
Bounds Checking with Taint-Based Analysis[1]
Security Improvements through Runtime Bounds Checking

Group 15: Ammar Ahmed, Marwa Houalla, Daniel Liu, Wenzhao Qiu

2024-04-14

Table of contents

1. Control Flow Integrity

2. Bounds Checking

3. Efficient Bounds Checking

4. Towards Optimal Bounds Checking

5. Interface Analysis

6. Memory Writer

7. Results and Evaluation

8. Conclusion

2 / 74

Control Flow Integrity

Motivation

“Memory safety bugs are responsible for the majority (~70%) of severe vulnerabilities in large
C/C++ code bases”

4 / 74

Control Flow Hijacking

1139: sub $0x18,%rsp
113d: mov %rdi,%rsi
1140: mov %rsp,%rdi
1143: call 1030 <strcpy@plt>
1148: add $0x18,%rsp
114c: ret

buffer

saved FP

return addr

5 / 74

Control Flow Hijacking

1139: sub $0x18,%rsp
113d: mov %rdi,%rsi
1140: mov %rsp,%rdi
1143: call 1030 <strcpy@plt>
1148: add $0x18,%rsp
114c: ret

marwa\0\0\0

saved FP

return addr

6 / 74

Control Flow Hijacking

1139: sub $0x18,%rsp
113d: mov %rdi,%rsi
1140: mov %rsp,%rdi
1143: call 1030 <strcpy@plt>
1148: add $0x18,%rsp
114c: retc

AAAAAAAA

FPFPFPFP
wherever i want

7 / 74

Control Flow Hijacking

Figure 5: (credit 388) 8 / 74

Control Flow Integrity Techniques

• Data Execution Prevention
• Stack Canaries
• Address Space Layout Randomization

None of these actually address the real problem: buffer overflows

9 / 74

Bounds Checking

Bounds Checking at Compile Time

fn main() {
 let mut a: [i64; 3] = [1, 2, 3];
 a[4] = 5;
}

[daniel@tripledelete workspace]$ cargo build
 Compiling workspace v0.1.0 (/home/daniel/Desktop/workspace)
error: this operation will panic at runtime
 --> src/main.rs:3:5
 |
3 | a[4] = 5;
 | ^^^^ index out of bounds: the length is 3 but the index is 4
 |
 = note: `#[deny(unconditional_panic)]` on by default

11 / 74

Bounds Checking at Run Time

#[allow(unconditional_panic)]
fn main() {
 let mut a: [i64; 3] = [1, 2, 3];
 a[4] = 5;
}

[daniel@tripledelete workspace]$ cargo run
 Finished dev [unoptimized + debuginfo] target(s) in 0.00s
 Running `target/debug/workspace`
thread 'main' panicked at src/main.rs:4:5:
index out of bounds: the len is 3 but the index is 4
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

12 / 74

Bounds Checking as a Defense

1139: sub $0x18,%rsp
113d: mov %rdi,%rsi
1140: mov %rsp,%rdi
1143: call 1030 <strcpy@plt>
1148: add $0x18,%rsp
114c: ret

AAAAAAAA

Aaved FP
return addr

out of bounds!
safe!

13 / 74

Implementing Bounds Checking for C

#include <string.h>

void vulnerable(char* p) {
 char buffer[16];
 char* d = buffer;
 while (*p) {
 *d++ = *p++;
 }
}

int main(int argc, char** argv) {
 vulnerable(argv[1]);
}

14 / 74

Implementing Bounds Checking for C

define dso_local void @vulnerable(ptr noundef %0) #0 {
 %2 = alloca ptr, align 8
 %3 = alloca [16 x i8], align 16
 %4 = alloca ptr, align 8
 ; setup...
 br label %6
 ; loop condition...
 br i1 %9, label %10, label %16
10: ; preds = %6
 %11 = load ptr, ptr %2, align 8
 %12 = getelementptr inbounds i8, ptr %11, i32 1
 store ptr %12, ptr %2, align 8
 ; increment...
 br label %6, !llvm.loop !6
16: ; preds = %6
 ret void
}

15 / 74

Efficient Bounds Checking

Representing Bounds information

1. Fat Pointers
• Store the lower and upper bounds of the object along with the pointer
• Fast, but modifies pointer format

(credit: William Klieber, CMU)

17 / 74

Representing Bounds information

2. Object Storage
• Store bounds information alongside the object that the pointer dereferences to
• Does not work if pointer is modified

18 / 74

Implementing Bounds Checking

1. Two Branch
• Used in Greg McGary’s bounds checker

19 / 74

Implementing Bounds Checking

2. One Branch

20 / 74

Implementing Bounds Checking

3. Bound Instruction

21 / 74

Bound Instruction for Arrays

• Bound instruction uses upper and lower bounds stored in fat pointers
• Global and stack arrays are not referenced with pointers
• Now what?

