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Abstract
Effective parallel programming for GPUs requires careful
attention to several factors, including ensuring coalesced ac-
cess of data from global memory. There is a need for tools
that can provide feedback to users about statements in a GPU
kernel where non-coalesced data access occurs, and assis-
tance in fixing the problem. In this paper, we address both
these needs. We develop a two-stage framework where dy-
namic analysis is first used to detect and characterize uncoa-
lesced accesses in arbitrary PTX programs. Transformations
to optimize global memory access by introducing coalesced
access are then implemented, using feedback from the dy-
namic analysis or using a model-driven approach. Experi-
mental results demonstrate the use of the tools on a number
of benchmarks from the Rodinia and Polybench suites.

Keywords GPU, PTX, coalescing, dynamic analysis, local-
ity, program transformation, polyhedral compilation

1. Introduction
Parallel programming is hard and programming GPUs is
even harder. In order to achieve high performance, it is
essential to address many aspects, such as avoidance/min-
imization of control divergence among threads, ensuring
sufficiently high degrees of parallelism to effectively mask
memory latency, and achieving coalesced access to global
memory. In contrast to shared-memory parallel programs for
CPUs, where stride-1 access to memory by each thread is
very efficient, for effective utilization of memory bandwidth
on GPUs, adjacent threads must access adjacent data ele-
ments in global memory. Thus coalesced access generally
implies that a single thread will not access contiguous mem-
ory locations in adjacent iterations of a loop. Therefore many
programs directly converted from OpenMP to CUDA with-
out a fundamental change to the loop structure exhibit unco-
alesced access to global memory.

While attempts have been made to develop tools to ease
the development of GPU applications [5–7, 20, 22–24, 36],
many existing CUDA applications still suffer from uncoa-

lesced accesses. Thus, there is a strong need for tools to as-
sist application developers develop codes that exhibit a high
fraction of coalesced accesses. Unless the programmer is
able to detect the problem, other optimization tools depend-
ing on programmer input (e.g., [13, 21, 33]) are of little help.
If uncoalesced access is detected, the programmer can then
seek to transform the code.

Existing static transformation approaches to enhance coa-
lesced access are only applicable to restricted classes of pro-
grams. In this paper, we overcome the limitations of these
purely static approaches by combining the benefits of dy-
namic analysis with static transformations. When dynamic
analysis on traces generated from the program detects unco-
alesced accesses, some recommendations are made depend-
ing on the overall memory access pattern. In many cases,
program transformations implementing a different yet se-
mantically equivalent thread geometry can increase data ac-
cess coalescing. In this work we target arbitrary PTX codes
for the dynamic analysis and key program transformations,
thereby covering both CUDA and OpenCL programs. We
also propose a dedicated CUDA program transformation
framework for a subset of CUDA programs which relies
on polyhedral analysis to enable more aggressive program
restructuring for memory coalescing when applicable. This
paper makes the following contributions:

• A dynamic analysis tool for analyzing arbitrary PTX
codes for precisely characterizing run-time uncoalesced
memory accesses, along with suggestions for potential
improvement strategies.
• A PTX/CUDA transformation framework that imple-

ments a remapping of work among threads to improve
global memory access coalescing.

The rest of the paper is organized as follows. Sec. 2 con-
tains background information on GPU global memory ac-
cess and the PTX intermediate representation. Sec. 3 elab-
orates on the design and implementation of our dynamic
analysis, and Sec. 4 presents our program transformation ap-
proach. Sec. 5 presents an experimental evaluation, and re-
lated work is discussed in Sec. 6 before concluding.
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2. Background and Overview
2.1 GPU Architecture
Computation GPUs are designed for high computational
throughput. GPUs typically contain hundreds of cores (stream-
ing processors) arranged in tightly coupled groups of 8-32
scalar processors per streaming multi-processor (SMs). Par-
allel threads are grouped into thread blocks that are sched-
uled on a SM and cannot migrate. Threads are spawned in
1-, 2-, or 3-dimensional rectangular groups of cooperative
threads, called blocks (CUDA) or work-groups (OpenCL).
A 1-, 2- or 3-dimensional grid of blocks is used to sched-
ule the thread blocks. Both the size and number of thread
blocks are fixed when launching a GPU kernel and can-
not be changed after the threads have launched. We note
~G = (bdimx,bdimy,bdimz, tdimx, tdimy, tdimz) the geome-
try of the thread space: the sizes of a thread block in each
dimension are denoted tdimx, tdimy and tdimz. In the case
of a 2D or 1D geometry for a thread block, we simply set
tdimz or tdimz and tdimy to 1. The grid of thread blocks
also has a 3D geometry, the dimension in each dimension is
typically computed from the total number of threads (e.g.,
problem size) divided by the thread block size in the di-
mension. A thread in the computation is uniquely identified
by~t = (bx,by,bz, tx, ty, tz) a vector of 6 integers, where each
component can range between 0 and the size in ~G from the
corresponding component.

Memory The GPU memory hierarchy consists of global
memory (shared across thread blocks), shared memory
(shared only among the threads in a single block), local
memory and registers. Global memory is the largest in terms
of size, but also the slowest. Shared memory is faster than
global memory but limited in size. In modern GPUs, each
Streaming Multiprocessor (SM) has 64KB of fast memory
that can be partitioned between L1 cache for global memory
and shared memory. The 64KB space can be either divided
into two 32KB partitions, or 48KB and 16KB. Global mem-
ory coalescing (described in Sec. 2.2) leads to efficient us-
age of the available bandwidth between global memory and
shared memory or L1 cache.

