as a proof of concept. This manual process helped us gain

a deeper understanding of the language and its constructs.

Based on the learning from this process, we have created a

transpilation table. This transpilation table that resulted will

guide future transpilation efforts and also form the basis for

the creation of an automated transpiler. We then also com-

pared and provided some insights on the performance of C++

vs. Rust on the gperf module.

2 Some key concepts of Rust

Rust is a programming language that is designed to prioritize

memory safety. To achieve this, Rust provides several fea-

tures that help prevent common programming errors that can

lead to crashes and security vulnerabilities. Here are some of

the fundamental but important to the domain memory safety

features in Rust. Please refer to Rust’s official website [5] for

complete documentation on the features.

1 fn main () {

2 fn take(v: Vec<i32>) {

3 // Implementation

4 }

5 let v = vec![1, 2, 3];

6 take(v);

7 println!("v[0] is: {}", v[0]);

8 /* error: use of moved value: `v`

9 println!("v[0] is: {}", v[0]);*/

10 }

11
Figure 2. Example of ownership using functions in Rust

Ownership. Rust’s ownership system ensures that there is

always exactly one binding to any given resource. When we

assign a value to another binding, we are actually transfer-

ring ownership of that value. This transfer is known as a

move in Rust, and it helps to prevent common bugs such as

use-after-free errors and data races.

In Figure 1, a new vector v is created and initialized with

the values 1, 2, and 3. Then a new variable v2 is created and

assigned v. This means that ownership of the data in v is

transferred to v2 and v can no longer be used. An attempt is

made to access the first element of v after it has been moved

to v2, but this results in a compile-time error because v has

been moved and is no longer available in the current scope.

The same error occurs in Figure 2 when the ownership of

v is passed to function take. The function takes ownership,

and the original variable can no longer be used.

Borrowing. It is allowed in Rust to borrow a value, which

grants temporary access to the variable. Instead of taking

variables as arguments in functions, references of the vari-

ables are taken as arguments. This way, ownership of the re-

source is borrowed rather than owned. There are 2 types of

borrowing both important for the domain, namely Mutable

Borrows, and Immutable Borrows.

Rules of Borrowing: In Rust, borrowing rules state that

a borrow must not outlast its owner’s scope, and only one

mutable reference or one or more references to a resource

can exist at a time. These rules prevent data races by ensur-

ing that multiple pointers cannot access the same memory

location at the same time, with at least one of them writing,

without synchronization.

We discuss further about the concept of borrowing and the

rules of borrowing in Rust via some examples in Appendix B

available in the repository [2].

3 Related Work

Rust, released in 2015, has consistently been named the "most

loved programming language" for seven years in a row ac-

cording to the Stack Overflow Developer Survey [1]. Its pop-

ularity has resulted in numerous research papers exploring

its applications in software development and programming

languages. The active Rust developer community also con-

tributes to the abundance of online discussions, blog posts,

and tutorials.

Studies have focused on migrating from languages like

C/C++ to Rust due to its advantages in speed and safety, par-

ticularly for developing low-level systems. Open-source mi-

gration guides, such as "A Guide to Porting C/C++ to Rust,"

are available to assist developers in this process.

Martins [12] investigated the benefits and drawbacks of

using Rust in an existing codebase, specifically the EPICS

framework. The author found that if EPICS had been written

2
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in Rust, approximately 41 bugs could have been easily iden-

tified and fixed. The study recommended selectively rewrit-

ing critical components in Rust, while maintaining a well-

defined interface between the two languages.

Various automatic transpilation tools are available for con-

verting C/C++ code to Rust, including C2Rust [7], CRust

[17] and bindgen [14]. These tools offer different levels of

functionality and limitations, which will be discussed in the

subsequent sections of this paper.

Another study by Ling et al. [10] proposed a transpiler that

transforms C code into safer Rust code by reducing the usage

of the "unsafe" keyword. The authors’ evaluation on open-

source and commercial C projects demonstrated significantly

higher ratios of safe code after the transformations. Similarly,

Lunnikivi et al. [11] discussed transpiling Python code to

Rust to improve performance while maintaining readability.

They proposed using Rust as an intermediate step for code

optimization. The authors presented a transpilation process

involving optional runtime types, the use of the pyrs [9] tool,

manual refactoring, and validation testing. Their approach

showed performance gains compared to accelerated Python

implementations.

In the next section, we will explore the effectiveness of

the aforementioned transpilation tools, providing a compre-

hensive analysis of their features and limitations.

4 C/C++ to Rust: On the existing tools

In this section, we focus on evaluating the effectiveness of

existing tools for transpiling C/C++ code to Rust. We begin

by exploring the available tools and selecting a set of repre-

sentative programs to test their transpilation capabilities. We

then compare the resulting Rust code with the original C/C++

code to evaluate the quality of the transpilation. Through this

evaluation, we aim to provide insights into the current state

of C/C++ to Rust transpilation tools and their potential for

adoption in real-world applications.