22 / 74

Code Generation

• Bound instruction uses upper and lower bounds stored in fat pointers
• Global and stack arrays are not referenced with pointers
• Now what?
• Solution: allocate static memory to hold meta-data bounds information
+ Use this memory location as the second operand in bound

23 / 74

Analyzing Performance

24 / 74

Analysing Overhead

25 / 74

Towards Optimal Bounds Checking

Towards Optimal Bounds Checking

So far:

• Efficient bounds checking in C

Pros:
• Complete protection
• Reasonably fast

Cons:
• Significant overhead:

‣ McGary’s compiler: Overhead of 71%
+ Single branch compare = 48%
+ x86 bound instruction = 40% (AMD Athlon Processor)

Can we do better?
• Taint-based bounds checking

27 / 74

Towards Optimal Bounds Checking

So far:
• Efficient bounds checking in C

Pros:
• Complete protection
• Reasonably fast

Cons:
• Significant overhead:

‣ McGary’s compiler: Overhead of 71%
+ Single branch compare = 48%
+ x86 bound instruction = 40% (AMD Athlon Processor)

Can we do better?
• Taint-based bounds checking

28 / 74

Towards Optimal Bounds Checking

So far:
• Efficient bounds checking in C

Pros:
• Complete protection
• Reasonably fast

Cons:
• Significant overhead:

‣ McGary’s compiler: Overhead of 71%
+ Single branch compare = 48%
+ x86 bound instruction = 40% (AMD Athlon Processor)

Can we do better?
• Taint-based bounds checking

29 / 74

Towards Optimal Bounds Checking

So far:
• Efficient bounds checking in C

Pros:
• Complete protection
• Reasonably fast

Cons:
• Significant overhead:

McGary’s compiler: Overhead of 71%
+ Single branch compare = 48%
+ x86 bound instruction = 40% (AMD Athlon Processor)

Can we do better?
• Taint-based bounds checking

30 / 74

Towards Optimal Bounds Checking

So far:
• Efficient bounds checking in C

Pros:
• Complete protection
• Reasonably fast

Cons:
• Significant overhead:

‣ McGary’s compiler: Overhead of 71%
+ Single branch compare = 48%
+ x86 bound instruction = 40% (AMD Athlon Processor)

Can we do better?
• Taint-based bounds checking

31 / 74

Towards Optimal Bounds Checking

So far:
• Efficient bounds checking in C

Pros:
• Complete protection
• Reasonably fast

Cons:
• Significant overhead:

‣ McGary’s compiler: Overhead of 71%
+ Single branch compare = 48%
+ x86 bound instruction = 40% (AMD Athlon Processor)

Can we do better?
• Taint-based bounds checking

32 / 74

Towards Optimal Bounds Checking

So far:
• Efficient bounds checking in C

Pros:
• Complete protection
• Reasonably fast

Cons:
• Significant overhead:

‣ McGary’s compiler: Overhead of 71%
+ Single branch compare = 48%
+ x86 bound instruction = 40% (AMD Athlon Processor)

Can we do better?
• Taint-based bounds checking

33 / 74

Taint-Based Bounds Checking

Defn - Security technique used to prevent buffer overflow attacks by tracking the flow of
untrusted, or “tainted,” data through a program

Aka bounds checking with shortcuts

34 / 74

Taint-Based Bounds Checking

Defn - Security technique used to prevent buffer overflow attacks by tracking the flow of
untrusted, or “tainted,” data through a program

