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Background: Problems for Classic PGO
Representative Profiling Data

Data collected during profiling does not accurately reflect real-world case

Overhead of Profiling

Require extra time/resources run program under different scenarios

Maintaining and Updating Profile Data

Re-profiling needed when new features introduced or bug fixed



Paper Overview
Novel statistical approach with Decision Tree: 

Infer branch probabilities => Decide which branch is hot

Profiling => Supervised learning

Major steps:

Step1: Offline training 

Using branching information & Features collected from corpus of binaries

Step2: Compiler use the trained model to estimate branching frequencies



Quick Overview for Decision Tree Model
Root Node: 

Entire dataset
Splitting: 

Dividing a node into more 
sub-nodes based on certain conditions

Internal Node: 
After splitting, the sub-node 
that splits into further sub-nodes

Leaf/Terminal Node: 
Nodes that do not split further, 
representing the decision outcome

Root Node

Internal Internal

Leaf Leaf Leaf Leaf



Gradient Boosted Decision Tree
Advantages:

Resistant to overfitting, especially with large datasets

Provide more accuracy while keeping good run-time performance

Easier to integrate compared with CNN

Disadvantages:

Less interpretable



Method - Two Phase Approach

Phase I: Offline training (Slow)

1. Collect high quality branch frequency data by PGO.
2. Custom feature collection pass to extract features.
3. Train a gradient boosted decision tree.

a. Input: Extracted features related to branch.
b. Output: Predict branch frequency.



Method - Two Phase Approach

Phase II: Online compilation (Fast)

1. Regular compilation without PGO.

2. Collect features with the feature collection pass from input code file.

3. Use gradient boosted decision tree to predict branch frequency.



Feature Collection
● Manually selected 34 features:

○ 23 branch features: About the branch command itself.
○ 11 basic block feature: About the basic block the branch locates.

● Wrote an analysis pass to collect all features:
○ Represent each feature as a floating point number.
○ Collect all numbers into a “Feature Vector”.

● Analyze a wide range of programs:
○ High quality programs that are widely used

■ bzip2, Python, clang, sqlite, and more
○ Profile information also collected
○ Saved as training dataset
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Level 

Profile

Feature to
branch
Dataset

Feature 
Collection



Train the Model
● Dataset with n examples and m features

● Each decision tree considered as a function f:

● Split training set vs. testing set = 10 : 1

● Trained with XGBoost framework



Code Generation - From Tree to Code

Each decision tree is represented by 4 
vectors:

● F: The feature to split on for each node
● C: The splitting condition. For leaf nodes it 

store the output of the tree.
● L: The left child of each node.
● R: The right child of each node.

The output of the gradient boost tree is 
the sum of output of all trees in it.

Simple loop with branches, 
very efficient!



Evaluation - Two Experiments

● Predictive performance of branch weight model

● Run-time performance of programs compiled using predicted branch 

weights by the model



Evaluation - Predictive Performance

● Distribution of branch weight 
prediction errors

○ X-axis is ground truth class

○ Y-axis is predicted class

○ Brighter cells have higher density



Evaluation - Predictive Performance

● Accuracy of the heuristics in LLVM’s BPI analysis
○ ~ 10 million branches

○ Compare the outcome on the first successor for each branch 



Evaluation - Run-time Performance

● Speedup of programs compiled using the proposed model over 
compilation without profile guided optimization.
○ The geometric mean speedup of our approach is 1.016.



Comparison
Challenge This Research Other Related Work

Data 

Extraction and 

Labeling

● Enables every measurement of a 

program to be used to produce 

ground truth labels for branch 

probability

● Relies on exhaustive compiling and 

measuring

● Determines the best performance on every 

combination of optimization decision

Dealing with 

Measurement 

Noise

● Focuses on noise-free deterministic 

branch probabilities ground truth

● Measurement noise as a prediction target

● Relies on proxy metrics like static analysis 

   of the generated binaries



Comparison

Challenge This Research Other Related Work

Feature 

Design and 

Selection

● Pairs abundant values from LLVM’s 

static analysis with gradient 

boosted trees to balance 

interpretability and featuring cost

● Automatically ranks and prunes 

various features 

● Handcrafts vectors of numeric features

● Sacrifices interpretability for simplification 

by inferring high-level features from 

low-level representations with natural 

language models or graph learning



Conclusion
The approach developed in this research …

● Leverages gradient-boosted trees for efficient branch prediction.

● Has low compile times and zero additional memory overhead.

● Is easy to train and integrate into compilers.

● Can be further explored on tradeoffs in each stage.



Appendix - List of All Features
Type List of features

Branch 
Features

is_entry_block

num_blocks_in_fn

condition_cmp

condition_predicate

condition_in_block

predicate_is_eq

predicate_is_fp

cmp_to_const

left_self_edge

right_self_edge

left_is_backedge

right_is_backedge

Type List of features

Branch 
Features

right_points_to_left

left_points_to_right

loop_depth

is_loop_header

is_left_exiting

is_right_exiting

dominates_left

dominates_right

dominated_by_left

dominated_by_right

num_blocks_dominated

Type List of features

Basic 
Block 
Features

num_instr

num_phis

num_calls

num_loads

num_stores

num_preds

num_succ

ends_with_unreachable

ends_with_return

ends_with_cond_branch

ends_with_branch

num_instr
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