4.1 Examples considered and approach

To evaluate the performance of automated C/C++ to Rust

transpilers, we selected various sets of C/C++ code that in-

clude common constructs in both languages. The goal was to

analyze how well the transpiler can convert C/C++ code into

memory-safe Rust code that performs the same task. The de-

scription of codes chosen for evaluation are given below and

the exact codes are included in Analysis_Examples available

in the repository [2].

4.1.1 C Language.

- Recursive Fibonacci Numbers: This program (shown in

Fibonacci.c available in the repository [2]) was chosen to

study how Rust code handles function calls, including self-

calls and calls to other functions, when transpiled.

- Linked List Implementation in C: This program (shown

in LinkedList.c available in the repository [2]) utilizes structs

and raw pointers, which have a distinct implementation in

Rust. However, raw pointers are not encouraged in safe

Rust code. Transpiling this program aids in comprehend-

ing how a transpiler converts structs and raw pointers.

4.1.2 C++ Language.

- Catalan Numbers Problem: This is a basic C++ code that

uses simple constructs like loops (shown in CatalanNumbers.cpp

available in the repository [2]). The conversion of this pro-

gram shows how these constructs are dealt with during the

transpilation process.

- Basic Classes and Object Code: This program (shown in

BasicOOPS.cpp available in the repository [2]) is a basic

implementation of Classes and Objects, i.e. OOP in C++.

OOP is an essential part of Tizen development, and this

program was selected to understand how classes and ob-

jects are converted during the transpilation process.

4.2 Tools Explored

This Subsection describes the automated transpilation tools

we have identified and explored. Each tool has an overview

along with its issues. The full code transpilation results for

each tool are available in Analysis_Results available in the

repository [2].

4.2.1 C2Rust. C2Rust [7] is an open-source tool for con-

verting C code to Rust code. It aims to automate the process

of porting C code, reducing the time and effort required for

manual translation while preserving the original behaviour

and performance of the C code. However, there are some

limitations to consider when using C2Rust.

C2Rust is a powerful tool, but has some limitations.

- Complex C code: C2Rust may struggle with complex C

code that uses advanced language features, macros, or low-

level system calls. The tool is imperfect and may generate

incorrect or inefficient Rust code for such cases.

- Dependencies: C2Rust can only convert the C code itself,

not any external dependencies or libraries. These depen-

dencies must be ported manually or replaced with existing

Rust libraries.

- Performance: The converted code may not perform as

well as the original C code, especially if the C code is

highly optimized. It is important to profile the converted

code and optimize performance where necessary.

- Manual intervention: The conversion process with C2Rust

is not perfect and may require manual intervention to cor-

rect errors or improve code quality. The converted code

should be thoroughly tested and reviewed to ensure it be-

haves as expected.

- Rust-specific concepts: C2Rust may not always be able to

translate complex C code into Rust code that follows best

practices for the Rust programming language. The gener-

ated code may require manual modification to adhere to

Rust conventions and idioms.

- C99 support only: C2Rust currently only supports C99

code, and there is no support for C++. This means that if

3
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1 /** Crust doesn't resolve C/C++

dependencies or included header.

2 * You may have to define your own

module and implement those

functionality in Rust

3 * Or you can translate header file

with Crust to produce Rust code. *
4 * >>>>>>>> # include < bits / stdc

++ . h >

5 **/

6 Figure 3. Code excerpt from the transpilation

the original code is written in a different dialect of C or in

C++, it may not be able to be converted with C2Rust.

- Unsafe code: Since C2Rust primarily focuses on automat-

ing the conversion process, the generated Rust code may

contain unsafe elements. This is because many of the un-

safe constructs in Rust are used to match the behaviour of

the C code. As a result, manual review and modification

may be necessary to make the generated code safer and

more idiomatic Rust.

C2Rust is a tool designed to convert C code into Rust. Al-

though it can be a valuable asset for porting C code, there are

some important limitations to keep in mind. Firstly, C2Rust

currently only supports C and does not have the capability

to handle C++ code. Secondly, the converted code in Rust

is unsafe, meaning that the user does not get the advantage

of memory safety and increased speed by directly using the

code. To use these benefits, the user needs to put in signifi-

cant effort, roughly 90-95%, into converting the output code

to safe Rust. This requires a thorough understanding of Rust

programming and a strong attention to detail to ensure that

the code is safe and secure. Despite these limitations, C2Rust

can still be a useful tool for those looking to port their C code

to Rust, but it should be used with caution and with a deep un-

derstanding of the consequences of converting unsafe code.

