
Using Machine Learning to Predict
Branch Probabilities

Zachary Eichenberger, Shin Lee, Harvin Murmick, Shivan Prasad

Branch Prediction Heuristics
● LLVM Compiler: Relies on branch probability analysis

○ E.g. to optimize code layout

○ Can be obtained via profiling – accurate, but can be difficult

● What happens when profiling data is not available?

Heuristic Limitations
● Simple → Conservative Predictions

● Reality

○ Heuristic accuracy is poor

○ Most branches are strongly taken/not taken

Solution: ML Approach
1. Select all features from compiler that could help determine the bias of a branch

2. Pass to ML model to predict branch probabilities using this larger feature set

3. Use predicted branch probabilities to optimize code layout

Data Flow Features
● Capture Opcode & types of inputs to branch (const, var, etc.)

Control Flow Features

● Encode basic CFG shape

● Look at blocks that are control-dependent on branch edge

● Encode most frequently executed function and its attributes

Frequent Function attributes

● Inline, noinline, _always_inline_, cold, etc.

● Function name (embedded)

Loop Features

Numerical Features

● Loop depth, number of BBs, number of Exit Blocks, etc.

Categorical Features

● Is exit edge, is backedge, is destination within loop, etc.

Miscellaneous Features

Function Features

● Information about the enclosing function

● Number of instructions, Basic Blocks, edges in CFG

File Name Features

● Branches in repetitive uses of same file (such as header files) may

have similar behavior

● Extract file name from branch destination in debug pass, add it to

feature set

Model Architecture + Training
● Labels obtained by profiling training data and extracting calculated

branch probabilities

● Training Data: > 7M unique static branch instructions

Model Inference
● Inference used within new LLVM pass

○ Load model at start of pass

○ During pass, gather features for each branch

○ Feed formatted input to obtain prediction label

○ Finally use prediction to annotate branch instruction LLVM

metadata

Branch Instruction

Feature Vector

branch_weight
metadata

Feature Extraction

Inference

Evaluation

● Tested on 10% of examples at random

○ ML model outperforms heuristics ~67% of time

● Fairly robust to distribution shifts (when tested on search)

Lower is better Higher is better

For search*

Lower zs better Higher is better

Evaluation: Error % vs Heuristics
● Heuristic line “jumps” due to fixed % predictions.

○ ML benefits from continuous preds.
○ Unclear how beneficial this actually is in practice

Evaluation: Real World Applications

● Tested on search, other apps.
○ ~ 1% geometric mean speedup .

Conclusion
What’s cool:

● Significant accuracy boost over heuristics

● Relatively simple methodology, but enables use of more features to make

predictions

● Avoids hand-engineering (mostly)

Issues:

● Would have liked to see which features were most weighted / an ablation

● Relatively minor improvement in terms of speed

● Adds overhead to compiling (but not much)

● Unsure of generalization abilities

Questions!!

