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Abstract
Vectorization of programs is crucial for achieving high performance on modern pro-
cessors  with SIMD (Single Instruction Multiple Data) extensions. Programs with 
IF-statements suffer from control flow divergence that seriously complicates auto-
matic vectorization. Therefore, contemporary compilers employ the  IF-conversion 
approach  to convert control flow to data flow, which relies on using predicated 
execution techniques (i.e., masked or select SIMD instructions). In this paper, we 
enhance the compiler’s capabilities to generate efficiently vectorized code for pro-
cessors without masked instructions. We improve the state of the art in program 
vectorization by developing a novel approach—IF-select transformation—which is 
applicable to arbitrarily nested IF-statements. We implement our approach in the 
open-source Open64 compiler and evaluate its performance on the SW26010 proces-
sor used in the Sunway TaihuLight supercomputer (currently #3 in the TOP500 list) 
that does not support masked instructions. We extend our vectorization approach by 
providing an additional LLVM optimization pass to reduce the amount of masked 
memory accesses on processors without masked instructions, e.g., IBM Power8 and 
ARMCortex-A8. Experimental results demonstrate the performance advantages of 
the suggested vectorization techniques.
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1 Introduction

Most modern processors are equipped with single-instruction multiple data 
(SIMD) extensions that can operate on vectors of values in parallel to enable high 
performance. To exploit this performance potential, programs must be trans-
formed to a form with SIMD instructions; this is traditionally called vectoriza-
tion. Manual vectorization by the programmer using hand-written intrinsics is 
tedious, error-prone and non-portable. Therefore, automatic vectorization is an 
indispensable component in most modern compilers, such as the open-source 
compilers Open64 [2], GCC [8] and LLVM [15] and the commercial compiler 
ICC [12].

There are two classic approaches to vectorization: (1) loop vectorization [23] 
combines multiple occurrences of a scalar operation across consecutive loop iter-
ations into one SIMD instruction, (2) basic block or superword-level parallelism 
(SLP) vectorization [14] transforms a group of isomorphic operations into one 
SIMD instruction. Most of the mainstream compilers, such as GCC and LLVM, 
implement both approaches. Another increasingly popular approach SPMD-on-
SIMD [19] —which implements single program multiple data (SPMD) execution 
on the SIMD extensions—converts multiple instances of a kernel into one SIMD 
instruction. Compilers implementing SPMD-on-SIMD include the Intel ISPC 
compiler [19], whole-function vectorizer (WFV) [13] and region vectorizer (RV) 
[17].

IF-statements in a program  introduce control flow divergence, which hampers 
vectorization. A typical solution to overcome this problem in the process of vector-
ization is IF-conversion [1] that converts control flow into data flow. This requires 
support from the targeted processors for predicated execution: both branches of 
an IF-statement are executed one after the other, with conditional execution of 
instructions based on the value of a Boolean expression, referred to as predicate 
or mask. Most SIMD instruction sets support predicated execution by providing 
masked instructions and/or select instructions. Masked instructions enable each 
branch of an IF-statement to execute one after the other, conditionally operating 
on the elements depending on the corresponding mask bits. While when using 
select (also called "blending", but we use "select" in the paper) instructions, both 
branches are executed in an unmasked manner, and select instructions use a mask 
to blend the variables from both branches before storing to memory.  According to 
the Intel manual [11], select is faster than masked instruction, but select cannot be 
used when the operations in the IF-statements have exceptions, in other words, it is 
not always safe to use select instructions. This is because when using select, both 
branches are executed in an unmasked manner; thus, it does not mask exceptions, 
which may occur on the unmasked data.  SIMD instruction sets supporting both 
masked and select instructions include Intel AVX512, ARM SVE, and RISC-V, 
while some SIMD instruction sets, e.g., ARM NEON and IBM VSX, only support 
select instructions. It is the compilers’s responsibility to generate masked or select 
instructions, but this process involves intricate analysis and transformations.