4.2.2 bindgen. Rust bindgen [14] is a tool that automates

the process of creating Foreign Function Interface (FFI) bind-

ings between Rust and C/C++ libraries. It allows developers

to access C libraries directly in their Rust code by creating

bindings that match the functions and data structures of the

C code. Thus, it is important to note that Rust bindgen is

not a transpiler; it generates FFI bindings for C/C++ code. It

creates bindings that enable Rust to interact with the C/C++

code but does not convert the code into Rust. Therefore, the

safety of these bindings relies on the memory safety of the

original C/C++ code, and Rust bindgen does not add any ad-

ditional safety measures.

As a result, the transpilation of C/C++ code into Rust was

not pursued in this context. The objective was to fully tran-

spile the modules into Rust rather than simply relying on the

C library. This approach ensures the codebase is fully con-

verted and can take advantage of Rust’s safety and perfor-

mance benefits.

1 // Importing Token Crate

2 use crate::library::lexeme::token::

Token;

3 Figure 4. Crate import example

4.2.3 CRust. CRust is an open-source project on GitHub

created by a developer based in Bangalore [17]. It is designed

as a typical compiler and involves lexical analysis and pars-

ing of the input source code. Although CRust has been able

to solve several issues faced by previous tools, it still has

some limitations that need to be considered. The limitations

of CRust include:

- Header file conversion: CRust is unable to convert in-

cluded header files and resolve dependencies or header

files in C/C++. As seen in Figure 3 it provides message

stating the same in the output file whenever it finds a header

file in the source code. A workaround is to convert the

header files separately and then include them using the

Rust crate syntax as shown in Figure 4.

- Unknown corresponding functions: In cases where the

transpiler does not know the corresponding functions in

Rust, it directly copies the function from the C/C++ file.

This will require manual correction or the use of a C li-

brary package. C Library functions printf and getchar in

the source code of Figure 5 are copied as it is in Figure

6, their Rust counterparts are not present in the transpiled

code.

- Class support: CRust claims to support classes in C++,

but its performance is not optimal. It may throw errors for

index out of bounds, enter into an infinite loop during exe-

cution, or have other issues with its core logic for parsing

class declarations.

- Preprocessors: There is code that supports preprocessors

like HeaderDefine, HeaderInclude, HeaderIfDefineStart, and

HeaderIfDefineEnd, but it is currently not in a working

state. This can be extended by changing the code.

4.2.4 Verdict on tools. The study explored the following

tools for automatic transpilation of C/C++ code to Rust.

1 int main(){

2 int n = 9;

3 printf("%d\n", fib(n));

4 getchar();

5 return 0; }

6

Figure 5. Example C Code

1 fn main() {

2 let n: i32 = 9;

3 printf("%d\n", fib(n));

4 getchar();

5 return 0; }

6
Figure 6. Resultant Rust Code

4
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- C2Rust - This tool supports only C, not C++, and the con-

verted code is in unsafe Rust, which requires almost 90-

95% effort to be converted to safe Rust.

- bindgen - This tool creates a Foreign Function Interface

to access the C/C++ code. It is not a transpiler and not

suitable for the purpose of transpilation.

- CRust - This transpiler is suitable for basic C/C++ code

but requires manual intervention for conversion to Rust.

Class conversion is not supported, which limits its use case.

We concluded that CRust seemed to be the most promis-

ing tool for converting small chunks of code and can be used

for about 40% of the transpilation work of basic code. How-

ever, if the issue of class transpilation can be fixed, it may

provide a head-start in transpilation. Also, some tools (such

as Corrode [16]) could not be built and are no longer sup-

ported. Therefore, those tools were not evaluated.

4.3 Transpilation of gperf module using CRust
To assess the feasibility of migrating Tizen modules to Rust,

we attempted to transpile existing source files in the Tizen’s

gperf module using the CRust tool. As previously stated,

CRust is the only automatic transpilation tool that can be

considered for converting C/C++ to safe Rust code. We com-

pared the outcome of the automatic transpilation with that

of the manual transpilation. The comparison was based on

the percentage of lines of C/C++ code that were converted

to equivalent Rust code. The goal was to determine the ac-

curacy of the automatic transpilation performed by CRust

and to evaluate how much manual intervention would be re-

quired.

Conversion Results: The Conversion results table avail-

able in our repository [2] presents the conversion results of

each file in the gperf module. The full transpilation of the

files is included in transpiled_gperf available in the reposi-

tory [2].

The table shows that while some files could not be tran-

spiled, others had conversion percentages ranging from 5%

to 45%, with logic fragments of the code being successfully

converted. However, some data types were not added to the

variables, and some functions were ignored or copied as they

are. Thus, it suggests that CRust can partially convert C/C++

code to Rust, but additional effort will be required to com-

plete the conversion process.

4.4 Summary- existing transpilation tools

The CRust transpiler’s performance fell short of expectations.

It struggled with larger code sections, failed to convert header

files with class definitions into appropriate Rust equivalents.

