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Control Flow Integrity



Motivation

“Memory safety bugs are responsible for the majority (~70%) of severe vulnerabilities in large
C/C++ code bases”
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Control Flow Hijacking

1139: sub    $0x18,%rsp
113d: mov    %rdi,%rsi
1140: mov    %rsp,%rdi
1143: call   1030 <strcpy@plt>
1148: add    $0x18,%rsp
114c: ret

buffer

saved FP

return addr
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Control Flow Hijacking

Figure 5: (credit 388) 8 / 74



Control Flow Integrity Techniques

• Data Execution Prevention
• Stack Canaries
• Address Space Layout Randomization

None of these actually address the real problem: buffer overflows
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Bounds Checking



Bounds Checking at Compile Time

fn main() {
    let mut a: [i64; 3] = [1, 2, 3];
    a[4] = 5;
}

[daniel@tripledelete workspace]$ cargo build
   Compiling workspace v0.1.0 (/home/daniel/Desktop/workspace)
error: this operation will panic at runtime
 --> src/main.rs:3:5
  |
3 |     a[4] = 5;
  |     ^^^^ index out of bounds: the length is 3 but the index is 4
  |
  = note: `#[deny(unconditional_panic)]` on by default
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Bounds Checking at Run Time

#[allow(unconditional_panic)]
fn main() {
    let mut a: [i64; 3] = [1, 2, 3];
    a[4] = 5;
}

[daniel@tripledelete workspace]$ cargo run
    Finished dev [unoptimized + debuginfo] target(s) in 0.00s
     Running `target/debug/workspace`
thread 'main' panicked at src/main.rs:4:5:
index out of bounds: the len is 3 but the index is 4
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
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Bounds Checking as a Defense

1139: sub    $0x18,%rsp
113d: mov    %rdi,%rsi
1140: mov    %rsp,%rdi
1143: call   1030 <strcpy@plt>
1148: add    $0x18,%rsp
114c: ret

AAAAAAAA

Aaved FP
return addr

out of bounds!
safe!
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Implementing Bounds Checking for C

#include <string.h>

void vulnerable(char* p) {
    char buffer[16];
    char* d = buffer;
    while (*p) {
        *d++ = *p++;
    }
}

int main(int argc, char** argv) {
    vulnerable(argv[1]);
}
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Implementing Bounds Checking for C

define dso_local void @vulnerable(ptr noundef %0) #0 {
  %2 = alloca ptr, align 8
  %3 = alloca [16 x i8], align 16
  %4 = alloca ptr, align 8
  ; setup...
  br label %6
  ; loop condition...
  br i1 %9, label %10, label %16
10:                                               ; preds = %6
  %11 = load ptr, ptr %2, align 8
  %12 = getelementptr inbounds i8, ptr %11, i32 1
  store ptr %12, ptr %2, align 8
  ; increment...
  br label %6, !llvm.loop !6
16:                                               ; preds = %6
  ret void
}
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Efficient Bounds Checking



Representing Bounds information

1. Fat Pointers
• Store the lower and upper bounds of the object along with the pointer
• Fast, but modifies pointer format

(credit: William Klieber, CMU)
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Representing Bounds information

2. Object Storage
• Store bounds information alongside the object that the pointer dereferences to
• Does not work if pointer is modified
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Implementing Bounds Checking

1. Two Branch
• Used in Greg McGary’s bounds checker
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Implementing Bounds Checking

2. One Branch
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Implementing Bounds Checking

3. Bound Instruction
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Bound Instruction for Arrays

• Bound instruction uses upper and lower bounds stored in fat pointers
• Global and stack arrays are not referenced with pointers
• Now what?
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Code Generation

• Bound instruction uses upper and lower bounds stored in fat pointers
• Global and stack arrays are not referenced with pointers
• Now what?
• Solution: allocate static memory to hold meta-data bounds information
+ Use this memory location as the second operand in bound
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Analyzing Performance
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Analysing Overhead
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Towards Optimal Bounds Checking



Towards Optimal Bounds Checking

So far:

• Efficient bounds checking in C

Pros:
• Complete protection
• Reasonably fast

Cons:
• Significant overhead:

‣ McGary’s compiler: Overhead of 71%
+ Single branch compare = 48%
+ x86 bound instruction = 40% (AMD Athlon Processor)

Can we do better?
• Taint-based bounds checking
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Taint-Based Bounds Checking

Defn - Security technique used to prevent buffer overflow attacks by tracking the flow of
untrusted, or “tainted,” data through a program

Aka bounds checking with shortcuts
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Taint-Based Bounds Checking

Defn - Security technique used to prevent buffer overflow attacks by tracking the flow of
untrusted, or “tainted,” data through a program

