
1248 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 8, AUGUST 2010

[8] J. Donald and M. Martonosi, “Leveraging simultaneous multithreading
for adaptive thermal control,” in Proc. 2nd Workshop Temperature-
Aware Computer Systems (TACS) in Conjunction With ISCA-32, 2005.

[9] Wei et al., “Low voltage low power CMOS design techniques for deep
submicron ICs,” Proc. VLSI Design, pp. 24–29, Jan. 2000.

[10] Intel Nehalem Processor (i7), [Online]. Available: http://www.intel.
com/products/processor/corei7/index.htm

[11] Hu et al., “Microarchitectural techniques for power gating of execution
units,” Proc. ISLPED, pp. 32–37, 2004.

[12] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage
current mechanisms and leakage reduction techniques in deep-submi-
crometer CMOS circuits,” in Proc. IEEE, Feb. 2003, vol. 91, no. 2, pp.
305–327.

[13] Tullsen et al., “Simulation and modeling of a simultaneous multi-
threading processor,” in Proc. Computer Measurement Group Conf.,
1996, pp. 819–828.

[14] Choi et al., “Learning-based SMT processor resource distribution via
hill-climbing,” in Proc. ISCA, 2006, pp. 239–251.

[15] Hrishikesh et al., “The optimal logic depth per pipeline stage is 6 to 8
FO4 inverter delays,” Proc. ISCA, pp. 14–24, May 2002.

[16] Heo et al., “Power-optimal pipelining in deep submicron technology,”
Proc. ISLPED, pp. 218–223, 2004.

[17] Anis et al., “Design and optimization of multi-threshold CMOS
(MTCMOS) circuits,” Trans. CAD, vol. 22, no. 10, pp. 1324–1242,
Oct. 2003.

[18] Parekh et al., “Thread-sensitive scheduling for SMT processors,”
Comput. Sci. Eng. Dept., Univ. of Washington, Seattle, WA, Tech.
Rep., 2000.

Register File Partitioning and Compiler Support for
Reducing Embedded Processor Power Consumption

Xuan Guan and Yunsi Fei

Abstract—Register file (RF) in modern embedded processors contributes
a substantial budget in the energy consumption due to its large switching
capacitance and long working time. For embedded processors, on average
25% of registers count for 83% of RF accessing time. This motivates us to
partition the RF into hot and cold regions, with the most frequently used
registers placed in the hot region, and the rarely accessed ones in the cold re-
gion. We employ the techniques of bit-line splitting and drowsy register cell
to reduce the overall accessing power of RF. We propose a novel approach
to partition the RF in a way that can achieve the largest power saving. We
formulate the RF partitioning process into a graph partitioning problem,
and apply an effective algorithm to obtain the optimal result. We evaluate
our algorithm on MiBench and SPEC2000 applications, and an average
saving of 58.3% and 54.4% over the non-partitioned RF accessing power
is achieved for the SimpleScalar PISA system, respectively. The area over-
head is negligible, and the execution time overhead is acceptable.

Index Terms—Compilers, low-power design, partitioning, processor ar-
chitectures.

I. INTRODUCTION

As embedded systems are being widely used in communications,
multimedia, and networking areas, low power consumption has re-
mained one of the most critical concerns in embedded processor design

Manuscript received October 02, 2008; revised January 23, 2009; accepted
March 16, 2009. First published September 15, 2009; current version published
July 23, 2010. This work was supported by National Science Foundation under
the grant CCF-0541102.

The authors are with the University of Connecticut, Electrical and Computer
Engineering, U-2157, Storrs, CT 06269 USA (e-mail: xug06002@engr.uconn.
edu; yfei@engr.uconn.ed).