2.2 Global Memory Coalescing
When a kernel is launched on a GPU, it is executed by
all the threads in parallel. A typical scenario is to have a
global memory reference in the kernel that is executed by all
threads, but requesting different memory addresses for each
thread, as shown in Lst. 1.

g l o b a l void k e r n e l ( f l o a t ∗ a ) {
i n t t i d = t h r e a d I d x . x ;
a [ t i d ] = 1 . 0 ;

}

Listing 1: CUDA code

These memory requests are grouped into a number of
memory transactions by the GPU in the current scheduling

unit for a thread block to maximize the bandwidth usage.
That is, the memory transaction is computed based on the re-
gion of data requested by a set of active threads. When con-
secutive threads access consecutive global memory region
(as in Lst. 1) then a single transaction may be implemented,
and accesses are coalesced. With modern GPUs (compute
capability 1.2 or higher) consecutive threads are no longer
required to get coalesced access, it is enough that the set of
data accessed by the set of threads considered (e.g., threads
having the same ty, tz but different tx) is a contiguous chunk
of memory [31].

When the data region accessed by threads is not contigu-
ous (e.g., for an access a[tid * N] instead of a[tid] in
Lst. 1, leading to a poor spatial data locality), then it is not
possible anymore to pack the data request into a single, large
transaction: the reference leads to uncoalesced accesses. Up
to one transaction per thread will be needed, dramatically re-
ducing the effective bandwidth. Accessing non-contiguous
memory from the global memory incurs significant perfor-
mance penalties [31]. One approach to possibly hide the ef-
fects uncoalescing is to use the shared memory for caching
the accesses (see Sec. 4.4), however this requires complex
code restructuring. In this work we first take the approach of
changing the thread geometry (i.e., which threads will end
up being grouped together at the time of issuing the mem-
ory transactions) to improve spatial data locality and global
memory coalescing before resorting to shared memory us-
age.

2.3 Overview of the Framework
Fig. 1 depicts the overall steps of our approach, which con-
sists of 4 stages: instrument, execute, analyze, and transfor-
mation.

Instrument	  

Input	  Kernel	  

Instrumented	  PTX	  

Execute	  on	  
GPU	  

Analyze	  

Transforma<on	  

Memory	  Trace	  
Suggested	  Op<miza<on	  

Transformed	  PTX/CUDA	  

for(i=0;i<N;i++)
{ a[tid*N+i]=0;} 

for(i=0;i<N;i++) 
{ a[i*N+tid]=0;} 

PTX	  

PTX	  

CUDA	  

Figure 1: Overall Flow Chart of Our Approach

We use Parallel Thread Execution (PTX), an intermediate
language for kernels designed to run efficiently on NVIDIA
GPUs [30]. High-level language compilers like nvcc [31] or
clang [34] can generate PTX instructions from CUDA or
OpenCL codes. First, the input PTX code is instrumented
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and executed on a GPU to generate its memory traces. We
use Ocelot [18], a compiler framework for PTX code anal-
ysis on heterogeneous systems, to instrument PTX codes.
Next, an analysis is performed on the memory traces to
characterize coalesced and uncoalesced accessed, with rec-
ommendation of possible transformations based on the dy-
namic analysis results (Sec. 3). Finally, based on the rec-
ommendation the code may be transformed. An small and
always-applicable set of thread geometry permutations can
be applied on arbitrary PTX programs (Sec. 4.2), and the
dynamic analysis can be re-run on the resulting program
to observe whether coalescing has improved on the work-
ing dataset. Alternatively a more powerful geometry trans-
formation framework but which operates only a subset of
CUDA programs can be applied to maximize coalesced ac-
cesses (Sec. 4.3).

3. Dynamic Analysis of Uncoalesced Accesses
3.1 Instrumentation and Execution
The input to the dynamic analysis is the PTX code of a kernel
we wish to investigate. First, the PTX kernel is instrumented
by inserting a function call to a device function that stores
all the necessary information about the memory access after
each global memory access to compute and store a trace of
the program. The memory trace of an instrumented PTX
code is generated simply by executing it on the GPU. The
trace can be dependent on the values of the input data, and
so the results may vary with different input datasets. In such
cases, it is recommended to perform the dynamic analysis
with a variety of representative input datasets, determining
such sets is out of the scope of the present paper. An example
of a trace excerpt is shown in Lst. 2:

# t x t y t z s t a t i c i d Load ( 1 ) / S t o r e ( 2 ) Address Dyn id
0 0 0 31 1 30066082304 0
0 0 0 34 2 30066081792 0
0 0 0 31 1 30066082320 1
0 0 0 34 2 30066081796 1
0 0 0 31 1 30066082336 2
0 0 0 34 2 30066081800 2
0 1 0 31 1 30066082320 0
0 1 0 34 2 30066081796 0
0 1 0 31 1 30066082336 1
0 1 0 34 2 30066081800 1
0 1 0 31 1 30066082352 2
0 1 0 34 2 30066081804 2

Listing 2: Trace

where (tidx, tidy, tidz,static id, type,address,dynamic id)
is the tuple forming a trace entry. static id is the unique
identifier of the memory instruction in the PTX code gen-
erating this trace entry. dynamic id is the unique identi-
fier of the instance of the static instruction, for a particu-
lar (tidx, tidy, tidz,static id) value. Dynamic ids are needed
to model loops in the kernel code iterating memory instruc-
tions. The tuple (tidx, tidy, tidz,static id,dynamic id) is nec-
essarily unique in a trace. The actual memory address ac-
cessed by this instruction as well as the type of access (load
or store) is also captured. In this work only trace entries
with identical (static id,dynamic id) values may execute in
parallel and are candidate for coalescing analysis.