A.k.a. bounds checking with shortcuts

35 / 74

Taint-Based Bounds Checking

Two shortcuts:
1. Interface Analysis
2. Memory Writer

36 / 74

Interface Analysis

Interface Analysis

def monitor_ps5_pro_release():
 url = "https://www.daniel-r-us.com/ps5-pro"

 while True:
 try:
 response = requests.get(url)
 soup = BeautifulSoup(response.text, 'html.parser')

 if "PS5 Pro" in soup.text:
 print(f"PS5 Pro is available on Daniel R Us!")
 break

 time.sleep(60) # Check every minute
 except Exception as e:
 pass

38 / 74

Interface Analysis

Evil hacker Halderman

39 / 74

Interface Analysis

40 / 74

Interface Analysis

Observations:
• Buffer overflow attacks can occur when malicious input is provided via external interfaces

of an application

-External interfaces:
• return values from library calls (gets)
• argv

Solution:
• Just bounds check objects that get their values from external input
• We call such objects TAINTED

41 / 74

Interface Analysis

Observations:

• Buffer overflow attacks can occur when malicious input is provided via external interfaces
of an application

• External interfaces:
‣ return values from library calls (gets)
‣ argv

Solution:
• Just bounds check objects that get their values from external input
• We call such objects TAINTED

42 / 74

Interface Analysis

Observations:

• Buffer overflow attacks can occur when malicious input is provided via external interfaces
of an application

• External interfaces:
‣ return values from library calls (gets)
‣ argv

Solution:
• Just bounds check objects that get their values from external input
• We call such objects TAINTED

43 / 74

Interface Analysis

def monitor_ps5_pro_release():
 url = "https://www.daniel-r-us.com/ps5-pro"

 while True:
 try:
 response = requests.get(url)
 soup = BeautifulSoup(response.text, 'html.parser')

 if "PS5 Pro" in soup.text:
 print(f"PS5 Pro is available on Daniel R Us!")
 break

 time.sleep(60)
 except Exception as e:
 pass

44 / 74

Interface Analysis

def monitor_ps5_pro_release():
 url = "https://www.daniel-r-us.com/ps5-pro"

 while True:
 try:
 response = requests.get(url) # TAINTED
 soup = BeautifulSoup(response.text, 'html.parser')

 if "PS5 Pro" in soup.text:
 print(f"PS5 Pro is available on Daniel R Us!")
 break

 time.sleep(60)
 except Exception as e:
 pass

45 / 74

Interface Analysis

def monitor_ps5_pro_release():
 url = "https://www.daniel-r-us.com/ps5-pro"

 while True:
 try:
 response = requests.get(url) # TAINTED
 perform_bounds_checking(response)
 soup = BeautifulSoup(response.text, 'html.parser')

 if "PS5 Pro" in soup.text:
 print(f"PS5 Pro is available on Daniel R Us!")
 break

 time.sleep(60)
 except Exception as e:
 pass

46 / 74

Interface Analysis

What if an object references a TAINTED object?

buffer = get_external_input() # buffer is TAINTED
alias = buffer # alias now also TAINTED

Then we must bounds check the alias:
• Implement using propagation of TAINTED pointers
• Data-flow analysis

47 / 74

Interface Analysis

What if an object references a TAINTED object?

buffer = get_external_input() # buffer is TAINTED
alias = buffer # alias now also TAINTED

Then we must bounds check the alias:
• Implement using propagation of TAINTED pointers
• Data-flow analysis

48 / 74

Memory Writer

Memory Writer

When do buffer overflow attacks occur?
• When an attacker can write more data to a buffer than it can hold.

50 / 74

Memory Writer

When do buffer overflow attacks occur?
• When an attacker can write more data to a buffer than it can hold.

51 / 74

Memory Writer

Writes to arrays and pointer dereferences (left-hand side of assignments) are marked for
bounds-checking:

char x[100];
int c, i = 0;
char *y = x, *z;
while ((c = getchar()) != EOF) {
 x[i++] = c; // Write operation that needs bounds checking
}
z = y; // TAINTED flow via scalar assignment and aliasing

52 / 74

Memory Writer

Writes to arrays and pointer dereferences (left-hand side of assignments) are marked for
bounds-checking:

char x[100];
int c, i = 0;
char *y = x, *z;
while ((c = getchar()) != EOF) {
 x[i++] = c; // FAT pointer
}
z = y; // TAINTED flow via scalar assignment and aliasing

53 / 74

Memory Writer

Memory Writer Algorithm:
1. Find all FAT pointers

Propagate FAT status via data-flow graph Profit⁇

54 / 74

Memory Writer

Memory Writer Algorithm:
1. Find all FAT pointers
2. Propagate FAT status via data-flow graph

Profit⁇

55 / 74

Memory Writer

Memory Writer Algorithm:
1. Find all FAT pointers
2. Propagate FAT status via data-flow graph
3. Profit⁇

56 / 74

Memory Writer

Memory Writer Algorithm:
1. Find all FAT pointers
2. Propagate FAT status via data-flow graph
3. Profit⁇ No.