Furthermore, complications arose with .icc files, necessitat-

ing their conversion to .cpp format for analysis. The tran-

spiler encountered difficulties in handling certain crucial source

code files, leading to infinite loops. While it managed to con-

vert smaller code snippets resembling C/C++ syntax, such as

array access and arithmetic operations, some code was either

disregarded or mistaken for comments due to issues with the

comment delimiter. On a positive note, variable data types

were accurately assigned in Rust. Overall, the CRust tran-

spiler’s outcome was disappointing, as much of the code was

merely copied with transpiler comments signaling the need

for further exploration of corresponding Rust translations.

Upon assessing the current state of automated transpilers,

it becomes apparent that they cannot satisfactorily convert Ti-

zen modules from C/C++ to Rust. The Tizen codebase heav-

ily relies on Object-Oriented Programming (OOP) principles

and extensively employs memory pointers and inline func-

tions. The primary obstacle lies in the disparities between

memory and class handling in C/C++ and Rust. Additionally,

differences in syntax compound the challenges encountered

during the transpilation process. These combined factors ren-

der existing transpilers ill-suited for successful conversion of

Tizen modules.

5 Mapping of C/C++ to Rust

We began by taking the gperf module of Tizen platform into

consideration for manually transpiling the C++ files present

inside it into the Rust codebase. The following are some of

the fundamental, key and significant constructs of C++ with

their equivalent implementations in Rust. And it’s very im-

portant to note that the ideal transpilation would essentially

be from any form (safe/unsafe) of C++ code to safe Rust.

This includes memory-safe and unsafe C++ code.

5.1 Basic Constructs
Let us see how some basic constructs in C++ such as global

variables, and ternary operator are implemented in Rust.

5.1.1 Global Variables. The Rust language offers two ways,

using const and static, and keywords.

1 const const_global: f32 = 2.4;

2 static static_global: i32 = 10;

3 static mut mut_global: i32 = 5;

4 fn main() {

5 unsafe{

6 mut_global = mut_global + 1;

7 }

8 }

9

Figure 7. Global Variables in Rust
- const/static without mut keyword: To declare immutable

global variables.

- static with mut keyword: To declare mutable global vari-

ables. However, in order to access the static mut variable,

we need to wrap it with the unsafe code.

To avoid the use of unsafe{} code, it is better to use types

from std::sync module such as RwLock or Mutex that provide

thread-safe ways to mutate shared state without the need for

the unsafe keyword.The let keyword is not permitted to be

used in the global scope.

The code snippet in Figure 7 defines an immutable con-

stant const_global of type f32 with an initial value of 2.4, an

immutable static variable static_global of type i32 with an

initial value of 10 and a mutable static variable mut_global

5
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of type i32 with an initial value of 5. mut_global is accessed

in an unsafe block.

1 let a = if x > 5 {10} else {7};

Figure 8. Ternary Operator Equivalent in Rust

5.1.2 Ternary Operator. Unlike other languages, Rust does

not have ternary operators. It uses the regular if-else con-

struct. The code in Figure 8 is an example of a conditional

expression in the Rust programming language. The variable

a is assigned a value based on the result of the condition

G > 5. If x is greater than 5, a is assigned the value 10, oth-

erwise it is assigned the value 7. This is a concise way of

writing a basic if-else statement.

5.1.3 Vector. A contiguous growable array type: Vec〈T〉.

Using Vec::new() method. The Rust code in Figure 9 demon-

strates two ways of creating a vector (a dynamic array) of

signed 32-bit integers. The first method creates an empty vec-

tor using Vec::new() and then inserts the integer 1 into it us-

ing vec.push(1). The second creates an empty vector with

a pre-allocated capacity of 5 using Vec::with_capacity(5).

This can be useful if the program knows the expected size

of the vector in advance to avoid costly reallocations as ele-

ments are added to the vector later on.

1 let mut vec:Vec<i32>=Vec::new();

2 vec.push(1);

3 //Construct empty vector with

certain capacity

4 let mut vec: Vec<i32> = Vec::

with_capacity(5);

5

Figure 9. Vector in Rust using new() method

1 let v = vec![0, 2, 4, 6];

2 println!("{}", v.len());

3 //Prints the number of

elements in the vector

4 //Loop to iterate over the

vector

5 for i in v {

6 //iterating through i on the

vector

7 print!("{} ",i); }

8
Figure 10. Vector in Rust using vec! macro

Using vec! macro –. The Rust code in Figure 10 defines

a vector v containing the values [0, 2, 4, 6]. The first block

of code prints the number of elements in the vector using the

len() method of the vector. The second block of code uses a

for loop to iterate over the elements of the vector. The loop

variable i takes on the value of each element in the vector v

in turn, allowing the loop body to perform some operation on

each element. In this case, the loop body simply prints each

element separated by a space.