Digital Object Identifier 10.1109/TVLSI.2009.2020860

[1]. With the increase of register file (RF) size and accessing time, RF
has been a major source of power dissipation in modern embedded
processors. For example, the RF power reaches 25% of the total
processor power for a pre-synchronization embedded processor for
multimode software-defined radio (SDR) terminals in [2]. In a recent
network-on-chip (NOC) platform, the RF consumes up to 37.1% of the
total system power consumption, which becomes the power bottleneck
rather than the heavily used communication architecture [3].

In this paper, we focus on reducing the RF power consumption by
employing compiler support for a partitioned RF. Our work is moti-
vated by the observation in [4] that in a single-issue pipelined RISC
processor, 25% of registers count for 75%–92% (on average 83%) of
total RF accesses, a phenomenon known as 80/20 rule [5]. We put the
most frequently used registers in a small section of the RF, which con-
sumes much less power than the whole RF, and thus the overall RF
accessing power consumption can be greatly reduced.

A. Related Work

System-level optimizations for reducing the RF power consumption
can be classified into two major categories: reducing the RF access fre-
quency and reducing the power consumption of each access. For the
second category, one popular approach is RF window. In Rajiv’s work
[6], the RF is organized as a set of identical register windows with their
own address space. Power consumption is saved by activating only a
single window during execution. However, the window activating and
data transfers between windows incur maintenance overhead. Lin et
al. presented a distributed ping-pong RF organization optimized for
stream processing [7]. Each functional unit has direct access to eight
private registers, and the other eight public registers are dynamically
shared by a pair of functional units. By this way the average number
of registers in use is reduced. Ayala et al. employed the similar idea as
ours of only activating the registers used by a code section, putting other
unused registers into a low-power (“drowsy”) state [8], [9]. However,
their RF partition is based on analysis of one or two most time-con-
suming functions, instead of majority of the program code. In addition,
they have fixed the RF partition configuration (1/4 for the small region),
and our approach explores all possible configurations and finds the best
one. They inserted instructions at the beginning and end of code sec-
tions to turn a set of registers on and off, which increases the code size
and causes cycle overheads.

B. Paper Overview

Our work falls into the second category, and targets reducing the RF
access power throughout the whole program. We divide the register
file into two regions that share the same address space, where one has
the smaller number of registers but is used more frequently and the
other larger region but used less. Instead of simply picking the most
frequently used registers for the hot region by profiling, as used in [8],
[9], we have devised a sophisticated algorithm to find the best candi-
dates based on the original register allocation result. We also explore
different partition configurations to find the best one. We extend the
code-generation stage with an additional register renaming process to
avoid complex compiler modification.

The rest of the paper is organized as follows. Section II introduces
the overall framework of the compiler system we enhanced for RF
partitioning. In Section III, we discuss the sources of power dissipation
and derive the RF power model. In Section IV, we formulate the RF
partitioning process into a graph partitioning problem. Section V
presents the algorithm we proposed to solve this graph partitioning
problem. Section VI outlines the experimental environment and pro-
vides the experimental results with analysis. Finally, Section VII draws
conclusions.

1063-8210/$26.00 © 2009 IEEE

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 17,2024 at 00:07:20 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 8, AUGUST 2010 1249

Fig. 1. Example program code. (a) source C code, (b) assembly code.

Fig. 2. Register allocation graph with RF partitioning. (a) Before reallocation;
(b) after reallocation.

II. GENERAL FRAMEWORK OF OUR REGISTER FILE PARTITIONING

AND COMPILER SUPPORT

The profiling result we get for MiBench applications1 shows that the
top 25% registers (in terms of usage frequency) are involved in 66% of
total RF access, and 50% registers in 87% of usage [10]. However, it
does not mean that placing the most frequently used 25% registers in
the hot region will yield the best energy saving. Here we have to con-
sider other factors, such as instructions using registers from different
regions and the switching time overhead.

We first describe the register allocation problem with a simple ex-
ample. Fig. 1(a) gives the original C code and (b) shows the assembly
code of a sample program on a platform of SAMSUNG CalmRISC8
[11]. We only label the nine instructions that access the RF.