For processors without masked instructions, current  compilers often fail 
to fully utilize the targeted instruction sets for vectorizing programs with 
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IF-statements. In this paper, we target SW26010 processors with dedicated SIMD 
instruction sets using the open-source Open64 compiler. When vectorizing pro-
grams with IF-statements, the Open64 compiler is limited to single-level ones, 
thus, leaving many IF-statements in real applications unvectorized. To alleviate 
this problem. we develop a novel IF-conversion approach—IF-select transforma-
tion—that generates efficiently vectorized code targeting SW26010 processors for 
loops with arbitrarily nested IF-statements. Furthermore, we extend our approach 
within the LLVM compiler, as follows. When vectorizing programs with IF-
statements, the LLVM compiler proceeds in two phases. First, during the target-
independent intermediate represnetation (IR) phase, LLVM generates select IR 
instructions when the IF-statements prove (via analysis) to have no exceptions, 
otherwise, it generates masked IR instructions. Second, during the backend 
code generation phase, LLVM generates masked instructions for masked IR if 
the target supports it, otherwise (for the targets without masked instructions) it 
generates scalar code guarded by IF-cascades, which restricts the performance 
of vectorization. We extend our vectorization approach by introducing an LLVM 
optimization pass that reduces the amount of masked memory accesses on pro-
cessors without masked instructions by using select instructions. 

 Specifically, we make the following contributions.

• We develop a novel IF-select transformation method which vectorizes loops with 
arbitrarily nested IF-statements in the Open64 compiler targeted for SW26010 
processors [9] as used in the Sunway TaihuLight supercomputer (currently #3 
in the TOP500 list [28]). We verify the efficiency of our approach by its experi-
mental evaluation on a set of benchmarks from SPEC CPU2006 [10] containing 
loops with IF-statements.

• We introduce an optimized code generation technique that utilizes select instruc-
tions for reducing masked memory accesses targeting processors without masked 
instructions. We demonstrate a significant performance improvement compared 
to the exisitng techniques on IBM Power processors.

In the remainder of the paper, Sect. 2 provides background information on vec-
torization and on our target SIMD extensions. Section 3 presents our approach to 
vectorizing IFs using the Open64 compiler for SW26010 processors, and Sect.  4 
presents our LLVM code generation optimization for IFs targeting IBM Power 
processors. Experimental results are presented in Sect. 5. Section 6 compares our 
approach to related work, and Sect. 7 concludes the paper.

2  Motivation

2.1  SIMD extensions and vectorization

In this paper, we target modern processors with SIMD extensions.  We use the 
SW26010 processor as our sample target architecture: each core of it employs a 256-
bit SIMD extension that works on 256 bits in parallel: it can be one long int (256-bit) 
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operation, or 8 integer operations, or 4 double-precision floating point operations. 
Without loss of generality, we assume in this paper that 4 operations are executed 
simultaneously on 64-bit floating point values.

Figure 1 illustrates a simple vectorization example. On the left-hand side, Fig. 1a 
shows a loop which is straightforwardly vectorizable. On the right-hand side, Fig. 1b 
shows the result of  vectorization using SIMD intrinsics, i.e., C-style functions 
providing access to SIMD instructions. For simplicity, in this paper, we will call 
these intrinsics instructions. A SIMD extension executes multiple loop iterations in 
Fig. 1b in parallel as follows: load the operands from memory to vectors, add the 
two vectors and store the result vector back into memory.

Table 1 shows the SIMD instructions used in this paper, with the names as used 
in the SW26010 processor. Other modern CPUs with SIMD extensions have very 
similar instructions. In the table, we only list the instructions for double-precision 
floating point parameters; here, the vector type doublev4 means 4 packed 64-bit 
double elements.

2.2  Vectorizing IF‑statement: select instructions versus masked instructions

The existing approaches to vectorizing IF-stataments rely on predicated execution, 
which most SIMD instruction sets support via select instructions and/or masked 
instructions. Some processors, like Intel Xeon processors, support both select and 
masked instructions, while some processors, like IBM Power processors, only sup-
port select instructions. In this subsection, we take Intel instructions to illustrate 
the differences between select and masked instructions when used  to vectorize 
IF-statements. 

