
Profile Guided Optimization without
Profiles: A Machine Learning Approach

By Nadav Rotem (Meta, Inc.) Chris Cummins (Meta AI)

Group5: Shuyuan Yang, Qifei Wu, Yijia Gao

Background: Problems for Classic PGO
Representative Profiling Data

Data collected during profiling does not accurately reflect real-world case

Overhead of Profiling

Require extra time/resources run program under different scenarios

Maintaining and Updating Profile Data

Re-profiling needed when new features introduced or bug fixed

Paper Overview
Novel statistical approach with Decision Tree:

Infer branch probabilities => Decide which branch is hot

Profiling => Supervised learning

Major steps:

Step1: Offline training

Using branching information & Features collected from corpus of binaries

Step2: Compiler use the trained model to estimate branching frequencies

Quick Overview for Decision Tree Model
Root Node:

Entire dataset
Splitting:

Dividing a node into more
sub-nodes based on certain conditions

Internal Node:
After splitting, the sub-node
that splits into further sub-nodes

Leaf/Terminal Node:
Nodes that do not split further,
representing the decision outcome

Root Node

Internal Internal

Leaf Leaf Leaf Leaf

Gradient Boosted Decision Tree
Advantages:

Resistant to overfitting, especially with large datasets

Provide more accuracy while keeping good run-time performance

Easier to integrate compared with CNN

Disadvantages:

Less interpretable

Method - Two Phase Approach

Phase I: Offline training (Slow)

1. Collect high quality branch frequency data by PGO.
2. Custom feature collection pass to extract features.
3. Train a gradient boosted decision tree.

a. Input: Extracted features related to branch.
b. Output: Predict branch frequency.

Method - Two Phase Approach

Phase II: Online compilation (Fast)

1. Regular compilation without PGO.

2. Collect features with the feature collection pass from input code file.

3. Use gradient boosted decision tree to predict branch frequency.

Feature Collection
● Manually selected 34 features:

○ 23 branch features: About the branch command itself.
○ 11 basic block feature: About the basic block the branch locates.

● Wrote an analysis pass to collect all features:
○ Represent each feature as a floating point number.
○ Collect all numbers into a “Feature Vector”.

● Analyze a wide range of programs:
○ High quality programs that are widely used

■ bzip2, Python, clang, sqlite, and more
○ Profile information also collected
○ Saved as training dataset

Industrial
Level

Profile

Feature to
branch
Dataset

Feature
Collection

Train the Model
● Dataset with n examples and m features

● Each decision tree considered as a function f:

● Split training set vs. testing set = 10 : 1

● Trained with XGBoost framework

Code Generation - From Tree to Code

Each decision tree is represented by 4
vectors:

● F: The feature to split on for each node
● C: The splitting condition. For leaf nodes it

store the output of the tree.
● L: The left child of each node.
● R: The right child of each node.

The output of the gradient boost tree is
the sum of output of all trees in it.

Simple loop with branches,
very efficient!

Evaluation - Two Experiments

● Predictive performance of branch weight model

● Run-time performance of programs compiled using predicted branch

weights by the model

Evaluation - Predictive Performance

● Distribution of branch weight
prediction errors

○ X-axis is ground truth class

○ Y-axis is predicted class

○ Brighter cells have higher density

Evaluation - Predictive Performance

● Accuracy of the heuristics in LLVM’s BPI analysis
○ ~ 10 million branches

○ Compare the outcome on the first successor for each branch

Evaluation - Run-time Performance

● Speedup of programs compiled using the proposed model over
compilation without profile guided optimization.
○ The geometric mean speedup of our approach is 1.016.

Comparison
Challenge This Research Other Related Work

Data

Extraction and

Labeling

● Enables every measurement of a

program to be used to produce

ground truth labels for branch

probability

● Relies on exhaustive compiling and

measuring

● Determines the best performance on every

combination of optimization decision

Dealing with

Measurement

Noise

● Focuses on noise-free deterministic

branch probabilities ground truth

● Measurement noise as a prediction target

● Relies on proxy metrics like static analysis

 of the generated binaries

Comparison

Challenge This Research Other Related Work

Feature

Design and

Selection

● Pairs abundant values from LLVM’s

static analysis with gradient

boosted trees to balance

interpretability and featuring cost

● Automatically ranks and prunes

various features

● Handcrafts vectors of numeric features

● Sacrifices interpretability for simplification

by inferring high-level features from

low-level representations with natural

language models or graph learning

Conclusion
The approach developed in this research …

● Leverages gradient-boosted trees for efficient branch prediction.

● Has low compile times and zero additional memory overhead.

● Is easy to train and integrate into compilers.

● Can be further explored on tradeoffs in each stage.

Appendix - List of All Features
Type List of features

Branch
Features

is_entry_block

num_blocks_in_fn

condition_cmp

condition_predicate

condition_in_block

predicate_is_eq

predicate_is_fp

cmp_to_const

left_self_edge

right_self_edge

left_is_backedge

right_is_backedge

Type List of features

Branch
Features

right_points_to_left

left_points_to_right

loop_depth

is_loop_header

is_left_exiting

is_right_exiting

dominates_left

dominates_right

dominated_by_left

dominated_by_right

num_blocks_dominated

Type List of features

Basic
Block
Features

num_instr

num_phis

num_calls

num_loads

num_stores

num_preds

num_succ

ends_with_unreachable

ends_with_return

ends_with_cond_branch

ends_with_branch

num_instr

Citation
[1] Chris Cummins, Zacharias Fisches, Tal Ben-Nun, Torsten Hoefler, Michael O’Boyle, and Hugh

Leather. ProGraML: A Graph-based Program Representation for Data Flow Analysis and Compiler

Optimizations. In ICML, 2021.

[2] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. End-to-end Deep Learning

of Optimization Heuristics. In PACT, 2017.

[3] Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael Carbin. Ithemal: Accurate,

Portable and Fast Basic Block Throughput Estimation using Deep Neural Networks. In ICML, 2019.

[4] Rotem, N., & Cummins, C. (2021). Profile Guided Optimization without Profiles: A Machine

Learning Approach. ArXiv. /abs/2112.14679

Thank you

