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Abstract
Profile guided optimization is an effective technique for
improving the optimization ability of compilers based on
dynamic behavior, but collecting profile data is expen-
sive, cumbersome, and requires regular updating to re-
main fresh.

We present a novel statistical approach to inferring
branch probabilities that improves the performance of
programs that are compiled without profile guided opti-
mizations. We perform offline training using information
that is collected from a large corpus of binaries that have
branch probabilities information. The learned model is
used by the compiler to predict the branch probabilities
of regular uninstrumented programs, which the compiler
can then use to inform optimization decisions.

We integrate our technique directly in LLVM, supple-
menting the existing human-engineered compiler heuris-
tics. We evaluate our technique on a suite of benchmarks,
demonstrating some gains over compiling without pro-
file information. In deployment, our technique requires
no profiling runs and has negligible effect on compilation
time.

1 Introduction
Compiler optimizers are structured as a long pipeline,
where each stage (pass) in the pipeline transforms the in-
termediate representation (IR). Optimization passes em-
ploy different heuristics for making decisions about the
optimization that they perform. For example, the loop un-
roller has a set of rules for deciding when and how to un-
roll loops. The compiler has thousands of heuristics and
threshold parameters that predict profitability of transfor-
mations and balance between performance gains and the
cost of compile time.

In this work we replace parts of LLVM’s Branch-
ProbabilityInfo (BPI) heuristics, which have been devel-
oped over the last decade by dozens of engineers, with a

1 // Calculate Edge Weights using "Pointer Heuristics".
2 // Predict a comparison between two pointer or pointer
3 // and NULL will fail.
4 bool BranchProbabilityInfo::
5 calcPointerHeuristics(const BasicBlock *BB) {
6 const BranchInst *BI = dyn_cast<BranchInst>(..);
7

8 Value *Cond = BI->getCondition();
9 ICmpInst *CI = dyn_cast<ICmpInst>(Cond);

10 if (!CI || !CI->isEquality())
11 return false;
12

13 // p != 0 -> isProb = true
14 // p == 0 -> isProb = false
15 // p != q -> isProb = true
16 // p == q -> isProb = false;
17 bool prob = CI->getPredicate() == ICmpInst::ICMP_NE;
18 ...

Listing 1: An example hand-crafted rule from LLVM’s
BranchProbabilityInfo (BPI) analysis pass. The BPI
analysis contains hundreds of such rules developed over
a decade. Our technique replaces these rules with
automatically constructed decision trees.

learned model. BPI contains hundreds of rules such as
"backedges in loops are hot" and "branches to terminators
are cold" which are coded in C++. Listing 1 presents one
of the rules that BPI uses. We replace these rules with a
pre-computed decision tree that uses inputs that are col-
lected from the program.

It is difficult to tune compiler parameters by measur-
ing the performance of the generated code. System noise
and lack of causality are two of the challenges. To work
around this difficulty we formulate a learning task for
which deterministic ground-truth labels are readily avail-
able. We aim to predict branch probabilities as they are
recorded in the program metadata. The mechanism of in-
strumentation and collection of branch probabilities are
already implemented in the compiler, and we can use
them to collect information about branch behavior. The
availability of ground-truth branch probabilities allows us
to turn the problem of replacing BPI into a supervised
learning problem.
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Figure 1: We use profiles collected from training pro-
grams to automatically construct decision trees to predict
branch weight information for programs for which we do
not have profile information. This figure shows one such
decision tree.

In this paper we present a new compiler pass that anno-
tates branch probabilities and does not rely on profile col-
lection. LLVM’s BPI uses the branch probabilities meta-
data instead of heuristics if the information is available.
Our system inspects millions of branches from different
programs and constructs a predictive model that can as-
sign branch probabilities to unseen branches.