Figure 2a shows a loop with an IF-statement. Figure 2b shows the vectorized loop 
using select instructions. When vectorizing IFs with select instructions, operations 
are executed in an unmasked manner and mask is only used to blend the variables 
contain the correct values for both branches, e.g., _mm256_blendv_pd in the figure; 
exceptions cannot be masked. Figure  2c shows the vectorized loop using masked 
instructions: every memory access instruction is associated with a mask that controls 
which element shall be modified by the instruction; thus, exception can be masked. 
Given a targeted processor without masked instruction, if the compiler is not certain 

(a) (b)

Fig. 1  a An easily vectorizable loop, b the loop after vectorization
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about the absence of exceptions, it emits scalar code guarded by IF-cascades, i.e., 
load or store operation is guarded by a compare on the particular lane’s mask value 
and a branch instruction, so that the memory operation is only performed if the 
lane’s value in the mask is true.

2.3  Our approach: the idea

For a given target SIMD instruction set, the existing compilers decide which instruc-
tions to generate for vectorizing IF-statements. As select instructions are faster in 
general than masked instructions, modern compilers tend to employ select instruc-
tions when the program analysis confirms that there are no exceptions. If there 
might be exceptions, the compilers generate masked instructions if the target per-
mits them, otherwise, the compilers generate scalar code guarded by IF-cascade for 
targets without masked instructions. There are two main reasons why the compilers 
do not generate select instructions, which results in IF-cascades for targets without 
masked instructions. First, the program analysis for proving the absence of excep-
tion is too pessimistic and may provide false negative results. Second, the capability 
of transforming IF-statements into select instructions is limited for complex nested 
IF-statements.

In this paper, we extend the scope of generating select instructions   for vector-
izing IF-statements when targeting processors without masked instructions. We 
improve the transformation capability of the Open64 compiler by presenting a 
new IF-conversion approach—IF-select transformation based on statement match-
ing on the IR level—which works for arbitrarily nested IFs. In addition, we intro-
duce a code generation optimization technique for the LLVM compiler to reduce 
masked memory access instructions in LLVM-IR to select instructions with normal 

Table 1  Specific SIMD instructions used in this paper

Instruction Operation Input Output Functional description

simd_load Load doublev4 va, 
double *addr

void Load 4 double elements into vector va from con-
tiguous memory starting from *addr

simd_store Store doublev4 va, 
double *addr

void Store 4 elements of vector va into contiguous 
memory starting from *addr

simd_vaddd Addition doublev4 va, vb doublev4 Add 4 elements of va with 4 elements of vb 
element-wise, return the result

simd_vsubd Subtraction doublev4 va, vb doublev4 Subtract 4 elements of va from 4 elements of vb 
element-wise, return the result

simd_vseleq Select doublev4 va, 
vb, vc

doublev4 Test the value of va element-wise: if it equals 0, 
then return the element of vb, otherwise return 
the element of vc

simd_vfcmplt Comparison doublev4 va, vb doublev4 Compare the value of va and vb element-wise; if 
va < vb, then the element of vc is assigned 1.0, 
otherwise 0
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(unmasked) memory access instructions when the target processor does not support 
masked instructions. The following two sections describe our approach in detail.

3  Vectorizing IF‑statements using the Open64 compiler

The idea of our approach is that we generate select statements by matching the 
statements in the THEN block with the statements in the ELSE block, and we com-
bine each pair of matched statements into a select statement. We say that state-
ments are matched if they define the same variable. For example, in the statement 
if(cond){dst=val1;} else{dst=val2;}, the statements in the THEN 
and ELSE blocks both define dst, so they are matched, and we can combine them 
into one select statement dst=select(cond,val1,val2). In contrast, if 
there are no matched statements in the THEN or the ELSE block, then we assume 
that there is a fictitious statement dst=dst to match with the current statement, 
and we combine the original statement with the fictitious statement into one select 
statement. For example, in the statement if(cond){dst=val1;}, there is no 
ELSE part and thus no matched statement; therefore, for this single IF-statement 
we generate the select statement dst=select(cond,val1,dst). We denote 
the former case that generates a select statement for two matched IF-statements as 
Rule 1, and the latter case that generates a select statement for a single IF-statement 
is denoted as Rule 2.