We then translate the program code register allocation into a graph
in Fig. 2(a), where each node represents a register, and each edge rep-
resents an instruction, which connects the registers it uses with the in-
struction number labeled on the edge. Assume the RF is partitioned
into two regions at the same size, (R0, R1) and (R2, R3), as shown in
Fig. 2(a). With the original register allocation, 2 instruction (4 and 5)
are crossing the regions, 4 instructions (1, 2, 8, and 9) are only using
region 1, and 3 instructions (3, 6, and 7) region 2 only. However, since
most of the instructions are accessing register R1 and R2, if we put R1
and R2 into region 1, as shown in Fig. 2(b), there will be only one in-
struction (in dashed line: 4) using both of the two regions, and it may
result in less power consumption than the original allocation. We im-
plement the RF partitioning result of Fig. 2(b) by renaming the regis-
ters. For example, all the R0 and R2 in the original code are swapped.
This example shows that the original register allocation is not the most
energy-efficient one without considering RF partitioning.

III. REGISTER FILE POWER MODEL

In this section we will examine the hardware structure and the low
power techniques for the partitioned register file.

1Available [online] at http://www.eecs.umich.edu/mibench/

Fig. 3. Access power consumptions for different working modes of the parti-
tioned register file.

A. Register File Access Energy Consumption and Power Reduction
Techniques

The overall RF accessing energy includes both dynamic and leakage
energy dissipation. There are four constituents of the dynamic energy
consumption: the word-line energy, bit-line energy, sense amplifier en-
ergy, and energy for driving control signals. According to previous re-
search [12], the bit-line is the dominant component, taking up to 70%
of the dynamic energy consumption of RF, while each of the other parts
consumes no more than 10% of total energy. The leakage energy exists
for all the components even when the registers are not accessed. It could
be a significant source of power consumption as the technology keeps
shrinking. For example, it takes less than 1% of the total power con-
sumption under 0.18-� technology, and with the 90–nm technology, it
is approaching 50% [13], [14].

We have employed two techniques to reduce the average power con-
sumption of RF, bit-line splitting and drowsy technique.

Since the power dissipation of bit-lines is linearly dependent on the
number of registers on the bit-line [12], the dynamic power consump-
tion can be reduced by splitting the bit-line to several segments and
adding a multiplexer to choose the output from them [4]. Here we only
consider two segments, and keep the size of the small region a power
of 2, so that some RF address lines can be used directly to control the
multiplexers for selecting the bit-line, without additional control in-
structions or complex control circuits. Hence, the time for selecting a
bit-line can be reduced.

The static power consumption of the unused RF region can be re-
duced by applying the “drowsy” technique [9], [15], which can pre-
serve the register contents by adaptively scaling the supply voltages
(0.3 V or 1 V) of each bit-line. The hardware overhead and switching
time between register modes have been evaluated in [15]. With HSPICE
simulations and CACTI model for a 70 nm process, it is found that the
wake-up time for the register file from the drowsy mode to normal ac-
tive mode and the reverse switching time is one-cycle, and the area
overhead of the voltage controller and bit-line split logic is less than
3% of the whole RF. We will consider this mode switching overhead
in our later experiments.

B. Register File Power Model

Based on the aforementioned power saving techniques, an average
power model for accessing the RF during a program execution is derived
as follows.� � �� � �� � � � �� � � � �� � � � ������� � � � � ��,
where ��, ��, ��, and �� represent the RF accessing power for four
possible working modes, i.e., only region 1 is accessed, only region 2 is
accessed, both regions are used, and none of the two regions is accessed.
�,�, �, � are the total instruction counts in each mode, respectively. The
value of��,��,��, and�� includes both the dynamic and static power,
and it depends on specific RF partition configuration. Under the 70 nm
process, with the bit-line split and drowsy register techniques applied,
Fig. 3 shows the ratio of�� ,��, and�� to the original 32-entry RF power

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 17,2024 at 00:07:20 UTC from IEEE Xplore. Restrictions apply.