3.2 Dynamic Analysis Algorithm
Our analysis algoritm detailed in Alg. 1 scans through the
memory trace file to characterize memory access patterns
and produce meaningul, per-instruction statistics about the
access strides and the potential for coalescing. The algorithm
takes as input W the scheduled block size (e.g., W = 16 for
a half warp for compute capability lower than 2.0).

Algorithm 1: Memory Trace Analysis Algorithm
Input : T : Memory trace, viewed as a map

T[static id][dynamic id][tidy][tidz][tidx] = addr
W : Warp scheduling size

Output: Report on coalescing and possible optimization strategy
1 begin
2 for all unique static id in T do
3 (min stride,max stride,avg stride,allStr)← (∞,0,0,0)
4 AllAddrs←emptyVector()
5 for all unique dynamic id in T[static id] do
6 // Take the trace entries corresponding to candidate
7 // accesses for coalescing.
8 M← T[static id][dyn id][*]
9 // Build the linearized list of memory addresses accessed.

10 i← 0
11 for all (tidy, tidz, tidx) in M in lexicographic order do
12 V [i]←M[tidy][tidz][tidx]
13 i← i+1

14 c← 0
15 while c < i do
16 // Sort W consecutive elements of V to compute the sorted
17 // list of memory addresses accessed by W consecutive

threads.
18 V [c..c+W ]← sortByIncreasingValue(V [c..c+W ])
19 for j ∈ [0..W −1] do
20 stride←V [c+ j+1]−V [c+ j]
21 min stride← min(min stride,stride)
22 max stride← max(max stride,stride)
23 avg stride← avg stride+ stride

24 avg stride← avg stride/W
25 c← c+W

26 AllAddrs← concat(AllAddrs,V )

27 // Check if the entire memory space accessed is contiguous.
28 AllAddrs← sortByIncreasingValue(AllAddrs)
29 for i ∈ [0..AllAddrs.size−1] do
30 allStr← max(allStr,AllAddrs[i+1]−AllAddrs[i])

31 // Produce report and suggestions.
32 Print(static id, load/store type)
33 Print(min stride,max stride,avg stride)
34 if max stride≤ sizeo f (data type) then
35 Print(”coalesced”)

36 else
37 Print(”uncoalesced”)
38 if allStr > sizeo f (data type) then
39 Print(”accesses cannot be all coalesced”)

40 else
41 Print(”Suggest thread geometry transformations”)
42 if instruction is a load then
43 Print(”Suggest also shared memory usage”)
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4. Compiler Transforms for Data Coalescing
In this section we present a compiler framework to improve
data coalescing. We first present an approach that uses our
dynamic analysis to empirically drive a re-scheduling of
the CUDA threads, that is a change of the thread block
geometry in Sec. 4.2.1. This approach operates on arbitrary
CUDA/PTX programs. We then present a purely compile-
time approach that only requires very basic static analysis
of the references in a CUDA/PTX program to compute a
new thread block geometry aimed at reducing the number
of uncoalesced accesses in Sec. 4.2.2. To address cases of
uncoalesced accesses which require using loops from the
thread code to formulate a new thread geometry, we focus
on a subset of CUDA programs that can be handled with
the polyhedral compilation framework [6] and discuss our
method in Sec. 4.3. Finally, complementary transformations
for load optimization is presented in Sec. 4.4.

4.1 Overview
An uncoalesced access arises from non-consecutive data
being accessed by threads in the same warp along the tx
dimension. A rescheduling of the threads here is analo-
gous to a loop permutation: for instance to permute di-
mensions tx and ty, we (1) update the geometry to become
~G = (bdimy,bdimx,bdimz, tdimy, tdimx, tdimz); and (2) sub-
stitute each occurrence of threadIdx.x by threadIdx.y
(and conversely) in the CUDA/PTX program.

Our dynamic analysis presented previously provides two
key pieces of information to drive the profitability of a pro-
gram transformation: which reference is uncoalesced (and its
stride), and how often a reference is executed. To improve
data coalescing, we seek a program transformation essen-
tially based on finding a new geometry for the threads, such
that accesses are consecutive in memory along the newly
computed tx dimension.

4.2 Computing a New Thread Block Geometry
This transformation stage takes two inputs: (1) the original
geometry, and (2) the AST of the thread code. CUDA pro-
grams have the key property of allowing any bijective trans-
formation of the thread geometry. That is, all inter-block and
inter-thread dimensions are fully data-parallel and hence in-
terchangeable without violating program semantics. We re-
mark that at this stage we do not require any additional prop-
erty of the code such as having affine control or data-flow:
we simply exploit the parallelism readily available through
the thread geometry, and seek an alternative geometry with
improved coalescing of data accesses.