Our focus in this work is to develop a practical solution
that can be deployed at scale. For this reason we require
that our technique integrate seamlessly into the compiler,
add minimal overhead to the compilation pipeline, and
be interpretable to aid in development. We chose not to
use deep neural networks because of their runtime per-
formance and difficulty of integration. Instead we use
gradient-boosted trees [1] to generate interpretable deci-
sion trees. We use the XGBoost [2] library for generating
decision trees. Decision trees are similar to the structure
of compiler heuristics, except that the rules and numeric
thresholds are automatically computed. Figure 1 shows
a decision tree that was automatically generated by the
system.

Unlike LLVM’s BPI analysis the rules that our system
generates don’t need to be expressed in human language.
They can be more complex, can combine more inputs,
and can use numbers that are not perfectly round. The
code that constructs the decision tree is significantly sim-
pler compared to LLVM’s BPI which is implemented in
thousands of lines of code that contain different human
readable rules.

We make the following contributions:

• We develop a novel statistical approach for predict-
ing branch probabilities from static program features
without access to profile information.

• We implement our approach for LLVM. We develop
a feature extraction pass for LLVM and construct
boosted decision tree models from a corpus of train-
ing profiles, embedding the constructed model in a
new pass for LLVM.

• We evaluate our approach on a suite of open source

benchmarks. Without access to profile informa-
tion, and with negligible compilation overhead, we
achieve significant performance gains on some pro-
grams.

2 Prediction Guided Optimization
We present a novel technique to statically predict the
branch weights of programs without access to profile in-
formation. This section describes the design and imple-
mentation of the system.

2.1 Overview of our Approach
Figure 2 presents the overall compilation flow. The sys-
tem operates in two stages: offline training, and online
use.

Phase I (offline training): In the first stage a regular
compiler uses the PGO workflow to compile many pro-
grams of different kinds. During this phase a new com-
piler pass collects information about each branch in the
code (this is the feature list, denoted by X). The compiler
also records the branch probabilities which are provided
by the PGO workflow (this is the label, denoted by Y). In
the context of this discussion we refer to inputs as Fea-
tures, which are individual inputs to our prediction en-
gine. The compiler saves this information in a large file
on disk. Next, an offline script processes the data and gen-
erates a model that can answer the question: given some
information about the branch, what are the most likely
branch probabilities? The model is compiled into C code
and integrated into the production compiler.

Phase II (regular online compilation): In this phase
the compiler, which is equipped with a new analysis, com-
piles regular files without using the PGO workflow. The
new model that was generated in the first phase provides
branch probability information that allows the compiler to
make better decisions and generate faster code.

2.2 Feature Collection
In order to generate accurate the branch probabilities our
analysis needs to collect information about how branches
behave in different programs. Just like LLVM’s BPI anal-
ysis we collects many features using C++ code. We ask
questions such as, "how many instructions are in each one
of the basic blocks that the branch points to", and "does
the right destination block dominate the branch". We
also collect information about the presence of certain in-
structions such as return and exception handling instruc-
tions. We also record information about the loop nest,
information about the parent block and position within
the function. The pass collects 54 features that we list
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Figure 2: Overview of our approach. During offline train-
ing, static features and profiled branch weights are col-
lected from a corpus of training programs and used to au-
tomatically construct a model that is then embedded in
the compiler. Online, the features of unseen programs are
extracted and the model infers branch weights.

in Appendix A. All of the features are stored in a vec-
tor of floating point numbers. During the offline training
phase, both the feature-vector and the true branch prob-
abilities are saved into a file. From this point the fea-
tures don’t have an assigned meaning and are just num-
bers. To ensure a broad sample of the space we collect
information from over a million branches. In our training
suite we compile many programs from different domains:
llvm-test-suite benchmarks, abseil, bash, box2d, bzip2,
diffutils, distorm, fmt, fpm, graphviz, grep, hermes, json-
nlohmann, leveldb, liblinear, libpng, libuv, clang, lua,
myhtml, oggvorbis, povray, python, sela, smallpt, sqlite,
tscp, xxhash, z3. We generate representative profile in-
formation by running sample inputs. We ignore branches
with too few samples.