Algorithm  1 shows the pseudocode of our IF-select transformation method 
applied to an IF-statement in a loop. We first create a new block sel_wn to store 
the newly generated select statements (line 2). Then, we sequentially traverse the 
statements in the THEN and ELSE blocks (line 6): we initialize the flag matched 
as FALSE (line 7) at the beginning of each traversal pass, and then we try to match 
the statements in the THEN and ELSE blocks and generate corresponding select 
statements according to Rule 1 and Rule 2 (line 8–44). Eventually, if sel_wn is not 
empty (line 45), we replace the original IF-statement with sel_wn (line 46); other-
wise, we leave the IF-statement unchanged. 

(a) (b) (c)

Fig. 2  a A loop with an IF-statement, b vectorized loop using select instructions, c vectorized loop using 
masked instructions
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We describe in the following how we match statements and generate select state-
ments, especially when there are flow dependences in the block. We begin with tra-
versing the ELSE block from the current statement and looking for a matching state-
ment (line 10–14) in the THEN block. If there is no matching statement (Case 1), 
then we generate a select statement according to Rule 2 (line 16), and we turn to the 
next statement in the THEN block (line 17). If we find a matching statement that is 
the current statement in the ELSE block (Case 2), then we combine these two state-
ments and generate a select statement according to Rule 1 (line 20), and then we 
turn to the next statements in the THEN and ELSE blocks (line 21–22).
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In the case when the matching statement is not the current statement in the ELSE 
block (Case 3), we reset flag matched to FALSE (line 24), and we turn to looking for 
a matching statement in the THEN block (line 26–30) for the current statement in the 
ELSE block. If there is no matching statement in the THEN block (line 31), then we 
generate a select statement according to Rule 2 (line 32), and we turn to the next state-
ment in the ELSE block (line 33). If a matching statement for the current statement is 
found, then it means that the order of these two statements is different in the THEN and 
ELSE blocks: e.g., dst1 is defined before dst2 in the THEN block and after dst2 
in the ELSE block. In this case, we check whether there is a flow dependence between 
the memory accesses in these two statements (line 35). If no flow dependence is found 
from then_stmt to then_iter, then we change the order of these two statements 
in the THEN block by moving then_stmt after then_iter, likewise for ELSE 
block. Otherwise, we retain the IF-statement unchanged, ignore all select statements 
generated before, and return (line 41). After detecting flow dependences and reorder-
ing statements, we generate select statements according to Rule 1 (line 36) and turn 
to the next statements in the THEN and ELSE blocks (line 37–38). Note that case 3 
enables us to generate select statements even when there is a flow dependence either 
in the THEN or in the ELSE block. If we would simply add all matched statements to 
sel_wn and perform an analysis for detecting a cyclic dependence afterward, we may 
end up with inconsistent semantics because of ignoring flow dependences.

If we are done with all statements in the THEN block and there are still state-
ments in the ELSE block (Case 4), then for every statement in the ELSE block we 
generate a select statement according to Rule 2 (line 43).

To illustrate our approach, we take as an example the loop with an IF-statement 
in Fig. 3 and we denote the condition a[i]<b[i] by cond in the following. We 
start by looking for a matched statement in the ELSE block for the current state-
ment in the THEN block (line 5). Because there is no matching statement as in Case 
1 of Algorithm 1, we generate statement h(i) =  select(cond,k(i),h(i)). For the next 

(a) (b)

Fig. 3  a A loop with a loop-dependent IF-statement, b the same loop after IF-select transformation
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statement (line 6), we find that the current statement in the ELSE block (line 12) 
matches, which corresponds to Case 2, so we generate b(i) = select(cond, c(i), d(i)). 
For the next statement in the THEN block (line 7), the matching statement (line 15) 
is not the current statement in the ELSE block, so we turn to deal with the state-
ments in the ELSE block as Case 3. For the current statement in the ELSE block 
(line 13), we cannot find a matching statement in the THEN block, so we gener-
ate f(i) =   select(cond,f(i),g(i)). For the next statement (line 14), we find a match-
ing statement (line 8), and since there are no dependences between the memory 
accesses of these two statements, we generate u(i)  =  select(cond,v(i),w(i)) and 
l(i) = select(cond,m(i),n(i)). Finally, we generate x(i) = select(cond, x(i),y(i)).