1250 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 8, AUGUST 2010

TABLE I
MATRIX REPRESENTATION OF PROGRAM CODE

consumption, ��. The ratios for �� and �� range from 40% to 75%, on
average 58%. They vary for different partition configurations. The RF
idle power�� is independent of the partition configuration. At any time,
the whole RF stays in only one of these four working modes.

IV. REGISTER FILE PARTITIONING PROBLEM FORMULATION

With this power model, our partitioning goal is to put the most fre-
quently used registers in a small region, so that�,�, and� are distributed
in a way that the average power consumption is minimized. This is an
NP-complete problem. Since the value of � is determined by the pro-
gram itself, its contribution to the average RF accessing power will not
be affected by our partition algorithm. The problem is simplified to min-
imizing the average power when RF is accessed,� � � �� ����� ����
� ������������. We formulate this problem into a graph partitioning
problem. The graph includes all the information in the program code,
like the existing register allocation results, the relationship between reg-
isters (whether independent or used in the same instruction), etc. For a
realistic program, the register allocation graph could be very large and
difficult to analyze. We generalize the program code representation to a
more formal mathematic form and seek the best RF partitioning scheme.

Table I demonstrates a matrix representation of the sample program.
In matrix � , each row represents a register, and each column denotes
an instruction. The sample code in Fig. 1 uses 4 registers by 9 instruc-
tions, and it is transformed into a 4 � 9 matrix. The matrix element
� ��	
� (� � � � �,
 � � �) is set to 1 if instruction
 uses register
���, otherwise it is set to 0. In the last row, each element in �� � is
the sum of values in the specific column of matrix � , representing the
number of registers that the corresponding instruction has accessed.

Suppose the RF size is � and the total number of instructions in the
program code that use registers is���, we define a ��� vector,� , to
represent the partitioning scheme. For register � � �, ���� � � means
it is in region 1 (the smaller region), and ���� �
 means it is in re-
gion 2. For example, for the partitioning scheme of R1 and R2 in re-
gion 1 and R0 and R3 in region 2, there is � � �
	 �	 �	
�. We de-
fine a � � ��� vector � � � � � , where each element represents
the number of registers in region 1 that the corresponding instruction
has used. For example, ���� � � � � ��� � �

���
��� � � ��	 ���,

where each element of � ���� indicates if the corresponding register
����� is in region 1, and each element in the third column of M �� ��	 ���
represents whether instruction �� uses the register �� � �� or not. For
the sample code and the example RF partitioning scheme in Fig. 2(b),
� � �
	 �	 �	 �	
	 �	 �	 �	 ��. If��
� � �� ��
�, it means that all the
registers that instruction
 has used are in region 1. Thus, we get the value
of�, the number of instructions that only access RF region 1, as follows.

� number of zeros in ��� ����. For the example �� � and
�, we have �=6.

� number of zeros in�.��
� �
means that none of the registers
used by instruction
 is in region 1. For example, instructions
�� and �� do not use registers in region 1, as shown in Fig. 2(b),
thus, � � �.

� �������, is the number of instructions that use both region
1 and region 2. In the example, � � �.

Based on the analysis above, the graph partitioning problem is for-
mulated into a mathematic form as below. Given a program code and
certain RF, we have the following:

� total number of registers in the RF;

��� total number of instructions in the code that use registers;

� the register allocation matrix with size of � ����, where

� ��	
��
� : instruction
 uses register �� �

 : instruction
 does not use register �� ��

We define the RF partition vector � with size ��� :

�����
� : register �� � is in region 1(smaller region)

 : register �� � is out of region 1.

The value of �, �, and � is expressed as a function of ���� and
� ��	
�, as shown in (1).

� �

�

���

�

���

���� ��	
� ����� �� ��	
��

� �

�

���

�

���

������� �� ��	
��

� ���� � �� �� (1)

Our algorithm is to look for the best value for vector � , so that the
average RF accessing power,� � � ������� ����� ������������,
is minimized.