2.3 Training a Model
In the previous stage the compiler saved a large file with
millions of rows. Each row describes the probability of a
branch and many features that describe the branch and the
program. We then use standard data science techniques to
generate a model of gradient-boosted trees.

A dataset with n examples and m features is defined as:

D = {xi,yi} (|D|= n,xi ∈ Rm,yi ∈ R).

A tree-ensemble with K additive functions that predict
the label probability:

ŷi =
K

∑
k=1

fk(Xi)

Where each decision tree maps the feature list to a sin-
gle value.

f : Rm→ R

1 float intrp(const float *input,
2 const short *F, const float *C,
3 const short *L, const short *R) {
4 int idx = 0;
5 while (1) {
6 if (F[idx] == -1) return C[idx]; // Found it!
7 if (input[F[idx]] < C[idx]) // Check condition.
8 idx = L[idx]; // Go left.
9 else

10 idx = R[idx]; // Go right.
11 }
12 }
13 // Feature index, condition, left, right:
14 const short F0[] = {12, 26, 34, 28, 47, 18, 45, ...
15 const float C0[] = {0.5, 0.5, 7.5, 1.5, 0.5, 0.5, ...
16 const short L0[] = {1, 3, 5, 7, 9, 11, 13, 15,17, ...
17 const short R0[] = {2, 4, 6, 8, 10, 12, 14, 16, ...
18

19 float tree0(const float *input) {
20 return intrp(input, F0, C0, L0, R0);
21 }

Listing 2: The decision tree traversal code generated by
our approach.

To prepare the data we convert the branch probabil-
ity values that represent the ratio between the left-and-
right into 11 classes that represent the probabilities 0..1
in jumps of 0.1. We shuffle our data and split it to train-
ing and testing sets using a 10 : 1 split. XGBoost is used
to generate the decision trees. We use the logloss evalu-
ation metric and the softmax learning objective. It takes
less than a minute to train on data sets with millions of
samples.

2.4 Code generation

After we finished training our model we need to convert
it into C code that can be included in the compiler. At
inference time, the feature-vector that was collected for
each branch is used by the inference procedure to traverse
the decision tree and reach the desired outcome. Decision
trees, such as the one in Figure 1, turn right or left depend-
ing on the values in the feature list and on the condition at
each intersection.

The gradient-boosted trees that we use are an ensem-
ble of weak prediction models. This means that several
simple trees are combined to generate a good prediction.
The probability of each label in the prediction is the ac-
cumulation of several decision trees that process the same
input. We convert each tree into a flat vector and generate
a small interpreter that can walk down the tree. At in-
ference time we process each of the trees and accumulate
them into the right bucket. Finally, we iterate over the 11
labels and find the label with the highest probability. Fig-
ure 2 shows the code that is generated for a single tree.
The generated code can be compiled as part of the LLVM
compiler and serve different passes and analysis.
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Figure 3: Distribution of branch weight prediction errors.
The X axis is ground truth class, the Y axis is predicted
class, and cells are brighter with higher density.

2.5 Inference
This section describes the online use of the compiler. In
the system that we’ve implemented the only difference to
the compiler is a new pass that can assign branch prob-
abilities based on program structure. During runtime the
analysis collects information on the branches in the pro-
gram in a feature vector and passes them to the inference
method that was generated off-line. The inference method
returns a value that represents the ratio between the left
branch and the right branch.

3 Implementation
Our training system distilled a database of around 200MB
into a model that was around 2MB. The model does
not increase the dynamic memory usage of the com-
piler because the decision tree tables are stored in read-
only memory. The total inference code added to LLVM
amounts to less than one kilobyte of code. The time it
takes to infer the properties of a branch depends on the
depth of the decision trees and the number of trees, and
there is a tradeoff between accuracy and performance.
However since the decision trees are small and the traver-
sal is efficient, the overall inference time is very low.
The model we trained and evaluate in Section 4 can run
250,000 inference requests per second on a single x86
core. The 3-label model can run 1,600,000 inferences
per second. This can be further optimized [3].