57 / 74

Memory Writer

Memory Writer AND Interface Analysis:
• Combination for optimal bounds-checking

Algorithm:
1. Interface analysis first, identify external inputs, and mark related buffers as TAINTED
2. Apply Memory Writer to TAINTED buffers
3. Profit.

58 / 74

Memory Writer

Memory Writer AND Interface Analysis:
• Combination for optimal bounds-checking

Algorithm:
1. Interface analysis first, identify external inputs, and mark related buffers as TAINTED
2. Apply Memory Writer to TAINTED buffers
3. Profit.

59 / 74

Taint-Based Bounds Checking

Putting it all together, we have a bounds-checker that:
• Analyzes external memory interactions,
• Monitors writes to memory, and
• Tracks their references

This is Taint-based bounds checking.

60 / 74

Results and Evaluation

Results

Benchmarking

62 / 74

Results

Benchmarking

Small web server: ATPhttpd-0.4b

62 / 74

Results

Benchmarking

Small web server: ATPhttpd-0.4b
• Using Mem-Write with Interface Optimization:

‣ Caught vulnerability
‣ 6% slowdown

62 / 74

Results

Benchmarking

Small web server: ATPhttpd-0.4b
• Using Mem-Write with Interface Optimization:

‣ Caught vulnerability
‣ 6% slowdown

SPEC 2000 Integer programs

62 / 74

Results

Benchmarking

Small web server: ATPhttpd-0.4b
• Using Mem-Write with Interface Optimization:

‣ Caught vulnerability
‣ 6% slowdown

SPEC 2000 Integer programs
• Problem: No network traffic
•

62 / 74

Results

Benchmarking

Small web server: ATPhttpd-0.4b
• Using Mem-Write with Interface Optimization:

‣ Caught vulnerability
‣ 6% slowdown

SPEC 2000 Integer programs
• Problem: No network traffic
• Solution: Applied bounds checking to all system call interfaces to the program

62 / 74

Results

• bnd-array
‣ 40% average overhead/slowdown

63 / 74

Results

• bnd-array
‣ 40% average overhead/slowdown

• bnd-interface-only: 29%

64 / 74

Results

• bnd-array
‣ 40% average overhead/slowdown

• bnd-interface-only: 29%
• bnd-mem-write: 28%

65 / 74

Results

• bnd-array
‣ 40% average overhead/slowdown

• bnd-interface-only: 29%
• bnd-mem-write: 28%
• bnd-interface+mem-write: 24%

66 / 74

Results

• bnd-array
‣ 2203 bounds instructions on average

67 / 74

Results

• bnd-array
‣ 2203 bounds instructions on average

• bnd-interface-only: 1573

68 / 74

Results

• bnd-array
‣ 2203 bounds instructions on average

• bnd-interface-only: 1573
• bnd-mem-write: 581

69 / 74

Results

• bnd-array
‣ 2203 bounds instructions on average

• bnd-interface-only: 1573
• bnd-mem-write: 581
• bnd-interface+mem-write: 495

70 / 74

Results

71 / 74

Conclusion

Limitations

• Path and context insensitive
‣ Simplifies the analysis, but may result in retention of some unnecessary bounds checks

•

73 / 74

Limitations

• Path and context insensitive
‣ Simplifies the analysis, but may result in retention of some unnecessary bounds checks

• Dependent on x86 bounds instruction

73 / 74

Sources

Bibliography

[1]

W. Chuang, S. Narayanasamy, B. Calder, and R. Jhala, “Bounds checking with taint-based
analysis,” in Proceedings of the 2nd International Conference on High Performance
Embedded Architectures and Compilers, in HiPEAC'07. Ghent, Belgium: Springer-Verlag,
2007, pp. 71–86.

74 / 74

	Bibliography

