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Abstract

We analyze the performance of different bounds checking implementations.
Specifically, we examine using the x86 bound instruction to reduce the run-time
overhead. We also propose a compiler optimization that prunes the bounds checks
that are not necessary to guarantee security. The optimization is based on the
observation that buffer overflow attacks are launched through external inputs.
Therefore, it is sufficient to bounds check only the accesses to those data struc-
tures that can possibly hold the external inputs. Also, it is sufficient to bounds
check only the memory writes. The proposed optimizations reduce the number
of required bounds checks as well as the amount of meta-data that need to be
maintained to perform those checks.

1 Introduction

Bounds checking is the process of keeping track of the address boundaries for
objects, buffers, and arrays, and checking the loads and stores that access those
structures to make sure that they do not stray outside of the bounds. The bounds
are typically represented by a lower and upper address, in between which the
loads and stores can validly access. The bounds check consists of checking a
memory access to make sure the address is within these bounds. If a violation
occurs, the check may issue an exception [1–3], or circumvent the error [4] in a
safe fashion.

Buffer overflow attacks can be prevented using bounds checking. Consider
a fixed size buffer allocated on a stack. A buffer overflow can occur when the
application copies external data into the buffer but does not check for the size of
the input data, especially while copying strings (e.g. using strcpy). An adversary
can exploit this by copying malicious data or even a program into the buffer.
When the buffer is located on the stack, the adversary can overwrite the return
address as illustrated in Figure 1, and the control will jump to execute the
malicious code upon return from the function. This form of buffer overflow attack
is called “Stack Smashing” [5]. Stack smashing has been used in Code Red,
Nimda and Slammer, just to name a few Internet worms.

The main goal of our research is to provide efficient bounds checking for
pointer based applications such as C and C++, as programs written in these
languages are error prone and are easily exploited by adversaries. If the bounds
checking overhead is reasonable, then it can be used in the production software
to make it secure.
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We first examine the efficiency of various possible bounds checking implemen-
tations for C programs. Specifically, we examine the advantages of using the x86
bound instruction, which has largely been ignored in the previous studies, and
compare its performance with a two-branch [2] and a single-branch [6] bounds
check implementations. The bounds instruction reduces the bounds check per-
formance overhead. Also, as it reduces the dynamic instruction count we can
obtain significant energy savings.

We focus on static compiler optimizations to provide efficient bounds check-
ing for improving security. The proposed algorithms are based on recent works
on preventing buffer overflow attacks. Suh et al. [7], and Crandall and Chong [8]
examined using hardware support to tag each memory word with a taint bit
indicating if the data put into memory was stored there from untrusted sources
like the network. Then if any memory address is executed with this taint bit set,
a buffer overflow attack is flagged. Assuming this hardware support, they were
able to provide this protection with only a few percent slowdown. More recently
Newsome and Song [9] implemented this approach using dynamic binary emu-
lation to track data from external sources. They were able to do this without
any hardware support, but with a slowdown of 5 times over native execution.
Our goal is to achieve the same level of security using bounds checking, but with
minimal additional hardware support and performance overhead.

We discuss static compiler algorithms to reduce the number of bounds checks
required to guard against buffer overflow attacks. To protect against buffer over-
flow attacks, not all the memory accesses need to be bounds checked. If we know
the memory locations that are prone to buffer overflow attacks, then only the
accesses to those locations have to be bounds checked and the rest can be safely
pruned away. An adversary can launch a buffer overflow attack only by provid-
ing malicious data to the program. Hence, in our analysis, we assume that any
memory location that can potentially hold data received from sources external to
the program to be vulnerable to buffer overflow attacks. Statically, we can deter-
mine such locations by looking for places where the program interfaces with the
external world through external library calls such as system calls. Any memory
location that can receive external data directly from the external sources is con-
sidered to be tainted. Also, those memory locations that get values from a tainted
location is considered to be tainted as well (which can be determined through



a simple data-flow analysis). Only the pointer de-references to tainted locations
are bounds checked. We call this optimization as the interface optimization.