We further extend our IF-select transformation method (Algorithm 1) to handle 
nested loop-dependent IF-statements: we tackle the IF-statements starting from 
the innermost one and moving to the outermost.

Figure 4a illustrates how we vectorize a nested loop-dependent IF-statement. 
According to Algorithm  1, we first transform the innermost IF-statement to 
a select statement (Rule 1), with the result in Fig.  4b. Then, we transform the 
outermost IF-statement to a select statement (Rule 2), with the result in Fig. 4c. 
Finally, we generate SIMD instructions as shown in Fig. 4d.

4   The optimized LLVM code generation for vectorizing IFs

When processing IF-statements in LLVM, the compiler analyzes in a pessimistic 
way whether there might be exceptions. When it is proved that there are no excep-
tions, the compiler hoists load operations before the condition of the IF-statement 

(a)

(b)

(c)

(d)

Fig. 4  a A loop with a nested loop-dependent IF-statement, b apply IF-select transformation to the inner-
most IF-statement, c apply IF-select transformation to the outermost IF-statement, d vectorized code
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is evaluated, and it  sinks store operations afterthe IF-statement. With load and 
store operations hoisted/sunk out of the IF-statements, the memory access opera-
tions are no long predicated, and select instructions are emitted to blend the val-
ues from both branches of the IF-statement. Otherwise, the memory access opera-
tions are predicated, and masked instructions are generated for them in the IR 
level.

At the backend, the Scalarize Masked Mem Intrin (SMMI) pass of LLVM que-
ries the Target Transform Information (TTI) analysis results to evaluate if masked 
instructions are legal for the selected target. In case of a negative answer, the pass 
transforms the masked instructions to scalar loads and stores in IF-cascade guarded 
scalar code. Therefore, this approach decreases the overall performance significantly.

To address this problem, we introduce an additional code generation optimization 
pass to utilize select instructions for reducing masked memory access LLVM-IR 
instructions for targets without masked instructions. In order to prevent exceptions, 
we avoid out-of-bound memory access using padding. Each memory allocation is 
padded to the next multiple of the hardware’s vectorization factor, for example, on 
a processor with a 256-bit SIMD extension, an allocation is padded up to the next 
32 bytes. This padding has negligible effect on the efficiency of memory allocation. 
After we prevent out-of-bound memory access, we can optimize masked memory 
access IR to select instructions at the backend.

 Our optimization performs the following steps. (1) Create an unmasked vector-
ized load based on the masked load. (2) Cast the original mask to integer data type 
and compare it with 0. Guard the vectorized load with a branch to ensure that the 
mask is not equal to 0. When the mask is 0, the access may result in an access viola-
tion. (3) Create a select instruction that selects between the loaded values and the 
original values  based on the original mask. (4) Remove the masked load instruc-
tions. For masked store instructions, the optimization performs the similar following 
steps. (1) Create a vectorized load at the memory region where the store will be per-
formed. (2) Create a select instruction to select between the original values intended 
to be stored and the previously loaded values according to the mask. (3) Replace the 
masked store instruction with an unmasked vectorized store of the selected values. 
(4) Just as with masked load, secure the operation with a check if the mask is not 
equal to 0. The optimization results in a higher performance than the IF-cascades 
generated by the existing SMMI pass.

5  Experimental evaluation

5.1  Using the Open64 compiler on SW26010

To evaluate our approach of the Open64 compiler targeting SW26010 proces-
sors, we conduct our experiments on the programs with IF-statements from the 
SPEC CPU2006 benchmark suite [10], listed in Table 2. Out of 29 programs in 
SPEC CPU2006, the six programs in the table contain IF-statements in their most 
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time-consuming loops. Our experimental platform is a SW26010 processor with 
a 256-bit dedicated SIMD extension, running under Linux Redhat Enterprise 5.