4 Evaluation
We evaluate our technique in two sets of experiments. In
the first, we evaluate the predictive performance of our

Figure 4: Speedup of programs compiled using our tech-
nique over compilation without profile guided optimiza-
tion. In both cases the compiler does not have access to
profile information. The geometric mean speedup of our
approach is 1.016.

branch weight model. In the second, we evaluate the run-
time performance of programs compiled using our pre-
dicted branch weights and compare it to the performance
of programs compiled without any profile information
and using ground-truth profiles.

4.1 Predicting Branch Weights

We use a hold out testing set of 10% unseen branches to
assess whether our model can accurately predict branch
weight. We discretize the space of branch weights into 11
bins: [0,0.1,0.2, . . . ,1.0]. Figure 3 provides an overview
of the results. In 75% of cases the model predicts the
correct probability weight class. This figure depends on
the size and number of the decision trees.

4.2 Compilation Performance

We tested our system on a number of different programs
from different domains. Figure 4 shows the effectiveness
of the system on a number of workloads. In this bench-
mark we evaluate regular compilation of programs (with-
out PGO or LTO) using the default optimization compi-
lation flag. The only difference between the runs was the
flag that enabled the new pass. We did not disable BPI,
and just allowed BPI to use the new branch probability
metadata.

The new optimization pass improves the performance
of 6 of the 10 workloads, compared to compiling without
profile guided optimization. The gains in changes are in
the range of −7% for bzip2 to +16% for Python.
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Heuristic Branches Weight (%) Correct(%)
Estimated 2,965,889 0.29 0.70
Pointer 4,961,307 0.49 0.56
Zero 2,133,775 0.21 0.76
FloatingPoint 6,227 0.00 0.45

Figure 5: Accuracy of the heuristics in LLVM’s BPI anal-
ysis.

4.3 Heuristics Accuracy
In section 4.1 we evaluate the performance of the
machine-learning based approach. In this section we esti-
mate the accuracy of the heuristics in LLVM’s BPI anal-
ysis. BPI uses four different heuristics when no branch
frequency metadata is available. We used the PGO work-
flow to collect branch probabilities and modified BPI to
report both the metadata and the heuristics outcome. We
compared the outcome of the "isHot" method on the first
successor for each branch. Figure 5 shows the effective-
ness of each one of BPI’s heuristics and the portion of the
branches each heuristics handles.

5 Related work
Profile guided optimization is a well-established tech-
nique for improving compile time optimization deci-
sions [4]. Profile information is collected using instru-
mentation or sampling of the executable, and the col-
lected data can only be used to optimize the executables
on which it was trained. Compilers such as LLVM [5]
and BOLT [6] use profile guided optimizations to opti-
mize and perform efficient layout of code.

Despite the performance improvements offered by pro-
file guided optimization, it is cumbersome to integrate
into build systems and adds significant overhead. Signifi-
cant engineering infrastructure is needed to provide deep
integration with large evolving codebases [7].

We propose a novel technique to overcome the limita-
tions of profile guided optimization using machine learn-
ing. The application of machine learning to compiler op-
timizations is well studied and shows promise in elimi-
nating the human developed heuristics, as surveyed in [8]
and [9].

The most commonly used technique is supervised
learning. Supervised learning has been applied to a range
of problems such as loop unrolling [10, 11], instruc-
tion scheduling [12], program partitioning [13], hetero-
geneous device mapping [14, 15], function inlining [16],
and various optimization heuristics in GCC [17].

Supervised machine learning algorithms operate on la-
beled data, but it’s not easy to extract the labeled data

from compilers. In some specific domains, such as code
generation for linear algebra primitives, there is a fixed
compilation pipeline and a program that is reasonable to
measure [18]. In traditional compilers, the size of the op-
timization space and the complexity of the optimization
pipelines may make it prohibitively expensive to collect
training data, as it requires exhaustively compiling and
measuring each program with every combination of opti-
mization decision to determine the best performance. In
contrast, our approach enables every measurement of a
program to be used to produce ground truth labels for
branch probability.