4.2.1 Empirical search using dynamic analysis
Given~t the vector identifying the threads. An uncoalesced
access on a reference R arises typically because for two
consecutive values of tx, the same reference accesses non-
consecutive data. Our first approach seeks a permutation

of thread block dimensions so that the fastest varying one
does not incur non-unit stride accesses by R. An iterative ap-
proach to test all possibilities is effective and straightforward
in this case: only 3 possibilities exist (one for each of the 3
original thread block dimensions when used as the tx com-
ponent of the geometry), they are all semantically correct,
so one can implement the 3 alternatives and run the dynamic
analysis on each of the 3 cases. The rest of the permutation,
that is which of the original thread block dimensions will be
used as the new ty and tz dimensions, can be chosen arbitrar-
ily as it will not affect coalescing.

Then, the dynamic analysis presented previously is run on
each of the three cases, the result is inspected and the con-
figuration providing the lowest number of uncoalesced ac-
cesses is retained. In our experiments, this simple approach
successfully solved uncoalesced accesses for the bench-
marks Gaussian Elimination and Cell. We remark that this
approach implicitly assumes that the test data set used during
dynamic analysis is representative of the typical control-flow
for the program.

4.2.2 Model-driven geometry transformation
Another approach that does not rely on dynamic analysis is
possible when the reference can be successfully character-
ized using standard static analysis. Contrary to the previous
empirical approach, this model-driven framework requires a
static analysis of all the references in the CUDA/PTX pro-
gram to gather information for the cost model. The objective
and constraints do not change: we are seeking a permutation
of the geometry, and support arbitrary CUDA/PTX programs
as input.

Given an array reference R A[pos]1, where pos is the
expression used to index the array, we first perform static
analysis on pos (possibly inspecting the entire kernel code)
to uncover key properties on the relationship between thread
ids in each dimension and the value of pos. Precisely, we
analyze each sub-expression involved in the computation of
pos, so as to determine:
1. if pos is of the form x + b, where x is a thread id and b

is invariant to x; otherwise pos is of the form b.
2. If b above is of the form y*c + d where y is a thread id,

and c is greater than 1.
3. The list of all thread ids used to compute pos.

In other words, we perform static analysis of the expres-
sion pos for the purpose of finding (1) which thread id, if
any, occurs without any multiplier (it will therefore be suit-
able for coalesced accesses along this dimension); (2) which
thread id, if any, occurs with a non-unit multiplying fac-
tor (it will not be suitable for coalesced accesses); and (3)
which thread id is used to compute the reference (any thread
id not involved will be suitable for stride-0 accesses). Stan-
dard dataflow analysis can be used, in particular computing

1 We only discuss the case of linearized array references
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reaching definitions for pos [2] and the read/write sets of
these definitions.

We denote ~c = (cx,cy,cz) a vector of 3 Booleans, such
that if cx is set to 1 then the thread dimension tx matches x in
the pattern x+b above, 0 otherwise. Similarly for cy when ty
matches x in the pattern x+b, etc. We denote~u = (ux,uy,uz)
another vector of 3 Booleans, with the semantics that ux is set
to 1 if tx matches y in the pattern b = y∗ c+d above, and so
on for the other coordinates. Finally we denote~z= (zx,zy,zz)
the vector where zx is set to 1 if tx is used to compute the
value pos, and so on.

We are now equipped to formulate an Integer Linear Pro-
gram whose optimization provides us with the thread dimen-
sion to use for tx. To achieve this, we implement the solution
in the form of a permutation matrix for the three thread block
coordinates. We first introduce 9 Boolean variables pi, j, one
for each of the elements in a 3×3 permutation matrix which
models the 3D thread geometry permutation we need to ap-
ply to maximize coalesced accesses. To ensure it is a true
permutation matrix, we add the constraint ∑i pi, j = 1, one
for each of the three values for j, and ∑ j pi, j = 1, for each
value of i, that is a total of six constraints. Then, for each
reference R, we add constraints to capture the cost of large-
stride accesses (that is, tx would be true in ~u), stride-1 ac-
cesses (tx is true in ~c) and stride-0 accesses (tx is true in~z).
We use equal cost of 1 for stride-0 and stride-1 accesses, and
a fictitious large value N for the cost of large-stride accesses
(N must be greater than the number of references). We get
for a reference R:

CR =
3

∑
i=1

c(i).p1,i +
3

∑
i=1

z(i).p1,i +
3

∑
i=1

N.u(i).p1,i

where only the cost associated to the dimension used as
“inner-most” (the first row of the permutation matrix, cap-
turing the output tx dimension) is being modeled. The final
optimization problem, where pi, j are Boolean unknowns, is
then:

P = ∑
R

CR

minimize P s.t.∑
i

pi, j = 1, ∀ j∧∑
j

pi, j = 1, ∀i

Because of the constraints on P to output a permutation
matrix, we are guaranteed to find a permutation that mini-
mizes the number of large-stride references. If multiple solu-
tions with identical cost exist, one may be selected randomly.
Further refinement can be achieved by weighting each cost
by the number of times the reference is accessed. The op-
timal solution is implemented as the geometry permutation
encoded in the permutation matrix is applied to the CUD-
A/PTX program, altering both the thread block geometry
and substituting thread ids in the code as necessary.