For the six benchmarks in Table 2, we measure both kernel and whole-program 
speedups. We compare our approach against the original Open64 compiler vec-
torization. All programs are compiled with the same flags: -O3, -LNO:simd=1. 
-O3 enables global optimization, code generator and loop nest optimization. 
-LNO:simd=1 enables loop vectorization. The execution time of a kernel or pro-
gram is calculated as the average of 20 runs (the measured results are within few 
percent over each run). The speedups are calculated as compared with the execu-
tion on the same SW26010 processor, but without vectorization.

Figure 5 shows the kernel speedups. The average kernel speedup achieved by 
our approach is 1.45 × compared to the non-vectorization baseline and 1.26 × 

Table 2  Benchmark kernels with IF-statements from SPEC CPU2006

Program Kernel Kernel 
runtime 
(%)

Application category IF-stmt type

429.mcf primal_bea_mpp 49.95 Combinatorial optimization Nested
456.hmmer P7Viterbi 99.53 Search gene sequence database Nested
464.h264ref SetupFastFullPelSearch 40.93 Video compression Nested
482.sphinx3 vector_gautbl_eval_logs3 38.67 Speech recognition Single
458.sjeng std_eval 15.11 Pattern recognition Nested
462.libquantum quantum_toffoli 63.41 Physics and quantum computing Nested
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compared to the Open64 vectorization. Note that the kernels we evaluate here 
are notoriously difficult to vectorize because of control flow or irregular memory 
access or both. Our approach outperforms Open64 vectorization for three out of 
six benchmark programs and matches it for the three remaining programs. We 
explain the achieved performance gains as follows. For 456.hmmer, our IF-select 
transformation is applied to the innermost loop-dependent IF-statement, the same 
is done for 464.h264ref. For 462.libquantum, our IF-select transformation is 
applied to the two-level nested IF-statement. Our approach achieves a speedup 
similar to the Open64 vectorizer for 482.sphinx3, because its IF-statement is 
not nested. The remaining two programs which show no improvement are 429.
mcf and 458.sjeng: they are not vectorized. In 429.mcf, its IF-statement con-
tains pointers where dependence cycles are conservatively assumed and, there-
fore, the surrounding loop is excluded from vectorization. In 458.sjeng, there is a 
three-level nested, loop-dependent IF-statement; however, the dependence cycles 
between the indirected arrays exclude the loop from vectorization.

The reason why achieved speedup falls short of the high performance poten-
tial offered by the hardware of SIMD extensions can be explained by two 
aspects. First, the IF-select transformation introduces overhead by executing both 
branches of the vectorized IF-statement. Second, if the memory access patterns in 
a kernel are irregular, then when vectorizing the loop, it requires additional cost 
to pack the memory access into vectors compared with simply load the memory 
into vectors in case of a continuous memory access.

Figure  6 shows the whole-program speedups. The average whole-program 
speedup achieved by our approach is 1.28 × as compared to the non-vectorization 
baseline and 1.12 × as compared to the Open64 vectorization. In most cases, the 
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achieved whole-program speedups are consistent with the cumulative speedups of 
the most time-consuming kernels.

5.2  Using LLVM on the IBM power processor

To evaluate our presented approach of lowering masked memory access LLVM-IR 
to select instructions, we compare the kernel runtimes of several benchmarks taken 
from the SHOC [7] (triad, reduction and md5hash) and the Rodinia [5] (cfd, hotspot 
and lavaMD) benchmark suites. Each kernel is run 30 times to reduce the noise from 
caches, etc. We perform the experiment on a Power8 processor, equipped with IBM 
AltiVec vector instructions. We present average runtime results for all benchmarks. 
The baseline for all benchmarks is the unvectorized kernel optimized only with the 
standard LLVM optimization pipeline (-O3).

Figure  7 shows the results of LLVM with and without our optimization. Our 
approach achieves an average speedup of 1.66x compared to non-vectorized version, 
and a speedup of 1.23x compared to the SMMI results where our approach is disa-
bled. The results verify the efficacy of our approach which generates select instruc-
tions instead of IF-cascades on the target IBM Power processor.