Another challenge is that measurement noise makes it
difficult to evaluate the performance of program. This is
especially significant for very small measurements such
as the runtime of individual basic blocks [19]. In [20],
noise in measurements is used a prediction target. Some
projects rely on proxy metrics such as static analysis of
the generated binaries or code size [21, 22]. In contrast to
these works, our approach enables noise-free ground truth
measurements to be collected.

A key challenge in supervised learning is feature de-
sign. The quality of a learned model is limited by the
quality of the features used. Many prior works used hand-
crafted vectors of numeric features [17, 21, 12], however
selecting which values to include in a feature vector is a
time consuming and error prone task. An automatic ap-
proach to feature selection was proposed in [23] but this
requires a cumbersome grammar to be written to describe
the space of features to search over. More recently, deep
learning techniques inspired by natural language model-
ing [11, 14, 24] and graph learning [15, 25] have been
proposed to simplify the task of feature engineering by
automatically inferring high-level features from low-level
input representations, however these techniques sacrifice
interpretability as the inferred latent representations are
hard to reason about. Our approach aims to strike a bal-
ance between interpretability and feature engineering cost
by pairing a large number of the readily available values
from LLVM’s static analyses with a machine learning al-
gorithm that automatically ranks and prunes features.

There is active research around the differentiation of
whole programs [26], but as of today the whole compila-
tion pipeline is not differentiable. A different approach
is to optimize compilers using reinforcement learning.
Cummins et al. [22] formulate a suite of compiler op-
timization problems as environments for reinforcement
learning. Ameer et al. [27] use reinforcement learn-
ing to make vectorization decisions in the LLVM vec-
torizer [28]. The MLGO project [21] is a framework
for integrating neural networks into LLVM, targeting the
function inlining heuristic. ESP [29] is an earlier effort
to apply machine learning to the problem of predicting
branch probabilities. ESP uses neural networks and de-
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cision trees to predict the likelihood of a branch to be
taken. VESPA [30] extends BOLT and allows the use of
machine learning techniques for predicting branch proba-
bilities. Their approach is similar to our work in that they
predict branch probabilities that are later used for code
layout and other binary optimizations. Compared to these
works which target individual optimizations at a time, our
technique enables a single learned model to benefit the en-
tire compiler by predicting branch weight metadata that is
available to all optimization passes.

6 Conclusions

We investigated the problem of leveraging data science
techniques for generating branch probabilities in uninstru-
mented programs. We proposed a fast and simple system
that use gradient-boosted trees. We tested the proposed
system and demonstrated significant performance wins on
several important workloads with very low compile times
and zero additional memory overhead.

The proposed system is easy to train and integrate and
can be the first step in the direction of applying data sci-
ence techniques to compiler engineering. The work pre-
sented in this paper is the result of experimentation in a
huge design space. There are opportunities for improve-
ment on top of the existing work in every stage, and there
are many tradeoffs that need to be explored.

A Feature list

This section lists the features that are extracted from each
branch and from the current, left and right basic blocks.
The feature extraction code is written in C++ that converts
them into a vector of floating point numbers.

Type List of features
Branch Features is_entry_block

num_blocks_in_fn
condition_cmp
condition_predicate
condition_in_block
predicate_is_eq
predicate_is_fp
cmp_to_const
left_self_edge
right_self_edge
left_is_backedge
right_is_backedge
right_points_to_left
left_points_to_right
loop_depth
is_loop_header
is_left_exiting
is_right_exiting
dominates_left
dominates_right
dominated_by_left
dominated_by_right
num_blocks_dominated

Basic Block Features num_instr
num_phis
num_calls
num_loads
num_stores
num_preds
num_succ
ends_with_unreachable
ends_with_return
ends_with_cond_branch
ends_with_branch
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