4.3 Geometry and Thread Code Transformations
Threads are grouped into the same warp according to their
threadIdx.x. Therefore, these threads should read/write con-
secutive global memory locations as much as possible. List-
ing 3 shows a common example where each thread is as-
signed a complete row of a matrix, which leads to strided
memory access of threads in the warp.

g l o b a l
void k e r n e l ( f l o a t ∗A, f l o a t v a l u e ){

i n t t x = t h r e a d I d x . x + b l o c k I d x . x∗blockDim . x ;
f o r ( i n t i = 0 ; i < N; i ++){

R : A[ t x ] [ i ] = v a l u e ;
}

}

Listing 3: Inefficient Global Memory Store Example

Loop i is a parallel loop and therefore we can re-
distribute the stores among the threads to ensure coalesced
access. That is, we can use the i loop in the thread code as an
additional source of parallel threads, and compute a new 2D
geometry in place of the original 1D one, such that accesses
will be coalesced for tx: in this example this amounts to (1)
making i the tx dimension, updating bx correspondingly to
capture N threads; and (2) make the original tx dimension ty
in the transformed code.

The example above highlights a key issue when trans-
forming codes for coalescing: that intra-thread loops may
need to be analyzed and transformed into CUDA threads
to ensure proper coalescing without data layout transfor-
mations. Indeed, in our benchmark suite the Rodinia My-
ocyte and all PolyBench/GPU kernels are programmed us-
ing 1-dimensional thread block geometry, with parallel loops
inside the kernel code. Such programs require deep static
analysis and transformation of both the geometry and kernel
codes to implement efficient data accesses.

To address this problem, we now present a polyhedral-
based framework to transform CUDA programs by lift-
ing loops inside the kernel code and producing a multi-
dimensional thread geometry. Because of the need for pre-
cise analysis, contrary to the previous sections this frame-
work applies only to a specific subset of CUDA kernels:
those whose control- and data-flow can be exactly character-
ized at compile-time using the polyhedral model [6, 17], and
which do not contain any synchronization primitives. We re-
mark that this framework uses the CUDA kernel source code
as input, in place of the PTX representation. Algorithm 2
outlines our polyhedral optimization flow, and is detailed in
the following.

4.3.1 Program representation
To represent a CUDA program in the polyhedral model,
we first resort to classical AST-to-polyhedron conversion
(function extractPolyhedralRepresentation). First we
compute, for each syntactic statement in the program, its
iteration domain. This set captures all the statement run-time
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Algorithm 2: Polyhedral optimization flow
Input : AST : AST of the CUDA kernel code;

G: original thread geometry;
Output: AST,G: Output new CUDA code and geometry

1 begin
2 Poly←extractPolyhedralRepresentation(AST,G);
3 C←computeLegalityConstraints(Poly);
4 Cp ←computeParallelismConstraints(Poly);
5 C←C∩Cp;
6 P←computeCostForAllRefs(Poly);
7 sol ←minimize P s.t. C;
8 AST ←polyhedralCodegen(Poly,AST ,sol);
9 AST,G←postProcessingAndTiling(AST );

10 return AST,G;

instances, with an integer set bounded by affine inequalities.
We then integrate the thread block geometry by viewing it
as a loop nest with 3 loops, each iterating from 0 to tdimx,
etc. for the other 2. For instance for statement R above, its
iteration domain DS is:

DS = {(tx, ty, tz, i) ∈ Z4 |
0≤ tx < tdimx∧0≤ i < N∧ ty = tz = 1}

Access functions describe the location of the data ac-
cessed by a statement instance. In static control parts, mem-
ory accesses are performed through array references (a
scalar variable being a particular zero dimensional case of
an array). We restrict ourselves to subscripts that are affine
expressions of surrounding loop counters and global param-
eters. For instance, the subscript function of a read refer-
ence A[i][k] surrounded by 3 loops i, j and k is simply
fA(i, j,k) = (i,k).

The execution order of the dynamic instances of state-
ments captured in the iteration sets is described using a
scheduling function ΘSi for each statement Si. A schedule
is a function which associates a logical execution date (a
timestamp) to each instance of a given statement. In the case
of multidimensional schedules, this timestamp is a vector. In
the target program, statement instances will be executed ac-
cording to the increasing lexicographic order of their times-
tamp. To construct a full program description, we build a
collection of schedules Θ = {ΘS1, . . . ,ΘSn}, that is a list of
the per-statement scheduling functions.

In this work, we restrict the scheduling function to model
only the original program order and any possible permuta-
tions of the loop dimensions, including intra-thread loops
and thread block dimensions. For homogeneity if two state-
ments are not surrounded by the same number of loops, ar-
tificial one-time loops are introduced so that all statement
iteration domains and schedules have the same dimensional-
ity for the program.

4.3.2 Computing the program transformation
Our objective to find a transformation of the program is
extremely analogous to Sec. 4.2.2: we formulate an ILP
integrating the cost of accesses for each reference, seeking
a solution in the form of a permutation matrix. But we also
need to now take into account (1) legality conditions, as not
all permutation of intra-thread loops may be semantically
correct; and (2) parallelism conditions, as the intra-thread
dimensions can be permuted with geometry dimensions only
if they are parallel loops. Finally, to generate correct CUDA
codes we must comply with the maximal thread block sizes
as specified by the GPU and resort to a complementary tiling
phase if needed.