We improve the interface optimization by further limiting the bounds checks
to only memory writes, because a worm has to write the malicious data to
memory to launch an attack. Also, we can limit the bounds checks to only those
memory locations that can hold the data received from the network. All these
reductions in the number of bounds checks will also results in reductions in the
amount of meta-data that needs to be maintained to perform those checks.

2 Methodology
In this section we summarize our compiler that was derived from McGary’s GCC
patch [2]. We also describe our experimental methodology and the benchmarks
used.
2.1 Compiler
Our compiler is based on Greg McGary’s bounds checker [2]. His project con-
tains a patch to the 2.96 GCC sources where the patched compiler generates
fat-pointers and compare-branch bounds checks discussed in Section 3. We made
several general modifications, as we wanted to experiment with different bounds
check implementations, described in Figure 2. To interface with non-bounds
checked code, we wrote bounds checking wrappers for many library functions.
To eliminate simple bounds check redundancy we modified the GCC value num-
bering optimization to recognize the bounds instruction and eliminated useless
checks. We also implemented simple loop hoisting of bounds checks. Both cor-
respond to an acyclic and cyclic bounds optimization mentioned in Markstein
et.al. [10]. Lastly, we modified the compiler to let us do inter-procedural analysis
of type information as described in Section 4.
2.2 Benchmarks
Our goal is to reduce the overhead of bounds checking while maintaining the
security coverage that bounds checking provides. To measure the performance
overhead, we used the SPEC 2000 Integer benchmarks. We provide results for
all seven of the C SPEC 2000 Integer programs that compile and run correctly
with our baseline McGary gcc compiler. These are compiled on GCC with the
-O3 option. The remaining four (gcc, perl, gap and vortex) failed to compile
on the baseline McGary compiler.
2.3 Measurements
Our performance measurements are based on using the hardware counters on
commercially available processors. For each result, we executed the program
three times to factor out random effects while executing on a real processor.
Our results are based on the AMD Athlon 2400+ XP (K7), including all of our
hardware performance counter numbers.

We did a micro-architectural analysis of the overhead to get a deeper un-
derstanding of bounds checking, using Petterson’s hardware performance Linux
kernel patch [11]. These results include branch misprediction, L1 data cache
miss, memory instruction count, and total instruction count. Pettersson’s tool
provides application level access to these low level hardware performance coun-
ters and handles operating system details such as saving and restoring state
during context switch.



3 Efficient Bounds Checking for C
In this section we describe three standard representations for the bounds meta-
data and the baseline implementations we consider for bounds checking.
3.1 Representing Bounds Information
A bounds checker needs bounds information to perform its verification. We will
now describe how this bounds meta-data information is organized and used when
a pointer is dereferenced.

Bounds information for static objects is determined completely by the com-
piler, while bounds information for dynamic objects is determined at run-time.
The bounds for an object are created using its size (which can be deduced from
the object’s type), and the memory location of the object. The bounds are typ-
ically represented using a low bound and a high bound. Alternatively, they may
contain the low bound and the object’s size.

There are three ways of storing the bounds meta-data to perform bounds
checking. They are (a) fat-pointers, (b) a meta-data table, and (c) adjacent to
the object (referenced by pointer). A fat-pointer [2, 12, 3, 6] contains the object’s
low and high bounds adjacent to the pointer. Thus, it changes the pointer’s
format. This form of bounds representation requires no additional code to locate
the meta-data (bounds information), and so it is fast. A second representation
of the bounds information is the table lookup approach [13, 1]. The bounds
meta-data table is indexed using the pointer value to retrieve its bounds. This
representation does not require changes to the memory layout of the data objects
but lookup incurs significant run-time overhead. Another method for tracking
bounds meta-data is to store them with the object. The meta-data for a pointer
can be located by adding a fixed offset to the base address of the pointer and so
the look-up is efficient. However, this representation may not be reliable with C
pointers which can potentially get modified. Also, it doesn’t work when the base
address for the pointer is not available. Hence, in this paper we use fat-pointers
as our baseline, and in some experiments use object meta-data to improve array
bounds checking code (where we do not have the issues that we mentioned).
3.2 Check Implementation
We now describe the three main implementations for doing a bounds check.
The bounds checks are annotated into the program at the pointer dereference
operator and at the array subscript operator.