V. ALGORITHM DESCRIPTION

We next elaborate on the algorithm that we propose to address the RF
partitioning problem. Other than the expensive exhaustive search, we
adopt the widely-used Kernighan–Lin algorithm for this partitioning
problem [16], which has much lower computation complexity and rea-
sonable optimization result. Note that other partitioning heuristics may
also work. We put the K-L algorithm for a fixed partition configuration
in the inner loop, and explore different configurations in the outer loop.
We will compare all the largest power saving value for each configura-
tion, and find the best partition configuration and the register allocation
result.

The partition process we have discussed above is within one basic
block. In real applications, a program may have many functions, and
each function may contain multiple basic blocks. Considering the large
number of basic blocks in a program, applying our partitioning algo-
rithm to the whole program may be very time-consuming. We need to
find the best range of basic blocks under consideration that can deliver
the largest power consumption for the whole program. Since each basic
block has its own execution frequency, i.e., importance, we choose the
most important basic blocks to optimize. The optimization flow is as
follows.

1) Rank all the basic blocks in a decreasing order of
execution frequency � block size.

2) Do RF partitioning within the first ranked basic block, and get the
largest power saving result for the whole program, Saving

�
, and

the RF partition result ��.
3) Consider the second ranked basic block together with the first one,

start at the last partition result �� and repeat the K-L searching
algorithm to find the best RF partitioning for them, ��, and the
largest power saving result, Saving

�
.

4) Each time start from the last partitioning result ����, and con-
tinue considering more basic blocks until the power saving value
has not increased for five steps.

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 17,2024 at 00:07:20 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 8, AUGUST 2010 1251

Fig. 4. Power saving results for considering multi-blocks.

Since the more frequently executed and the larger basic blocks have
better potential in saving RF power consumption, the first several basic
blocks we optimize would have the largest influence over the whole
program power consumption. Each time with a new basic block added
for consideration, we start from the last best partition scheme which
achieves the highest power saving for the whole program, and perform
the K-L algorithm on the group of basic blocks together. We have run
eight benchmark applications in MiBench without a stop criterion, i.e.,
exploring all the basic blocks in the program, and output the power
saving result for each exploration step in Fig. 4. For most of the time,
the first value that keeps to be the peak for five steps is very close
to the final global maximum, and for all the benchmarks the saving
starts to saturate when more than ten dblocks have been considered.
Compared to the full exploration of all the basic blocks, our reasonable
stop criterion can save the execution time greatly without sacrificing
the quality of solutions.

VI. EXPERIMENTAL RESULTS

In our experiments, we evaluate the effects of both different bench-
marks and different architectures on RF power saving and execution
time overhead. We first experiment with a set of integer benchmarks
randomly picked from MiBench and SPEC20002 , which represent em-
bedded applications and general purpose integer applications, respec-
tively. All the benchmarks are compiled and profiled by the modified
SimpleScalar, with all the information such as the original register allo-
cation, basic block execution frequency, and control flow graph (CFG),
obtained. We test our algorithm on top of the machine targeted by
SimpleScalar, PISA, which is a RISC architecture with 32 registers in
total. The RF is partitioned into two regions with four different parti-
tion configurations. We then test the embedded application benchmarks
MiBench on two different architectures, X86 and Alpha.

A. Experimental Results for MiBench and SPEC2000 on PISA
Architecture

1) Reduction in Register File Power Consumption: Fig. 5 shows the
power saving result for 6 SPEC2000 benchmarks on the PISA system
over the non-partitioned RF. Each benchmark has run for four RF parti-
tion configurations (2, 30), (4, 28), (8, 24), and (16, 16). In most cases,
the configuration of (16, 16) gets the best saving, and a few times (8,

2Available [online] at http://www.spec.org

Fig. 5. Power saving results for SPEC2000 benchmarks on the PISA system.