The function computeLegalityConstraints computes
the legality conditions that constrain the coefficients of the
permutation matrix. The convex set of semantics-preserving
schedules can be built in the traditional manner, linearizing
the constraints provided by each dependence polyhedron us-
ing the Farkas Lemma [17, 32] to end up with affine inequal-
ities bounding the schedule coefficients (i.e., the permutation
matrix) so that each solution satisfying the inequalities nec-
essarily preserves the program semantics. The Ponos tool
automatically computes these constraints from the polyhe-
dral representation [1, 32]. The sets of statement instances
between which there is a data dependence relationship are
modeled as equalities and inequalities describing a depen-
dence polyhedron [16]. All dependence polyhedra can be
automatically extracted from the program polyhedral repre-
sentation, for instance using the Candl tool [1].

The function computeParallelismConstraints en-
codes a system of constraints on the schedule coefficients
so that for two instances ~xR and ~xS in dependence, the
constraint ΘR(~xR) = ΘS(~xS) is enforced for all and only
thread geometry dimensions and that thread geometry di-
mensions are not one-time loops. Indeed, for the rest of the
program (kernel code), only the semantics-preserving condi-
tion ΘR(~xR) � ΘS(~xS) needs to be enforced. This condition
is the classical sync-free parallelism condition [6, 26] to be
enforced in a scheduling function, and is also linearized us-
ing the Farkas Lemma [17]. The final set of constraints C is
computed as the intersection of the legality and parallelism
constraints.

The function computeCostForAllRefs first analyzes
each reference to compute the various ~c, ~u and ~z vectors
based on the reference access functions. We remark that
these vectors are extended to have one element per surround-
ing dimension (that is, the thread geometry dimensions and
any surrounding loop, including one-time loops), instead of
only 3. We then formulate an ILP to find the coefficients
of a permutation matrix (the linear part of the scheduling
functions), in a manner analogous to Sec. 4.2.2. The permu-
tation matrix size is adapted to properly model all dimen-
sions, and we encode the cost constraints not only for the
tx dimension (i.e., p1, j the coefficients of the permutation
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matrix corresponding to the output tx dimension) but also
for all intra-thread loops (i.e., p3+k, j, for each k ∈ [1..d] with
d intra-thread loops). We then minimize this ILP to obtain
sol, the coefficients of the permutation matrix subject to all
constraints.

The function polyhedralCodegen embeds the permu-
tation sol into a complete schedule Θ and implements
the transformation on the polyhedral representation of the
CUDA code, by generating a code scanning iteration do-
mains following the order specified by the schedule [8].
As we have modeled the geometry dimensions as stan-
dard loops in the polyhedral representation, a final post-
processing stage needs to be performed to translate the loops
in CUDA geometry and kernel loop syntax, the function
postProcessingAndTiling performs this task. Because
of hardware GPU constraints, we may need to apply tiling
along the thread block dimensions to ensure the new tdimx,
tdimy and tdimz do not exceed their maximal allowed size,
and compute accordingly the associated bdim sizes. Con-
versely, thread block dimensions which have become kernel
loops need to be surrounded by new kernel loops iterating
across all original thread blocks along these dimensions.

Returning to Listing 3, (tx, ty, tz, i) gets permuted as
(i, tx, ty, tz), where a one-time loop tz is used inside the thread
code (in other words, after code generation there is no loop
inside the thread code), and loop i becomes the new tx di-
mension. Because i has N iterations, a strip-mining of i is
performed, updating bdimx and i, so that the new dimen-
sion tx has a size not exceeding the hardware geometry con-
straints, with bdimx× tdimx = N.

4.4 Other Static Transformations
Listing 4 describes a common inefficient access pattern
where a single thread is used to compute a reduction op-
eration on a row of a matrix.

g l o b a l
void k e r n e l ( f l o a t ∗A, f l o a t ∗x , f l o a t ∗ tmp ){

i n t i = b l o c k I d x . x∗blockDim . x+ t h r e a d I d x . x ;
i f ( i < N){

f o r ( j =0 ; j < N; j ++){
tmp [ i ] += A[ i ∗ N + j ] ∗ x [ j ] ;
}}}

Listing 4: Inefficient Global Memory Load Example

This straightforward implementation leads to poor per-
formance, because of uncoalesced accesses. We propose an
effective work re-distribution strategy to improve the perfor-
mance of such kernels.

During the dynamic analysis phase, such inefficiency is
detected when we find a thread performs two contiguous
loads followed by a store to a single location, but only one
of the load operations is uncoalesced. It is likely, altough not
guaranteed, that the thread is performing a reduction oper-
ation. To ensure correctness, we find and analyze the loads
and the store in the original unoptimized PTX during the
static transformation phase. The reduction operation is de-

tectable at this point as it appears as a sequence of ld.global
(data load from global memory), ld.global, fma (fused mul-
tiplication and add) and st.global (data store in global mem-
ory) operations in the PTX code. The optimization pass then
proceeds with the transformation.