5.1.4 Do-While Loops. We can implement it using a regu-

lar loop block with a condition to break at the end. The Rust

code in Figure 11 demonstrates a loop construct, that is an in-

finite loop, that repeatedly calls a function doStuff() as long

as a condition, c is met.

1 loop {

2 doStuff();

3 if !c { break; }

4 }
Figure 11. Loop in Rust

5.2 Non-Trivial Constructs

In this section, we show how some of the fundamental, yet

non-trivial constructs, such as functions, classes and pointers

in C++ are handled in Rust along with emphasizing on some

key concepts in them.

5.2.1 Functions.

- Functions in C/C++ can be split into their declarations and

their implementations as shown in Figure 12.

1 // Declaration

2 int foo(bool parameter1, const std

::string &parameter2);

3 // Implementation

4 int foo(bool parameter1, const std

::string &parameter2) {

5 return 1; }

6 Figure 12. Function Declaration and Definition in C++

However, Rust does not allow such distinctions, so both of

them has to be put in the same place as shown in Figure

13.

The Rust code in Figure 13 defines a function foo that

takes two parameters: a boolean value parameter1 and a

reference to a string slice parameter2, and returns an inte-

ger value of 1.

- Rust also does not support function overloading. So to im-

plement such traits in Rust, we can declare functions with

different names and their respective parameter configura-

tions as shown in Figure 14.

1 fn foo(parameter1: bool, parameter2:

&str)->i32 {

2 // implementation

3 1 }

4 Figure 13. Function in Rust

1 fn functAdd3(a: i32, b: i32, c: i32)

->i32{

2 // implementation

3 a+b+c }

4 fn functAdd2(a: i32, b: i32) -> i32{

5 //implementation

6 a+b }

7 Figure 14. Function Overloading Alternative in Rust
6
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The Rust code in Figure 14 defines two functions func-

tAdd3 and functAdd2 that perform addition of integer val-

ues. The function functAdd3 takes three parameters a, b,

and c, all of type i32 (signed 32-bit integer) and returns the

sum of the three numbers. In case of function functAdd2,

the implementation is similar to functAdd3, but takes only

two parameters and returns the sum of a and b.

- Inline functions in C++ as shown in Figure 15 can be im-

plemented in Rust using the #[8=;8=4] keyword as shown

in Figure 16.

1 inline void sort_char_set (

unsigned int *base, int len){

2 //Implementation

3 }
Figure 15. Inline Function in C++

1 #[inline]

2 fn sort_char_set(base: *mut u32,

len: i32) {

3 //Implementation

4 }
Figure 16. Inline Function in Rust

The Rust code in Figure 16 defines a function sort_char_set

that sorts an array of unsigned 32-bit integers in place. The

#[inline] attribute is a hint to the compiler to optimize the

function by inlining it at the call site, which can improve

performance by reducing the overhead of function calls.

5.2.2 Classes.

- Implementation of class in C++ is shown in Figure 17.

Classes in Rust can be implemented using structs. A sep-

1 Class C{

2 int a; int b; int c;

3 public:

4 C(int x, int y, int z)

5 { //constructor

6 a = x; b = y; c = z;

7 }

8 void method1(int x, int y)

9 { a = x; b = y; }

10 int method2()

11 { a = 0; return c; }

12 }

13 //creating an object

14 C object(x,y,z);

Figure 17. Class in C++

arate impl block is required in order to specify the struct

methods. The above class can be implemented in Rust as

shown in Figure 18.

The code in Figure 18 defines a struct C with three fields

a, b, and c, which are of type i32. The pub keyword is

used to make these fields public, which means they can

be accessed from outside the struct. Two member func-

tions method1 and method2 are defined for C inside the

impl block. method1 takes two integer parameters x and y,

and updates the values of a and b using the self reference.

method2 sets the value of a to 0 and returns the value of c.

The &mut self reference is used to indicate that method1

and method2 modify the fields of the struct, and they take

ownership of the struct while they execute. A new object

of type C is created using the struct initialization syntax

C {a:x, b:y, c:z}, where x, y, and z are the values of the

constructor parameters.

1 pub struct C {

2 a : i32, b : i32, c : i32,

3 }

4 impl C {

5 pub fn method1(&mut self, x:i32, y:

i32)

6 {

7 self.a = x; self.b = y;

8 }

9 pub fn method2(&mut self) -> i32

10 {

11 self.a = 0; self.c

12 }

13 }

14 //constructor creating object

15 let object = C {a:x, b:y, c:z};

Figure 18. Struct in Rust

- Important thing to note here is that Rust does not support

inheritance. Consider the following simple case of inheri-

tance in C++ as shown in Figure 19.

1 struct St1

2 {

3 int a; int b;

4 }

5 struct St2 : St1

6 { int c; }

7
Figure 19. Inheritance in C++

Now to implement the same relation between two structs

in Rust, we can either add a member of the parent struct,

or we can simply add all the members of the parent struct

and reinitialize them with the same values as of the parent.