TABLE II
BEST PARTITIONING RESULT FOR THE MIBENCH ON PISA SYSTEM

24) gives a better result. The best power saving ranges from 44.4% to
65.9%. We also compare our power saving result with the one that has
the same partitioned RF but for the original register allocation. For con-
figuration of (16, 16), our software RF optimization through register
renaming achieves an additional 20.9% power reduction on average.

The same experiments have been run for eight MiBench applica-
tions. For most applications, the best configuration is (8, 24), the av-
erage power saving is 58.3% for configuration (8, 24), which is 19.6%
more than the power saving from the partitioned RF without reallo-
cation. The best partition configuration for MiBench differs from that
for SPEC2000. This result demonstrates the difference between gen-
eral-purpose and embedded applications, e.g., general-purpose appli-
cations may use registers more uniformly than embedded applications.

Table II shows the detailed partitioning result for the eight MiBench
applications on the PISA system, including the largest power saving,
the best RF partition configuration, �����, the number of basic blocks
considered for optimization, and the RF partition result (the registers
that have their X element values as 1). The results obtained in Table II
direct us to selected the best configuration (8, 24) to divide the RF
through bit-line splitting and additional control logic. At the software
level, we then rename the registers in the last column of Table II, i.e.,
rewrite the machine code.

2) Performance Degradation Evaluation: To evaluate the perfor-
mance impact of the one-cycle overhead for switching between the
drowsy and the normal active mode of the RF, Fig. 6 gives the execution
time overhead for the two configurations of (8, 24) and (16, 16), for both
MiBench and SPEC2000. The time overhead is small (on average 2.4%
for SPEC2000 and 5.5% for MiBench on PISA). For most SPEC2000
applications, the (16, 16) configuration gives both large power saving
and low execution time overhead. However, for MiBench, there is a
trade-off between power consumption and performance under the two
partition configurations.

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 17,2024 at 00:07:20 UTC from IEEE Xplore. Restrictions apply.

1252 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 8, AUGUST 2010

Fig. 6. Execution time overhead of MiBench and SPEC2000.

B. Experimental Results for MiBench on Alpha and X86 Architecture

We next experiment with MiBench on top of other two machines,
Alpha and X86. For Alpha, a RISC architecture with 32 registers in
total, in most cases partition (8, 24) gets the best saving, ranging from
49.1% to 61.8%. The X86 platform, a CISC architecture with only 16
registers, achieves the best power saving (56.1% on average) under par-
tition (4, 12). We see that for MiBench, the 80/20 rule holds for all the
three processor platforms, PISA, Alpha, and X86.

Mibench is also used in Ayala’s work [8] for evaluating their power
saving results on an embedded processor with 64 registers. Their av-
erage power saving reaches 65% when selecting two most time con-
suming functions to perform reconfiguration, which is slightly higher
than our savings. The reason is that in our experiments, the target ma-
chines only have either 16 or 32 registers. Since their processor architec-
ture is not publicly available, we cannot make direct comparisons on the
same platform. We anticipate that our approach should achieve higher
power saving than Ayala’s if for the same number of registers (64).

VII. CONCLUSION

In this paper, we proposed a novel compiler-assisted RF partitioning
and register reallocation approach to reduce the RF access power. The
RF is partitioned into two regions without extra switching instructions.
We applied the bit-line split technique to reduce the dynamic power
consumption and switched the inactive region to a drowsy state at run-
time to reduce its static power. The area overhead is negligible and the
execution time overhead is acceptable. We formulated the problem into
a graph partitioning optimization one and applied Kernighan–Lin algo-
rithm for the optimal solution. Finally we tested our partitioning algo-
rithm with MiBench and SPEC2000 applications on the PISA system,
Alpha and X86. Compared to the non-partitioned register file, our ap-
proach reduces the RF access power consumption by about 58.3% on
average for MiBench, and 54.4% for SPEC2000 on PISA.