Block	  0	   Block	  1	  

!d_x=0	   !d_x=0	  

	  Atomic	  opera1on	  

1.	  Par1al	  sum	   1.	  Par1al	  sum	  

2	   2	  

3.	  result	  

Figure 2: Partial Sum Method for Load Optimization

The transformation converts the reduction operation into
a series of intermediate partial result computations, followed
by atomic operations. The overall idea is depicted in Fig-
ure 2. The matrix is logically divided into blocks, where each
block is loaded in a coalesced fashion by a thread block into
a shared memory buffer. The block size needs to be a perfect
square (e.g., 256) so that T is an integer. Another run-time
requirement is teh use of N2/T 2 blocks, so that each thread
just loads one element from the NxN matrix. We allocate a
buffer in the shared memory to hold data from global mem-
ory, where the size of the buffer is equal to the thread block
size. The multiplication operation is performed on these data
and the results are stored back in the shared buffer, replacing
the the old values. After syncthreads, a subgroup of threads
with ids a∗T +0, where a = 0,1, ...T −1 computes the par-
tial sum of row a of the shared memory. Following another
syncthreads, we need to perform an atomic addition across
the blocks to get the final result from the partial results.

The transformation steps are shown in Algorithm 3. The
declaration of the 2-D shared array is inserted in the first
basic block. Lines 4-10 are the computations inserted and
stored in registers. For simplicity, we skipped using PTX
level computations in the algorithm. From the instID, we find
the array base addresses of the two ld.global and the st.global
instructions that surround the fma. The original PTX instruc-
tions are moved out of the loop that contained them. We
replace them with new instructions. Then the uncoalesced
load instruction is transformed into a coalesced load by us-
ing the new computed offset index1. The ld.global is now
followed by a st.shared (store in shared location). The off-
set of the second load operation is also replaced by index2.
The multiplication is inserted after the second load and the
result is stored back in the shared buffer. Following a sync-
threads instruction, we add a code block that checks whether
the thread has an ID that equals a∗T +0 for some a. Inside
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Algorithm 3: Transform Consecutive Load Operations
by Single Thread

Input : instID: Static ID of the instruction to transform;
T : Shared Memory dimension T xT ;
C: Input PTX code;

Output: C′: Output PTX code
1 begin
2 C′←−C ;
3 Allocate shared memory S[T xT ] in C′;
4 i←− threadID/T ;
5 j←− threadID%T ;
6 t1←− blockID∗BLOCK SIZE ;
7 t2←− (blockID∗T )%N ;
8 index1←− t1 + t2 + i∗N + j ;
9 index2←− (blockID∗T + j)%N ;

10 index3←− (blockID∗T ∗T )/N + i ;
11 load inst←−PTX instruction for instID;
12 A←− Base address of load inst ;
13 x←− Base address of the next load instruction;
14 y←− Base address of the store instruction;
15 Find loop containing load inst;
16 Move reduction instructions out of loop ;

// Coalesced read from global memory

17 Load A[index1] into S[i][ j] ;
18 S[i][ j]←− S[i][ j]∗ x[index2] ;
19 Syncthreads ;
20 if j = 0 then

// Compute partial sum for block

21 for k = 0 to T do
22 sum←− sum+S[i][k] ;

23 Syncthreads ;
24 Insert atomic addition of sum in C′;
25 Store result of atomic add at y[index3];
26 return C′;

the true branch, we insert a loop to perform the partial sums.
After the if block, we add another syncthreads to make sure
that all the partial results are ready. Finally, the atomicadd
instruction is inserted to add the partial sums and stores the
results at the new offset index3.

5. Experimental Results
5.1 Experimental Protocol
We have used Ocelot v2.1 to build the instrumentation
and the optimization passes for PTX codes. CUDA Toolkit
v5.5 was used for the nvcc compiler and also to write the
CUDA driver API for executing PTX codes. Experiments
were done on a machine with Tesla K20 and compute ca-
pability 3.0. The benchmarks presented are from Rodinia
v2.4 [11, 12] and PolyBench/GPU v1.0 [19]. The sparse
matrix-vector multiplication (SpMV) application is taken
from SHOC [14]. The spmv csr kernel from SHOC has un-
coalesced access of the column vector that stores indices of
the actual elements in the matrix. This access is affine and
we were able to apply the transformation. The execution
time is measured by taking the average of 100 executions.

5.2 Dynamic Analysis Results

Type C/U Stride Bandwidth
Load Coalesced 0 1
Load Uncoalesced N N
Store Uncoalesced N N

Table 1. Sample Output of Dynamic Analysis

To evaluate our dynamic analysis tool, we character-
ized the global memory coalescing properties of Rodinia
and PolyBench/GPU benchmarks. The time for the dynamic
analysis depends on the size of the memory traces. The total
time for the instrumentation, trace generation and running
the analysis of an application is generally in the order of
hundreds of milliseconds. The profile sizes are approaxi-
mately in the range of ten kilobytes.