A bounds check can be done by keeping track of lower and upper bounds for
the object and comparing them against the effective address used while deref-
erencing a pointer as shown in Figure 2(a). McGary’s compiler, which we build
on, uses this method [2]. This implementation requires the execution of at least
four CISC instructions including two branches. There is an alternative imple-
mentation [6] that requires the execution of just a single branch as shown in
Figure 2(b), using low bound and size, resulting in at least three instructions. A
third possible implementation for bounds checking is to use a dedicated bound
check instruction that exists in the x86 instruction set as shown in Figure 2(c).
The bound instruction is functionally identical to implementation (a) but elim-
inates the two additional branches, the extra compares and other arithmetic
instructions in the binary.



start: start: start:

flag=(ptr >= low) tmp=(unsigned)(ptr-low) bound ptr, b_ptr

if(flag) then low_pass flag=(tmp < size)

trap if(flag) then ok

low_pass: trap

flag=(ptr < high) ok:

if(flag) then high_pass

trap

high_pass:

(a) Two Branch (b) Single branch (c) x86 bounds

Fig. 2. Pseudo-Code for three possible implementations of Bounds Check. (a) Two
Branch (b) Single Branch (c) Bound Instruction

Prior work on bounds checking has not performed a direct comparison of
the different bounds checking implementations. In addition, the prior techniques
have not explored the use of the x86 bound instruction for their implementa-
tions. In this section we provide performance results comparing the three imple-
mentations of bounds checking. Before that, we first present a code generation
optimization for using bound instruction for checking array references.
3.3 Code-Generation of x86 Bound Instruction for Arrays
The x86 bounds instruction has only two operands as shown in Figure 2(c).
The first input (ptr) specifies a general purpose register containing the effective
address that needs to be bounds checked, and the second input (b ptr) is a
memory operand that refers to a location in memory containing the low and
high bounds. Limiting this second operand to be a memory location requires
that the bounds check needs to be located in memory and cannot be specified
as a constant or a register value. On execution, the bounds instruction checks if
the address specified by the first operand is between the low and high bounds.
If the bounds are exceeded, a bounds-checking exception is issued.

For the approach we focus on, we assume the use of fat pointers. Since we
use fat pointers, the bounds information for pointers will be stored in memory
adjacent to the actual pointer. We would like to use the bound instruction for all
bounds checks, but an issue arises when we try to do bounds checking for global
and stack arrays, as they are referenced in C and C++ without pointers. To
allow the bound instruction to be used for these references, we allocate memory
adjacent to statically declared arrays to hold the meta-data bounds information,
which will be created and initialized when the arrays are created. Since the
bounds information for the global and local arrays are now located adjacent to
the object data memory, the bound instruction can take in the corresponding
memory location as its second operand to do bounds checking for these arrays.
This memory location is located at a fixed offset from the base of the array.
Out of the techniques we examined, we found this method to provide the best
performance for bounds checking array references, and we call this configuration
bnd-array.
3.4 Analysis
We now examine the performance of the three implementations of bounds check-
ing. The two-branch bounds check (GM) implementation is used by the base-
line McGary compiler [2]. It has a compare-branch-compare-branch sequence.



The single branch (1BR) uses one (unsigned) subtract-compare-branch-trap se-
quence [6]. We compare these checks to our bnd-array results that uses bounds
instruction bounds check with the array meta-data. Reported numbers are over-
heads in comparison to the baseline without any bounds checking. All three
code combinations are shown in Figure 2. We would also like to understand to
what extent one can reduce the bounds checking overhead, if one implements
the bound instruction as efficiently as possible in a processor. To do this, we
generated a binary similar to bnd-array but removed all the bound instructions,
only leaving behind the bounds meta-data in the program and the instructions
to maintain them. We call this configuration as bnd-ideal.