REFERENCES

[1] Low Power Design Methodologies, J. Rabaey and M. Pedram, Eds.
Norwell, MA: Kluwer Academic, 1996.

[2] T. Schuster, B. Bougard, P. Raghavan, R. Priewasser, D. Novo, L. V.
Perre, and F. Catthoor, “Design of a low power pre-synchronization
ASIP for multimode SDR terminals,” in Proc. Int. Conf. Embedded
Computer Systems: Architectures, Modeling Simulation, Jul. 2007, pp.
322–332.

[3] A. Lambrechts, P. Raghavan, A. Leroy, G. Talavera, T. V. Aa, M. Jaya-
pala, F. Catthoor, D. Verkest, G. Deconinck, H. Corporaal, F. Robert,
and J. Carrabina, “Power breakdown analysis for a heterogeneous NoC
platform running a video application,” in Proc. Application-Specific
Systems, Architectures Processors, Jul. 2005, pp. 179–184.

[4] J. H. Tseng and K. Asanovic, “Energy-efficient register access,” in
Proc. Integrated Circuits Systems Design, Sep. 2000, pp. 377–382.

[5] M. Gomez and V. Santonja, “Characterizing temporal locality in I/O
workload,” in Proc. Int. Symp. Performance Evaluation Computer
Telecommunication Systems, Jul. 2002, pp. 76–82.

[6] R. A. Ravindran, R. M. Senger, E. D. Marsman, G. S. Dasika, M. R.
Guthaus, S. A. Mahlke, and R. B. Brown, “Partitioning variables across
register windows to reduce spill code in a low-power processor,” IEEE
Trans. Comput., vol. 54, no. 8, pp. 998–1012, Aug. 2005.

[7] T.-J. Lin, S.-K. Chen, Y.-T. Kuo, C.-W. Liu, and P.-C. Hsiao, “Design
and implementation of a high-performance and complexity-effective
VLIW DSP for multimedia applications,” J. VLSI Signal Process., vol.
51, no. 3, pp. 209–223, Jun. 2008.

[8] J. L. Ayala, A. Veidenbaum, and M. L. Vallejo, “Power-aware compila-
tion for register file energy reduction,” Int. J. Parallel Programm., vol.
31, no. 6, pp. 451–467, Dec. 2003.

[9] J. L. Ayala and A. Veidenbaum, “Reducing register file energy con-
sumption using compiler support,” presented at the Workshop on Ap-
plication-Specific Processors, Istanbul, Turkey, Nov. 19, 2002.

[10] X. Guan and Y. Fei, “Reducing power consumption of embedded pro-
cessors through register file partitioning and compiler support,” in Proc.
Application-Specific Systems, Architectures Processors, Jul. 2008, pp.
269–274.

[11] J. Park, J. Lee, and S. M. Moon, “Register allocation for banked register
file,” ACM Special Interest Group on Programming Languages, vol. 36,
no. 8, pp. 39–47, Aug. 2001.

[12] X. M. Zhao and Y. Z. Ye, “Structure configuration of low power register
file using energy model,” in Asia Pacific Conf. ASIC, Aug. 2002, pp.
41–44.

[13] H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif, “Full chip leakage
estimation considering power supply and temperature variations,” in
Proc. Int. Symp. Low Power Electronics Design, Aug. 2003, pp.
78–83.

[14] S. Borkar, “Getting gigascale chips: Challenges and opportunities in
continuing Moore’s law,” ACM Queue, vol. 1, no. 7, pp. 26–33, Oct.
2003.

[15] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy
caches: Simple techniques for reducing leakage power,” in Proc. Int.
Symp. Computer Architecture, May 2002, pp. 148–157.

[16] S. M. Sait and H. Youssef, VLSI Physical Design Automation: Theory
and Practice. Singapore: World Scientific, 1999.

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 17,2024 at 00:07:20 UTC from IEEE Xplore. Restrictions apply.