The code in Figure 20 defines two structs, St1 and St2, in

Rust. St1 contains two fields of type i32, named a and b.

This struct has no parent or derived classes and it stands

alone. St2 also contains two fields of type i32 named a

and b, and an additional field c of type i32. The c field is

specific to St2 and has nothing to do with St1.

Alternatively, the second St2 struct definition shows how

to define a struct with a parent using composition. It has a

field named parent of type St1, which represents the parent

struct. The St2 struct also has a unique field named c of

type i32. By using composition, St2 inherits the fields of

7
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1 struct St1

2 {

3 a : i32, b : i32,

4 }

5 struct St2

6 {

7 a : i32, b : i32, c : i32,

8 }

9 //or

10 struct St2

11 {

12 parent : St1, c : i32,

13 }
Figure 20. Inheritance Alternatives in Rust

St1 through the parent field. Also, this parent field is not

visible outside of the St2 struct.

In Rust, inheritance is achieved through composition, where

a struct can contain a field of another struct type, and the

child struct can access the fields of the parent struct through

the parent field.

5.2.3 Pointers and References.

- As shown in Figure 21, a pointer in most languages like

C/C++ basically is the reference to the actual memory lo-

cation of where the data is being stored. The same can be

done in Rust as shown in Figure 22.

1 int age = 27;

2 int *age_ptr = &age;

Figure 21. Pointer in C++

1 // This is a reference coerced to a

const pointer

2 let age: u16 = 27;

3 let age_ptr: *const u16 = &age;

4 // This is a mut reference coerced

to a mutable pointer

5 let mut total: u32 = 0;

6 let total_ptr:*mut u32= &mut total;

Figure 22. Raw Pointers in Rust

The Rust code in Figure 22 demonstrates how to create

pointers from references in Rust. The first example shows

how to create a pointer from an immutable reference using

the *const keyword. The reference to age is created using

the & operator, and then it is coerced to a const pointer us-

ing the *const keyword. The second example shows how

to create a pointer from a mutable reference using the *mut

keyword. The mutable reference to total is created using

the &mut operator, and then it is coerced to a mutable

pointer using the *mut keyword.

The *const keyword is used to specify that the pointer is

immutable and cannot be used to mutate the data it points

to. The *mut keyword is used to specify that the pointer is

mutable and can be used to mutate the data it points to.

Note that most of the functions that we might want to use

pointers in would be unsafe by definition. They must be

inside an unsafe block. Therefore, it is not recommended

to use raw pointers in Rust. In Rust, a reference is also

lifetime tracked by the compiler.

1 float *ptr = new float(10.25);

Figure 23. Pointer in C++

- In Rust, Box〈T〉 is a smart pointer that can be used to al-

locate things on the heap similar to new in C++. Basically,

it is a type that provides ownership and lifetime manage-

ment for heap-allocated values, and automatically deallo-

cates the memory when it goes out of scope. The following

pointer in C++ as shown in Figure 23 can be implemented

using Box pointers in Rust as shown in Figure 24.

1 let ptr:Box<f32> = Box::new(10.25);

Figure 24. Box Pointer in Rust

The Rust code in Figure 24 creates a Box smart pointer that

points to a heap-allocated f32 value initialized to 10.25. In

this case, the Box pointer owns the f32 value and can be

moved, but not copied, to other variables or functions.

Raw pointers, i.e., ∗2>=BC and ∗<DC can be obtained from

Box pointer using Box::into_raw() as shown in Figure 25.

1 let box_ptr:Box<int> = Box::new(5);

2 let raw_ptr:*mut i32 = Box::into_raw

(box_ptr) as *mut i32;

Figure 25. Box Pointer to Raw Pointer Conversion in Rust

- References with lifetime specifier; the main aim of life-

times is to prevent dangling references, which cause a pro-

gram to reference data other than the data it is intended to

reference. Figure 26 shows various ways in which lifetime

specifiers are specified to the references.

1 &i32 // a reference

2 &'a i32 // a reference with

an explicit lifetime

3 &'a mut i32 // a mutable

reference with an explicit lifetime

Figure 26. References in Rust

Now, to use references of one struct as a member of an-

other with lifetime specifiers, we can do as shown in Fig-

ure 27.

1 struct PositionIterator<'a>

2 { _set : &'a Positions, }

3
Figure 27. Reference inside Struct in Rust

The Rust code in Figure 27 defines a struct named Posi-

tionIterator with a generic lifetime ’a. The PositionItera-

tor struct has one field named _set that is a reference to

an instance of the Positions struct. The lifetime specifier

indicates that the _set reference is tied to the lifetime of

the PositionIterator struct. This code can be used to cre-

ate an iterator over the positions in a Positions object. The

lifetime specifier is used to ensure that the iterator only

has access to valid references to the Positions object, and

does not outlive it. By defining a lifetime on the Position-

Iterator struct, Rust can check that the iterator’s lifetime

8
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is valid and make sure that there are no dangling pointers

or other memory errors. This helps ensure memory safety

and avoid bugs in Rust code.