Figure 3 shows the percent slowdown for running the programs with the
different bounds implementations on an AMD Athlon, when compared to an
execution without any bounds checking. The first result of our comparison is
that bounds checking using McGary’s (GM) compiler results in overheads of
71% on average. The second result is that using the single branch compare im-
plementation 1BR reduces the average performance overhead from 72% down
to 48% on the Athlon. The third result is that the x86 bound instruction over-
head (bnd-array) provides the lowest bounds checking overhead when compared
to these two techniques with an average slowdown of 40% on Athlon. Finally,
performance overhead for bnd-ideal is 30% which is only 10% less than the bnd-
array configuration. In other words, 30% slowdown is due to just maintaining
the meta-data.

One important component of overhead is due to increased dynamic instruc-
tion count as seen in Figure 4. As expected there is significant instruction count
overhead for GM (149%), which is reduced to 121% for 1BR, and roughly half
of that (65% overhead) for bnd-array. Of the 65% instruction count overhead in
bnd-array, only 14% are due to bounds instructions and the rest 51% are due to
support instructions required to maintain the bounds meta-data (this result is
deduced from bnd-ideal result which shows just the overhead of maintaining the
bounds meta-data).

We also examine the branch misprediction and data cache hardware counters
to determine the reasons for the bounds performance improvements (graphs not
shown due to space limitations). The two-branch GM (256%) has much higher
branch misprediction rate than the bnd-array (11.5%) and the one branch version
1BR (105%), explaining some of the performance advantages of using bound
instructions over branched versions. Data cache misses increase in the bounds
checking implementations as the bounds information required to perform the
checks increases the memory footprint. This overhead is fairly constant across
all the implementations as they all keep track of same amount of meta-data.

3.5 Issues to Address for Bounds Checking in C

Because bounds checking requires bounds meta-data to be maintained and asso-
ciated with pointers, there are a few issues to address. Many of these problems
are well known and have solutions, which we cite and use in our implementations.

The type-cast operator in C, might cast a pointer to integer and back to a
pointer against, which could strip the bounds meta-data when represented as



0%

20%

40%

60%

80%

100%

120%

140%

160%

16
4.

gz
ip 

   
  

17
5.

vp
r  

   
 

18
1.

m
cf 

   
  

18
6.

Cra
fty

   
   

19
7.

pa
rs

er
   

   

25
6.

bz
ip2

   
   

30
0.

tw
olf

   
   

av
g 

   
  

%
 S

lo
w

do
w

n

GM
1br
bnd-array
bnd-ideal

Fig. 3. Run-time overhead of bounds check-
ing (AMD Athlon).

0%

50%

100%

150%

200%

250%

300%

350%

16
4.

gz
ip 

   
  

17
5.

vp
r  

   
 

18
1.

m
cf 

   
  

18
6.

Cra
fty

   
   

19
7.

pa
rs

er
   

   

25
6.

bz
ip2

   
   

30
0.

tw
olf

   
   

av
g 

   
  

%
 In

cr
ea

se
d 

D
yn

am
ic

 In
st

ru
ct

io
ns GM

1br
bnd-array
bnd-ideal
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the integer. One proposed solution, which we use in this paper, is to wrap the
integer with bounds meta-data just like how a regular pointer is wrapped [14].
For the programs we compiled for, we found that we had to do this form of
type cast infrequently, affecting few variables, and resulting virtually no code
bloat. In terms of pointer-to-pointer casts, these are already handled by default
because the bounds are transferred to the destination. Even if the pointers have
different type representation, the bounds remain valid as the allocated low and
high bounds are unchanged.

Linking libraries with application code containing fat-pointers needs to be
addressed. The conservative solution is to mandate that library interfaces are fat-
pointers in the case where library calls need bounds information. This means that
libraries also need to perform bounds checking. McGary’s distribution provided
a fully bounds checked with fat-pointers patch of libc. Another approach is to
use wrappers to interface with non-bounds checked library code, that converts
the pointers and performs any safety checks on passed data, as was done by
CCured [14]. We use this approach in our simulations, where we wrap each
library call by copying the pointer value of a fat-pointer to a normal (skinny)
pointer and pass that to the system call. Then on return from the system call, we
copy the value of the normal pointer back to the fat-pointer, with the appropriate
meta-data, and return. We verified there was no loss in performance or security
(for the user code). These interface wrappers can be generated automatically [14].

