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Branch Prediction Heuristics

® LLVM Compiler: Relies on branch probability analysis

o E.g.to optimize code layout
o Can be obtained via profiling — accurate, but can be difficult

e What happens when profiling data is not available?

Observation Heuristic prediction
Explicit programmer labelling That label
Edge is loopback Strongly Taken
Equality comparisons (floats & ptrs) | Weakly not taken
Otherwise Unbiased
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Heuristic Limitations

e Simple — Conservative Predictions
e Reality
O Heuristic accuracy is poor
o Most branches are strongly taken/not taken

ST e WT
WNT
SNT SNT SNT
(a) Heuristic: UB (b) Heuristic: WNT (c) Heuristic: ST (d) Heuristic: SNT (e) Heuristic: WT
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Solution: ML Approach

1. Select all features from compiler that could help determine the bias of a branch
2. Passto ML model to predict branch probabilities using this larger feature set
3. Use predicted branch probabilities to optimize code layout

Training Inference |

Src + Profile Src File

feren
Engine
Labeled Example [y Labeled % M| Trainer ———) Model | = ML Clang
Generator Data
Object File
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Data Flow Features

e Capture Opcode & types of inputs to branch (const, var, etc.)

%10 = %9 + 2
%11 = %8 = 3

%12 = icmp eq, %11, %10
br %12, label %t, label %f

Figure 4. Expression tree
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Control Flow Features

® Encode basic CFG shape
® Look at blocks that are control-dependent on branch edge
® Encode most frequently executed function and its attributes

Frequent Function attributes

e Inline, noinline, _always_inline_, cold, etc.
e Function name (embedded)
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Loop Features

Numerical Features
® Loop depth, number of BBs, number of Exit Blocks, etc.
Categorical Features

® Is exit edge, is backedge, is destination within loop, etc.
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Miscellaneous Features

Function Features

e Information about the enclosing function

e Number of instructions, Basic Blocks, edges in CFG
File Name Features

® Branches in repetitive uses of same file (such as header files) may

have similar behavior
e Extract file name from branch destination in debug pass, add it to

feature set
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Model Architecture + Training

e Labels obtained by profiling training data and extracting calculated
branch probabilities
e Training Data: > 7M unique static branch instructions

Parameter Value
Num. Layers 5
Hidden activation ReLU
Final activation function | Sigmoid
Optimizer Adagrad
Batch size 200
Epochs 100
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Model Inference

® Inference used within new LLVM pass
o0 Load model at start of pass Feature Extraction

During pass, gather features for each branch

Branch Instruction

Feature Vector

®
o Feed formatted input to obtain prediction label
o Finally use prediction to annotate branch instruction LLVM Inference

metadata
branch_weight

metadata
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Evaluation

e Tested on 10% of examples at random
o ML model outperforms heuristics ¥67% of time
e Fairly robust to distribution shifts (when tested on search)

Lower is better ~ Higher is better Lower zs better  Higher is better

AL A
" N Wa . v
I B Heuristics
08 In ML 0.77

I B Heuristics
0.8 In ML 0.79

RMSE MAE  Cross Entropy Closeness
For search*
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Evaluation: Error % vs Heuristics

® Heuristic line “jumps” due to fixed % predictions.
o ML benefits from continuous preds.
o Unclear how beneficial this actually is in practice

100

80

60 ML
! - - -« Heuristics

% Branches
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0 20 40 60 80 100
% Error

Figure 7. Prediction Error
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Real World Appli

e Tested on search, other apps.

Evaluation

~ 1% geometric mean speedup .
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Figure 11. Performance of Search application

Figure 10. Benchmark Suite Results
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Conclusion

What’s cool:

e Significant accuracy boost over heuristics

e Relatively simple methodology, but enables use of more features to make
predictions

® Avoids hand-engineering (mostly)

Issues:
Would have liked to see which features were most weighted / an ablation
Relatively minor improvement in terms of speed

Adds overhead to compiling (but not much)
Unsure of generalization abilities
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Questions!!