- NULL Pointers: there is no NULL in safe Rust unlike in

C++. However, null pointers can be used in Rust along

with raw pointers, which is unsafe to do so, using null()/null_mut()

functions in std::ptr.

1 use std::ptr;

2 let p: *const i32 = ptr::null();

3 let p_mut: *mut i32=ptr::null_mut();

4 assert!(p.is_null()&&p_mut.is_null());

Figure 28. Null Pointers (using raw pointers) in Rust

In Figure 28, a new immutable pointer p and a new muta-

ble pointer p_mut of types *const i32 and *mut i32 respec-

tively are initialized it to null pointers using the null() and

null_mut() functions respectively from the ptr module.

In safe Rust, using enum Option is the closest we get to

using NULL. We can use the None variant of it to represent

no-value.

1 let recipient: Option<&str> = None;

2 assert!(recipient.is_none());

Figure 29. Option Enum in Rust

In Figure 29, a variable recipient is defined as an Option of

a string slice with an initial value of None. The assert state-

ment verifies that the recipient variable is indeed None.

5.3 Summary and some observations: On

understanding the mapping of C++ to Rust, and

manual transpilation of the gperf module

As can be seen, transpiling from C/C++ to Rust is not direct.

Sometimes, it may require a totally different and indirect way

of writing a piece of C/C++ code in Rust. Some features that

are supported in one language may not be supported in the

other, just like NULL pointer and inheritance concepts that

are supported in C++ but not in Rust.

Only a few topics are explained above. There are several

other complex concepts such as traits, command line pars-

ing, naming conventions, referencing, error handling, mem-

ory disposal, and visibility of fields and methods in structs

that includes usage of pub keyword and nested structs. Er-

ror handling using Result enum is discussed in Appendix A

available in the repository [2].

Though there are C/C++ bindings that can be utilized in

Rust, it is not advised to do so as they usually are compatible

with unsafe Rust.

The gperf module in C++ was structured as separate header

(.h), inline definition (.icc), and implementation (.cc) files.

However, in Rust, all code is grouped under a single imple-

mentation file (.rs), without any distinction between headers

and implementations. Therefore, to translate a C++ module

to Rust, we created a corresponding .rs file for each set of .h,

.icc, and .cc files.

S.No File Name
Rust(release)

(in milliseconds)

C++ (no optimization)

(in milliseconds)

C++ (-o1 optimization)

(in milliseconds)

1 bool-array 2 6.3 6.5

2 positions 2.5 8.5 1.6

3 keyword 1.1 2.9 1.4

4 keyword_list 0.5 1.1 1.5

5 options 3.7 8.1 7.8

6 hash-table 2 8 2

Table 1. Benchmarking table: Comparison of the runtimes

of various files in the gperf module in different modes.

By organizing code into crates and modules, Rust pro-

vides a powerful and flexible way to structure code and man-

age dependencies. This allows developers to write maintain-

able and scalable code, while also ensuring that code can be

reused across projects and shared with others.

gperf is a perfect hash function generator written in C++.

It is used to generate the reserved keyword recognizer for lex-

ical analyzers in several compilers and language processing

tools [15, 18]. Overall, the gperf module is a complex system

that requires careful management of memory and other sys-

tem resources. The gperf module implementation in C/C++

consists of almost 8500 lines of code [18]. Using the under-

standing of the various programming constructs, we were

able to manually convert the complete C/C++ code of the

gperf module to Rust. The transpiled version of the codebase

can be found in the refered repository [2]. In the following

section, we have briefly compared both the C/C++ and the

Rust version of the gperf module implementations.

6 Comparison of C/C++ to Rust (gperf)

We performed a benchmark comparison between the runtime

of C++ code and the corresponding Rust code of the files of

the gperf module with some basic test cases on a machine

with the following configuration:

- Processor: Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz

2.80 GHz; Installed RAM: 16.0 GB (15.9 GB usable)

- System type: 64-bit operating system, x64-based proces-

sor

- Operating system: Windows 11 Home

The Rust code was tested in debug mode and in release mode,

with the release version being faster than the debug version.

In contrast, the C++ code was tested with and without opti-

mization flags (-o1 and -o2). The version without optimiza-

tion flags was slower than Rust’s release version. However,

the C++ versions with optimization flags were almost similar

to Rust’s release version, with Rust still outperforming C++

by a few milliseconds in many cases. Table 1 shows the ac-

tual runtimes of each version where each runtime value was

calculated as an average of runtimes obtained over 10 runs.

One of the drawbacks of using optimization flags in C++ is

that it can sometimes lead to unexpected runtime errors and

bugs. Additionally, using optimization flags can sometimes

lead to longer compile times and larger executable files [6].