Buffer overflow can cause denial-of-service when the victim program crashes.
Recent work using CRED demonstrates that bounds checkers can continue run-
ning even after bounds violations are detected, without any loss of protection [4].
These failure tolerant CRED programs have the same overhead as the original
bounds checked versions.

4 Taint-Based Bounds Checking
Bounds checking verifies all pointer and array accesses. While this provides com-
plete protection against all kinds of buffer overflow attacks, it has significant
performance overhead. In this section, we present a technique to limit the scope
of bounds checking to only those objects that are vulnerable to a buffer overflow
attack. The goal of this optimization is to filter away those bounds checks that



1. char* gets(char* s);

2. int main(int argc, char** argv)

3. {

4. char tainted_args[128], tainted_gets[128], indirect[64];

5. char *tainted_alias = tainted_gets; // Pointer alias to object

6. strcpy(tainted_args, argv[1]); // source of malicious input: argv

7. gets(tainted_alias); // source of malicious input: gets()

8. for(i=0; (tainted_alias[i] != ’\0’) ; i++)

{ // indirect is TAINTED because it ’uses’ tainted_alias

9 indirect[i] = tainted_alias[i];

}

10. char safe_array[128] = "I am not tainted"; // SAFE and THIN

// foobar never passes safe_array to external

// interfaces nor assigns it tainted data

11. foobar(safe_array);

...

}

Fig. 5. Accesses through the pointers and arrays named tainted args,

tainted gets, tainted alias and indirect need to be bounds checked. The
array and pointer tainted args and tainted alias get their values directly from the
external interfaces - argv and the library call gets respectively. Hence, they are of
type TAINTED. The object indirect’s value is defined by a use of tainted alias

pointer and hence it is also of type TAINTED. All pointer aliases to TAINTED
objects are fat pointers. Also, the fat pointer tainted alias will propagate TAINTED
to the array tainted gets on line 5. Finally, safe array is determined to be SAFE
because it is passed to a function foobar, which does not pass safe array to external
interfaces and does not assign safe array data from an external interface.

are not necessary to guarantee security against buffer overflow attacks. The pro-
posed optimization is based on the observation that only the accesses to objects
that can hold data received from external interfaces need to be bounds checked.

4.1 Interface Analysis Algorithm
Buffer overflow attacks are launched by an adversary by providing malicious
input through the external interfaces to the application. External sources of
malicious inputs to the program include, the return values from the library calls
such as gets, and the command line argument argv. In order to protect against
buffer overflow attacks, it should be sufficient to bounds check accesses to only
those objects that get their values from the external input. We call such objects
(and their pointer aliases) as TAINTED and all the other objects as SAFE. A
TAINTED object can get assigned to external input either directly from the
external interfaces or indirectly from another TAINTED object. Figure 5 shows
a simple code example to illustrate what would be labeled as TAINTED when
performing our analysis, which we will go through in this section.

Limiting bounds checking to only TAINTED objects can decrease bounds
checking overhead but at the same time provide a high level of security against
buffer overflow attacks. Reduction in the performance overhead can result from
the following two factors. First, we can eliminate the bounds checks for accesses
to SAFE objects. Hence, we will be able to reduce the number of instructions ex-
ecuted to perform bounds checking. Second, we do not have to maintain bounds



1. Construct the inter-procedural data-flow graph, and initial pointer

aliasing information for points-to.

2. We forward propagate the points-to alias relationships though the

data-flow pointer assignment network, generating additional aliases.

3. All objects (including pointers) are initialized to type SAFE. All

pointers are also initialized to type THIN.

4. Apply the TAINTED type qualifier to the pointers and objects that

are either assigned to the return values of the external interface

functions, are passed as reference to external interface functions, or

get assigned to the command line parameter ARGV.

5. Using the data-flow graph propagate TAINTED forward along scalar

dependencies and mark them as TAINTED.

