UNIVERSITY OF

MICHIGAN

Using Machine Learning to Predict
Branch Probabilities

Zachary Eichenberger, Shin Lee, Harvin Murmick, Shivan Prasad

Learning Branch Probabilities in Compiler from

Datacenter Workloads
Easwaran Raman Xinliang David Li
Google Google
eraman@google.com davidxl@google.com

IV UNIVERSITY OF MICHIGAN

Branch Prediction Heuristics

® LLVM Compiler: Relies on branch probability analysis

o E.g.to optimize code layout
o Can be obtained via profiling — accurate, but can be difficult

e What happens when profiling data is not available?

Observation Heuristic prediction
Explicit programmer labelling That label
Edge is loopback Strongly Taken
Equality comparisons (floats & ptrs) | Weakly not taken
Otherwise Unbiased

IV UNIVERSITY OF MICHIGAN

Heuristic Limitations

e Simple — Conservative Predictions
e Reality
O Heuristic accuracy is poor
o Most branches are strongly taken/not taken

ST e WT
WNT
SNT SNT SNT
(a) Heuristic: UB (b) Heuristic: WNT (c) Heuristic: ST (d) Heuristic: SNT (e) Heuristic: WT

JMI UNIVERSITY OF MICHIGAN

Solution: ML Approach

1. Select all features from compiler that could help determine the bias of a branch
2. Passto ML model to predict branch probabilities using this larger feature set
3. Use predicted branch probabilities to optimize code layout

Training Inference |

Src + Profile Src File

feren
Engine
Labeled Example [y Labeled % M| Trainer ———) Model | = ML Clang
Generator Data
Object File

IV UNIVERSITY OF MICHIGAN

Data Flow Features

e Capture Opcode & types of inputs to branch (const, var, etc.)

%10 = %9 + 2
%11 = %8 = 3

%12 = icmp eq, %11, %10
br %12, label %t, label %f

Figure 4. Expression tree

JMI UNIVERSITY OF MICHIGAN

Control Flow Features

® Encode basic CFG shape
® Look at blocks that are control-dependent on branch edge
® Encode most frequently executed function and its attributes

Frequent Function attributes

e Inline, noinline, _always_inline_, cold, etc.
e Function name (embedded)

IV UNIVERSITY OF MICHIGAN

Loop Features

Numerical Features
® Loop depth, number of BBs, number of Exit Blocks, etc.
Categorical Features

® Is exit edge, is backedge, is destination within loop, etc.

IV UNIVERSITY OF MICHIGAN

Miscellaneous Features

Function Features

e Information about the enclosing function

e Number of instructions, Basic Blocks, edges in CFG
File Name Features

® Branches in repetitive uses of same file (such as header files) may

have similar behavior
e Extract file name from branch destination in debug pass, add it to

feature set

IV UNIVERSITY OF MICHIGAN

Model Architecture + Training

e Labels obtained by profiling training data and extracting calculated
branch probabilities
e Training Data: > 7M unique static branch instructions

Parameter Value
Num. Layers 5
Hidden activation ReLU
Final activation function | Sigmoid
Optimizer Adagrad
Batch size 200
Epochs 100

IV UNIVERSITY OF MICHIGAN

Model Inference

® Inference used within new LLVM pass
o0 Load model at start of pass Feature Extraction

During pass, gather features for each branch

Branch Instruction

Feature Vector

®
o Feed formatted input to obtain prediction label
o Finally use prediction to annotate branch instruction LLVM Inference

metadata
branch_weight

metadata

IV UNIVERSITY OF MICHIGAN

Evaluation

e Tested on 10% of examples at random
o ML model outperforms heuristics ¥67% of time
e Fairly robust to distribution shifts (when tested on search)

Lower is better ~ Higher is better Lower zs better Higher is better

AL A
" N Wa . v
I B Heuristics
08 In ML 0.77

I B Heuristics
0.8 In ML 0.79

RMSE MAE Cross Entropy Closeness
For search*

JMI UNIVERSITY OF MICHIGAN

RMSE MAE Cross Entropy Closeness

Evaluation: Error % vs Heuristics

® Heuristic line “jumps” due to fixed % predictions.
o ML benefits from continuous preds.
o Unclear how beneficial this actually is in practice

100

80

60 ML
! - - -« Heuristics

% Branches

'S
o

3%
(=)

0 20 40 60 80 100
% Error

Figure 7. Prediction Error

IV UNIVERSITY OF MICHIGAN

ions

icat

Real World Appli

e Tested on search, other apps.

Evaluation

~ 1% geometric mean speedup .

©)

)

%LT LT

rJ

%92°6—

I
—

L

8

—
——
=
———
"
m—
-—
==
e
m r
& —|
a —
23 =
=] ——
£ =
g]
- - f
- .. J
——
—
]
—_—
|I
. ——
— %SG CI—
1N R 5N R 53 R R 153
dnpaadg
=
p=
+
o O
o O
Ay A
&l
Qo
g E
< <
v wun
< o
L8
g EE
[S S |
H . =
N . /|

UBIWOID
zAddeus
14ddeus
UOISIA
Surrojruow
20[Tewo}
Io8euRW JUSAD
€dlqeiysey
¢olqBysEy
To[qelysey
29IqeIss

3ss yoaads
xAe yoaads
£3nqojoxd
gynqojoxd
gjnqojoxd
pynqojoxd
¢jnqojoxd
Zjnqojoxd
1ynqojoxd
youaq anberd
19[qeiss
UOWO[0S pasax
2100

1100

198e1038
Rydis
2'zeIdpE
ZiuridioSuy
13urrdroSuryy
Surpoo~Adonjua
guado

Zuadre

TuaSre
Surxapur oop
J9sIRYD

Iaqy
UOIJBOO[[e BUIIR
3qeIsiq
JsTuLIR[R
r'zemrpe

Latency CPU Usage

QPS

R R R
(9] (=] n%
a8ueyd %

Figure 11. Performance of Search application

Figure 10. Benchmark Suite Results

:
jas
g
=
S
P
E
[72)
£
=
m

Conclusion

What’s cool:

e Significant accuracy boost over heuristics

e Relatively simple methodology, but enables use of more features to make
predictions

® Avoids hand-engineering (mostly)

Issues:
Would have liked to see which features were most weighted / an ablation
Relatively minor improvement in terms of speed

Adds overhead to compiling (but not much)
Unsure of generalization abilities

IV UNIVERSITY OF MICHIGAN

Questions!!