The results of this comparison suggest that Rust’s perfor-

mance is on par with C++. Here, the optimization flags in

C++ can help achieve similar performance levels as Rust
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release compilation, albeit with slightly higher runtime and

potential drawbacks. The research highlights the importance

of selecting the right programming language for specific use

cases, with Rust being a good choice for low-level systems

programming, and C++ being suitable for other domains.

Overall, this benchmark comparison demonstrates the per-

formance of Rust and emphasizes the need for continued ex-

ploration and development of Rust for low-level systems pro-

gramming. In the process, it is also observed that there is a

need to carefully consider the use of optimization flags in

C++ to balance performance gains with potential drawbacks.

7 Discussion on Challenges Faced

Some of the challenges that were faced in this process were:

- Learning the language: Rust is difficult. It has a complex

syntax and a steep learning curve. It is designed to uniquely

solve some very challenging problems in programming.

- Understanding Rust constructs: Before we could begin the

transpilation we had to have a thorough understanding of

the different constructs of Rust and how they correspond to

C++ constructs, which required significant time and effort.

- Manually transpiling modules: The process of manually

transpiling was time-consuming and prone to errors, as it

requires a deep understanding of both the source code and

the target language.

- Creating a transpilation table: The process of creating a

transpilation table based on the learning from manual tran-

spilation was challenging, as it required us to identify and

document key differences between C++ and Rust.

- Transpiling certain language-specific constructs:

- Header and source files: In C++, header files contain

the declarations of classes, functions, and variables that

are defined in source files. However, Rust does not have

a direct equivalent of header files. Our approach was

to put the declaration and implementation of the class

in one place, but this can lead to a large and unwieldy

source file. Another approach is to use Rust modules to

organize declarations and definitions, but this requires a

significant reorganization of the codebase.

- Friend class: In C++, the friend class construct allows

a class to grant access to its private members to another

class. However, Rust does not have an equivalent con-

struct. Our approach was to use the crate level visibility

in Rust to allow a module to access the private members

of another module, but this can lead to decreased encap-

sulation and increased coupling between modules.

- Type inference: C++ allows for implicit type conver-

sions and coercion, which can result in unexpected be-

havior. Rust, on the other hand, is a strongly typed lan-

guage that uses type inference to ensure type safety. This

can make the transpilation process challenging, as the

types used in the original C++ code may not be immedi-

ately obvious, and converting these types to Rust types

can be error-prone.

- Pointers and references: C++ makes extensive use of

pointers and references, which can lead to memory man-

agement issues such as dangling pointers and memory

leaks. Rust, on the other hand, uses a borrow-checking

system that ensures memory safety at compile-time. Con-

verting pointers and references from C++ to Rust can be

challenging, as the semantics of these constructs are dif-

ferent in the two languages.

- Exceptions: C++ has a built-in exception handling mech-

anism that allows for graceful error handling. Rust, on

the other hand, uses a system of Result and Option types

to handle errors. Converting exception handling code

from C++ to Rust can be challenging, as the two sys-

tems have different semantics and error handling mech-

anisms.

8 Conclusion

In this work, we aimed to transpile C++ code to Rust in a

robust and safe way. We began by exploring existing transpi-

lation tools for C++ to Rust conversion. Our analysis of the

current state of the existing tools for C++ to Rust showed

that they do not provide adequate conversion.

Thus, we began to understand the mapping of various con-

structs of both the languages. For our study, we have consid-

ered a fragment of the Tizen OS (gperf module of the Tizen

OS in C++) implemented in C++. By manually transpiling

various components of the considered C++ codebase to Rust,

we have created a transpilation table/mapping based on the

learning from manual transpilation of various C++ source

files to Rust. Our learnings of the mappings of various con-

structs will help towards developing an auto transpiler from

C++ to Rust.

In the process, the considered codebase is successfully

completely manually transpiled in to Rust. We then performed

benchmark comparisons between the runtime of the C++ code

(both debug and with optimization flag) and the correspond-

ing Rust code (release mode). We observed that we achieved

better memory safety based on Rust’s type system without

any compromise on the performance.

Note that manually transpiling C++ code to Rust is a time-

consuming and laborious process. The conversion requires

careful attention to detail, debugging, and testing, which can

take significant time and resources. It is often more efficient

to write the code from scratch or to use an automated tran-

spiler. Our attempt of manually transpiling the considered

codebase is only to carefully understand the mapping be-

tween various constructs of both the languages, to study the

feasibility of developing an automated transpiler. The next

phase of our research will focus on developing an automated

transpiler for C++ to Rust.

10
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In conclusion, our research highlights the potential bene-

fits of using Rust for system programming and demonstrates

the feasibility of transpiling C++ code to Rust. We believe

that with further development, Rust can become a valuable

tool for creating high-performance and memory-safe soft-

ware.
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