6. Add bounds checking to all pointers and array dereferences that are

marked as TAINTED.

7. All pointers that are bounds checked are assigned to be type FAT.

8. Backwards propagate FATNESS through the pointer assignment network.

Fig. 6. Algorithm for interface optimization

information for all the pointers. This is because the pointers to the SAFE objects
need to be only normal pointers instead of being fat pointers. We call the type
of normal pointers as THIN and the type of fat pointers as FAT. Reducing the
number of FAT pointers also reduces the overhead in initializing them and also
copying them while passing those pointers as parameters to functions. More im-
portantly, our optimization can reduce the memory footprint of the application
and hence we can improve the cache performance.

Figure 6 shows the steps used for the Interface Analysis algorithm. The goal
of the Interface Analysis is to find all the objects and their aliases that should
be classified as TAINTED in order to perform bounds checking on their derefer-
ences. As described earlier, a TAINTED object is one that gets assigned with ex-
ternal data either directly from an external interface or from another TAINTED
object.

Our algorithm represents information using inter-procedural data-flow, and
points-to graphs. The data-flow graph directly represents the explicit assign-
ments of scalar and pointer values. The points-to graph represents the rela-
tionship between the pointer and its referenced object. These graphs operate
on arrays, scalars and pointers objects with other types reduced to these basic
types. The TAINTED and SAFE properties apply to all object, while FAT and
THIN apply only to pointers.

The first step of the Interface Analysis is to construct the assignment data-
flow graph, and to discover the initial points-to information from the pointer
initialization. Address operators and dynamic memory allocator functions per-
form this initialization, returning the reference of an object to a pointer. Next
we propagate the pointer alias relationship, building up our points-to database.
We describe properties of the points-to maintained at this step in the following
section 4.2. Third, we initialize all the pointer and object types to SAFE. The
fourth step in our algorithm is to classify those pointers and objects that are as-
signed to the command line parameter argv and the return value of library calls
as TAINTED. If this is a pointer, then the object referenced is TAINTED. Also,



those objects whose value can be modified by library calls (pass by reference) are
classified as TAINTED. In our example, in Figure 5, the objects tainted args
and tainted gets will be classified as TAINTED after this step. In step five, we
propagate the TAINTED type information forward along the scalar data-flow
graph dependencies, including values from array references. We assume that op-
erations other than copy (e.g. arithmetic) will destroy the taintedness of the
scalar assignment. In addition, we use the points-to analysis to mark any point-
ers that reference a TAINTED object as TAINTED. This step iterates until the
TAINTED set no longer changes. In doing this propagation, additional objects
may be marked as TAINTED. After this propagation, the array indirect will
get classified as TAINTED in our example code through forward propagation,
and the array tainted gets will be classified as TAINTED through points-to
analysis. In step six, we add bounds checks to all dereferences of pointers and
arrays that are marked as TAINTED. In seven, all pointers that are bounds
checked will be marked as FAT, and the rest will be marked as THIN. In step
eight we backwards propagate FAT through the pointer assignment network to
initialization, ensuring bounds information can reach the check.

4.2 Aliasing Properties
We use points-to analysis to determine the objects that pointers alias [15–17]
for two different purposes. Our first use is to allow pointers to determine if
they reference a TAINTED object for which we use Andersen [16] to represent
multiple alias relationships. From object aliasing we determine if the pointer
references a TAINTED or SAFE object, consequently whether the pointer must
be designated FAT or THIN. The second use is to fuse the multiple pointer-
to-pointer aliases into a single class, as fusing simplifies how we use the alias
information. This version of points-to helps us recognize nested pointers, and
prevent conflicting pointer representations. Steensgaard [15] analysis does this
fused points-to analysis for us. Consider as an example the type char **, which
is a pointer to a char pointer char *. Variables that assign to or are assigned
from the char * must have all of the same label, which is either THIN or FAT.
TAINTED is similarly made consistent. Both points-to analysis use the pointer
propagation data-flow to discover additional aliases.