6  Related work

IF-statements are ubiquitous in high-performance computing applications, and their 
existence has seriously hindered the efficiency of vectorization. If control flow can 
be eliminated or converted to a simple data dependency, the vectorization efficiency 
is greatly increased, and the compiler’s optimization performance is improved.
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Cocke and Allen [27]  proposed the technique of Loop Unswitching, which 
reduces or eliminates the control flow in a loop by hoisting control flow with a loop-
independent conditional outside of the loop. The advantage of this technique is that 
it achieves efficient scheduling, convenient register allocation and good execution 
speed. At the same time, it can reduce the number of branches and increase the 
chance of exploiting loop vectorization [6]. However, Loop Unswitching may imply 
code bloat, which hinders the compiler to do other optimizations. Lokuciejewski 
et  al. [16] proposed a method of Loop Unswitching optimization based on worst-
case execution time (WCET), which can effectively alleviate the code bloat problem. 
Barton et al. [3] used an index set splitting technique to divide a loop containing a 
loop-dependent condition into several equivalent cycles without control flow. Our 
method is orthogonal to these methods.

Allen [1] proposed the IF-conversion technique. Its main idea is to convert con-
trol dependencies into data dependencies in order to unify all dependencies into one 
form. Bik et  al. [4]  used bit masking techniques to combine the values generated 
from different control flow branches. Shin et al. [21] proposed a method for IF vec-
torization based on SLP, followed by nested BOSCCs and special instructions to 
generate vectorized code for nested control flow [22]. Our approach proceeds dif-
ferently from [21], where the IF-conversion [1] is applied to transform a program 
with IF-statements into an equivalent program with predicated statements, which are 
then transformed into select statements. This transformation relies on the predicate 
hierarchy graph (PHG) representing the nesting relations among predicates. Our 
approach generates select statements directly, without generating predicated state-
ments; we also avoid building and analyzing the PHG. Tanaka et al. [26] proposed 
a SIMD code generation technique based on maintaining the basic inter-block data 
dependency. This vectorization of the basic block is achieved without changing the 
structure of the control flow and does not eliminate the conditional branch.

Karrenberg and Hack [13] presented whole-function vectorization on intermedi-
ate code given by a control flow graph in static single assignment form, which is 
based on the conversion of control flow to data flow. Moll and Hack [18] presented 
partial linearization which only linearizes varying branches (different values for dif-
ferent threads) while preserving uniform branches (same value for different threads) 
and implemented in region vectorizer [17]. In addition, region vectorizer adds a so-
called BOSCC gadget that can skip the execution of a masked branch if its mask is 
all-false before partial linearization. In our recent work [25], we present warp-coher-
ent condition vectorization based on partial control flow linearization to mitigate 
the performance degradation of control flow divergence. Sujon et al. [24] generated 
SIMD instructions for statements containing control flow branches based on the 
path optimization strategy, but this method only supports vectorization of a single 
path for a given loop. Pohl et al. [20] proposed a set of solutions to generate efficient 
vector instructions in the presence of control flow for ARM NEON. While in this 
work, we focus on another two targets—IBM Power and SW26010 processors—and 
we take exceptions operations into consideration.
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7  Conclusions and discussion

In this paper, we present two techniques to extend the compilers’ capability to gen-
erate highly efficient vectorized code by utilizing select instructions in absence of 
masked instructions, rather than conservatively employing IF-cascades to guard sca-
lar code. Our new contributions are as follows:

• we develop a novel IF-select transformation for vectorizing arbitrarily nested IF-
statements based on the Open64 compiler for SW26010 processors;

• we suggest a new optimization technique for backend code generation of masked 
memory access LLVM-IR in LLVM compiler for targets without masked instruc-
tions, like IBM Power processors.

We integrate our first technique into the Open64 compiler, and we experimen-
tally confirm its advantages using the SPEC CPU2006 benchmarks on a SW26010 
processor used in the Sunway TaihuLight supercomputer. We integrate our second 
optimization technique into LLVM, and the experimental results on IBM Power pro-
cessors demonstrate the efficacy of our approach.
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