A.k.a. bounds checking with shortcuts
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Taint-Based Bounds Checking

Two shortcuts:
1. Interface Analysis
2. Memory Writer
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Interface Analysis



Interface Analysis

def monitor_ps5_pro_release():
    url = "https://www.daniel-r-us.com/ps5-pro"

    while True:
        try:
            response = requests.get(url) 
            soup = BeautifulSoup(response.text, 'html.parser')

            if "PS5 Pro" in soup.text:
                print(f"PS5 Pro is available on Daniel R Us!")
                break

            time.sleep(60)  # Check every minute 
        except Exception as e:
            pass
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Interface Analysis

Evil hacker Halderman
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Interface Analysis
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Interface Analysis

Observations:
• Buffer overflow attacks can occur when malicious input is provided via external interfaces

of an application

-External interfaces:
• return values from library calls (gets)
• argv

Solution:
• Just bounds check objects that get their values from external input
• We call such objects TAINTED
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Interface Analysis

def monitor_ps5_pro_release():
    url = "https://www.daniel-r-us.com/ps5-pro"

    while True:
        try:
            response = requests.get(url) # TAINTED
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Interface Analysis

def monitor_ps5_pro_release():
    url = "https://www.daniel-r-us.com/ps5-pro"

    while True:
        try:
            response = requests.get(url) # TAINTED
            perform_bounds_checking(response)
            soup = BeautifulSoup(response.text, 'html.parser')

            if "PS5 Pro" in soup.text:
                print(f"PS5 Pro is available on Daniel R Us!")
                break

            time.sleep(60)  
        except Exception as e:
            pass
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Interface Analysis

What if an object references a TAINTED object?

buffer = get_external_input()  # buffer is TAINTED
alias = buffer  # alias now also TAINTED

Then we must bounds check the alias:
• Implement using propagation of TAINTED pointers
• Data-flow analysis
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Memory Writer



Memory Writer

When do buffer overflow attacks occur?
• When an attacker can write more data to a buffer than it can hold.
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Memory Writer

When do buffer overflow attacks occur?
• When an attacker can write more data to a buffer than it can hold.
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Memory Writer

Writes to arrays and pointer dereferences (left-hand side of assignments) are marked for
bounds-checking:

char x[100];
int c, i = 0;
char *y = x, *z;
while ((c = getchar()) != EOF) {
    x[i++] = c;  // Write operation that needs bounds checking
}
z = y;  // TAINTED flow via scalar assignment and aliasing
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Memory Writer

Writes to arrays and pointer dereferences (left-hand side of assignments) are marked for
bounds-checking:

char x[100];
int c, i = 0;
char *y = x, *z;
while ((c = getchar()) != EOF) {
    x[i++] = c;  // FAT pointer
}
z = y;  // TAINTED flow via scalar assignment and aliasing
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Memory Writer

Memory Writer Algorithm:
1. Find all FAT pointers

Propagate FAT status via data-flow graph Profit⁇
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Memory Writer

Memory Writer Algorithm:
1. Find all FAT pointers
2. Propagate FAT status via data-flow graph
3. Profit⁇ No.
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Memory Writer

Memory Writer AND Interface Analysis:
• Combination for optimal bounds-checking

Algorithm:
1. Interface analysis first, identify external inputs, and mark related buffers as TAINTED
2. Apply Memory Writer to TAINTED buffers
3. Profit.
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Taint-Based Bounds Checking

Putting it all together, we have a bounds-checker that:
• Analyzes external memory interactions,
• Monitors writes to memory, and
• Tracks their references

This is Taint-based bounds checking.
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Results and Evaluation



Results

Benchmarking
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Results

Benchmarking

Small web server: ATPhttpd-0.4b
• Using Mem-Write with Interface Optimization:

‣ Caught vulnerability
‣ 6% slowdown

SPEC 2000 Integer programs
• Problem: No network traffic
• Solution: Applied bounds checking to all system call interfaces to the program
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Results

• bnd-array
‣ 40% average overhead/slowdown

63 / 74



Results

• bnd-array
‣ 40% average overhead/slowdown

• bnd-interface-only: 29%

64 / 74



Results

• bnd-array
‣ 40% average overhead/slowdown

• bnd-interface-only: 29%
• bnd-mem-write: 28%

65 / 74



Results

• bnd-array
‣ 40% average overhead/slowdown

• bnd-interface-only: 29%
• bnd-mem-write: 28%
• bnd-interface+mem-write: 24%

66 / 74



Results

• bnd-array
‣ 2203 bounds instructions on average
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Results
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Conclusion



Limitations

• Path and context insensitive
‣ Simplifies the analysis, but may result in retention of some unnecessary bounds checks

•
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Limitations
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