Consider the following example of data-flow and alias analysis in figure 7.
We propagate TAINTED forward through scalars to correctly mark the array
x, where getchar() is an external interface that may attempt to inject insecure
code. Dataflow discovers pointer assignment z=y; meaning z shares y aliases, and
points-to analysis would discover that pointers y and z aliases x. The pointer y
and z become FAT, and remain FAT even if they later in the control flow point
to a SAFE object.

4.3 Memory Writer Algorithm
In addition to the above interface optimization, we also perform another op-
timization which we call the memory-writer optimization. Buffer overflow at-
tacks for remote execution of malicious code are launched by writing beyond
the boundaries of a buffer, which implies that we have to do bounds checking
only for memory accesses that are writes in order to guard against write attacks.



char x[100]; int c, i=0;

char *y=x,*z;

while ((c = getchar()) != EOF){

x[i++]=c;

}

z=y;

Fig. 7. TAINTED flow via scalar assignment and aliasing

Write attacks are the most common form of buffer overflow attack, and probably
the most serious due to the possibility of its use in injecting malicious code. We
now describe the memory writer algorithm that can be used by itself, and then
explain how it can be used with the interface optimization.
Mem-Write Only - The first step is to mark all writes to array and pointer
dereferences as being bounds checked. These are left hand side of assignments
through array and pointer dereferences. All of these pointers are marked as FAT.
The next step is to find any pointer that will directly or indirectly (through data-
flow) define these writes, so that they will also be marked as FAT. They need to
be FAT, since they need to also maintain bounds meta-data information for the
bounds check. For this we start from the FAT writes and propagate the type FAT
backwards, along the edges of the data-flow graph through pointer assignments,
to find all pointers that define the value of any FAT pointer.
Mem-Write with Interface Optimization - For this approach, we first
perform the interface algorithm in Figure 6. The only modification is step 6,
where we only add bounds checking for arrays or pointers to buffers that are
written as described above and marked as TAINTED.

4.4 Implementation Details

We build a data-flow framework to prune the unnecessary bounds checks. Our
variable naming scheme is similar to the one used by Austin et.al. [6] capa-
ble of differentiating scalars, references, arrays and fields in structures. Next,
we build a graph representing assignments of data-flow information, derived
from program assignment statements, address operators, function parameters
and return values. After building our data-flow graph on a per function level,
we merge the graphs to create a global inter-procedural graph. Our type-based
data-flow analysis is path-insensitive; a qualifier that is computed for a variable
holds throughout the entire program. Changes to the representation are seen
by the entire program, not just the path whose assignment caused it. Simi-
larly, type information passed through procedure calls to other functions must
be consistent across all the call sites as we permit only one representation (no
function specialization) of that parameter inside of the function. For example,
if a pointer parameter becomes FAT at one call site, then that same parameter
will be labeled as FAT for all other call sites to that function. In other words, our
inter-procedural analysis is context insensitive. Both path and context insensi-
tivity greatly simplify the analysis. In addition, indirect function calls are also
treated conservatively, where all possible function definitions that might match
an indirect call site will have their parameters assigned with the same FAT or
THIN label.



4.5 Network External Interface Results
Our analysis and the pruning of bounds checking can be applied to all external
interfaces to an application, which would include disk, keyboard, mouse, cross-
process communication, network traffic, etc. Or it could be applied to just a
subset of these interfaces.

The current systems based upon dynamic taint analysis only focus on bounds
checking accesses to tainted data received from the network [7–9], since this is
the channel through which a worm attack can occur. Hence, we can limit bounds
check to buffers that are passed to the network system calls, and any of the data
in the program that is tainted by it.

To analyze this optimization, we performed our bounds checking analysis on
the benchmark ATPhttpd-0.4b, which is a small web server, with a buffer over-
flow vulnerability [9]. In applying our external interface only guarding against
write attacks as described above, we experience only a 6% slowdown over no
bounds checking. We also verified that the vulnerability was caught using our
taint-based bounds checking approach.

4.6 All External Interface Results
Since the SPEC integer benchmark suite does not have any network traffic, the
amount of bounds checking is zero, which is not that interesting of a result to
analyze. Therefore, we also examined applying our interface optimization for all
system call interfaces to the program. For this set of benchmarks this means
that we are bounds checking accesses to data that the application receives from
the operating system interface, and anything tainted by it.

In this section we will analyze the advantages of our two optimizations, inter-
face and memory-writer. The binaries that we used for this analysis are generated
using the bounds check implementation that uses the x86 bound instruction. The
code generator that we used is the same as the one used for generating the bnd-
array binaries that we discussed in Section 3.3. We conducted this experiment
on a AMD Athlon processor.

Figure 8 shows the performance advantage of our optimizations. The result
labeled as bnd-interface-only corresponds to implementing only the interface
optimization. The result corresponding to the label bnd-mem-write refers to our
memory-writer only optimization, and bnd-interface+mem-write stands for the
implementation where we applied both.

When each of the two optimizations are applied individually, the interface
optimization reduces the overhead to 29%, whereas the memory-writer opti-
mization reduces the overhead down to 28%. When both of the optimizations
are applied together we find that the average overhead is reduced to 24%, which
is a significant reduction when compared to our previous best result of 40% that
we achieved using the bnd array implementation.

The bnd-interface-only represents performing bounds checks and maintaining
fat pointers for all tainted data coming from external interfaces. This provides
protection against both write and read buffer overflow attacks. Since write buffer
overflow attacks are the most harmful, bnd-interface+mem-write provides pro-
tection for all writes that write data from external interfaces.
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To analyze the main source of reduction in the performance overhead, in Fig-
ure 9 we show the number of static bounds check instructions that remain in the
binary after applying our optimizations. We can see that the bnd-array imple-
mentation, where we bounds check all of the memory accesses through pointers,
contains 2203 x86 bounds instructions on average. Our interface optimization
which eliminates the bounds checks to the SAFE objects is able to remove 660
bounds checks from the binary to 1573 on average. The memory-writer opti-
mization eliminates the bounds check to all the load memory operations. Hence,
it significantly reduces the number of checks to 581 on average. When both the
optimizations are combined together there are about 495 bounds checks left in
the binary on average.

The performance savings shown in Figure 8 are proportional to the number
of bounds checks that we managed to eliminate. We would like to highlight
the result for our pointer intensive application mcf. For mcf, we see significant
performance reduction for interface only optimization. The reason for this is that
the there was a decent size reduction in the heap memory used as a result of our
interface optimization as it managed to classify 50% of the pointers as THIN
pointers.

4.7 Verification
We used Wilander security benchmarks [18] and the Accmon [19] programs
with buffer overflow vulnerabilities to verify that our interface optimization and
memory-writer optimization do not compromise security. For this analysis, we
applied our taint-based bounds checking to all the system calls. Wilander pro-
vides a set of kernel tests that behave as if it is an adversary trying a buffer over-
flow exploit [18]. It checks for overwriting of the return address, base pointer,
function pointers, and long jump buffer. This is done for the stack and heap
over twenty tests. All the exploits in the Wilander and Accmon benchmarks
were caught by our bounds checking mechanism that is optimized using the
interface and memory-writer optimization techniques.

5 Conclusion

Bounds checking can prevent buffer overflow attacks. The key limitation in using
bounds checking in the production software is its performance overhead, reduc-
ing this was the focus of our work. We first examined how to efficiently provide



complete bounds checking for all pointer dereferences using the x86 bound in-
struction, which resulted in 40% overhead. We then examined performing bounds
checks for only tainted data received from the external interfaces. This provides
protection against both write and read buffer overflow attacks, and resulted in
an average overhead of 29%. If we only care about write buffer overflow attacks,
then we need to bounds check only the writes, which incurred 24% overhead.
Finally, if we are only interested in bounds checking data from the network,
we showed that overhead can be reduced to just 6%. Bounds checking provides
greater protection than the hardware and dynamic taint based approaches [7–9]
as it protects not only against control but also data buffer overflow attacks. In
addition, it does not require any additional hardware [7, 8]. When compared to
using dynamic emulation system [9] it incurs less performance overhead.
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