We feed one kernel at at time to the analysis tool and pro-
duce useful information for each of the static global memory
load/store operation. For each operation the tool is designed
to report the following: type (Load/Store), Coalesced/Unco-
alesced, stride (distance between memory accessed by con-
secutive thread in the thread space) and the bandwidth of
the operation. For example, for the Fan1 kernel of the Gaus-
sian Elimination benchmark, the tool produces output like
Table 1. Table 2 depicts a summary of the results of the anal-
ysis on Rodinia and Polybench/GPU. For space limitation,
we only report the benchmark kernels that has uncoalesced
access detected by the tool. Seven Rodinia benchmarks are
identified to have uncoalesced accesses. Three out of these
seven benchmarks (MUMmerGPU, k-Nearest Neighbor and
Stream Cluster) use array of structures where each thread
accesses all the members of a structure element. This results
in a strided access for the threads in a warp. Using existing
APIs [13], the array of structures can be converted to struc-
ture of arrays to achieve coalesced accesses. While our static
transformation framework could be extended in the future
to incorporate such an optimization, it currently does not.
Hence, we do not report performance for these applications.
Myocyte, on the other hand, assigns each thread to compute a
full row of a matrix which is very inefficient. Gaussian elim-
ination distributes a 2D matrix onto a 2D thread block but
assigns the fastest growing dimension to threadIdy, leading
into strided access. Cell has the same issue for 3D matrices
and thread blocks. We optimize these three benchmarks us-
ing static transformation (results in the next section).

The PolyBench/GPU suite has nine applications with
uncoalesced memory accesses. Among them, the Gram-
schmidt kernel2 requires re-writing of the whole applica-
tion to achieve coalesced access - which is out of scope for
this paper. Syrk and Syr2k do not have much scope of im-
provement. We transform the remaining six applications. We
also analyzed SHOC sparse matrix-vector (SpMV) multipli-
cation as an representative for irregular applications. The
results are in the following section.
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Benchmark Kernel Execution Time Data Copy Times GFLOPS Kernel Speedup App. SpeedupOriginal Transformed Host to Device Device to Host Original Transformed
(R) Myocyte 79.81ms 2.25ms 43.81ms 29.25ms 1.8 63.5 35.5× 2.1×
(R) Gaussian 1.91s 0.43s 0.01s 0.01s 17.91 78.71 4.4× 4.3×

(R) Cell 6.73ms 1.74ms 1.37ms 1.55ms n/a n/a 3.9× 2.1×
(P) covariance 23.27s 4.61s 0.011s 0.01s 5.91 29.82 5.1 × 5.1×

(P) GESUMMV 82.67ms 10.59ms 20.63ms 0.01ms 3.25 25.35 7.8× 3.3×
(P) AtAx 28.71ms 15.28 ms 40.87ms 0.02ms 9.35 17.56 1.9× 1.3×

(P) Correlation 23.27s 4.61s 0.02s 0.01s 5.91 29.82 5.1 × 5.1×
(P) mvt 23.61ms 10.19ms 40.89ms 0.02ms 11.37 26.33 2.3× 1.3×

(P) BiCG 28.86ms 15.33ms 40.88ms 0.02ms 9.28 17.51 1.9× 1.2×
SpMV 27.49ms 8.01ms 10.44ms 0.01ms 5.22 17.23 3.4× 2.1×

Table 3. Execution times of applications on Tesla K20

Rodinia
Benchmark Kernel Total Uncoalesced

Gaussian Fan1 2N +1 2N
Fan2 4N2 +4N 3N2 +N

Kmeans invert mapping 2NK NK
MUMmerGPU printKernel 5N 5N

Myocyte solver 7N2 7N2

k-NN euclid 5N 4N
Cell evolve 2N3 2N3

StreamCluster compute cost 6N 5N
Polybench/GPU

Benchmark Kernel Total Uncolaesced

AtAx atax kernel1 N2 +3N N2

BiCG bicg kernel2 N2 +3N N2

Correlation corr kernel 7N2 +N 5N2

covariance covar kernel 8N2 5N2

GESUMMV gsumv kernel 2N2 +8N 2N2

Gramschmidt gram kernel2 2N +1 2N
mvt mvt kernel1 N2 +3N N2

SYRK syrk kernel 6N2 N2

SYR2K syr2k kernel 8N2 2N2

Table 2. Benchmarks with Uncoalesced Access in Rodinia
and Polybench/GPU

5.3 Static Transformation Results
From the dynamic analysis tool, the applications identified
with improvement potential are then fed to a static transfor-
mation framework for optimization. We report the improve-
ment of execution times for these applications in Table 3.
Benchmarks taken from Rodinia are marked with R while
benchmarks taken from Polybench/GPU are marked with
P. For each kernel, we also measured the time for copying
data between host and device. We compared the performance
in GFLOPS. Cell only performs copy operation, therefore
GFLOPS is not reported for this benchmark. The effective
bandwidth comparison is reported in Figure 3. Note that y-
axis is in logarithmic scale for this figure.

We observe significant speed up for all of the applica-
tions. The speedup ranges from 2× to 35× on K20. My-
ocyte in its original form suffers from a high memory latency
due to the high amount (refer to Table 2) of uncoalesced
accesses. Our transformation successfully re-distributed the
workload so that threads now perform the same number of
reads and writes in a coalesced fashion, leading to a sig-

nificant 35× speedup. Similarly, simple geometric trans-
formation of thread dimensions in Gaussian Elimination
and Cell improves their performances by around 4×. Al-
though it seems that Cell had more uncoalesced access, it
uses a 3D thread block on O(N3) data vs Gaussian Elimi-
nation using 2D thread block on O(N2) data. Therefore the
speedup is similar. The Polybench/GPU benchmarks and
SpMV achieved 2× to 8× speedup after the transformation,
which fixed the uncoalesced load operations. As the speed up
is related to the amount of uncoalesced access in the original
code, GESUMMV has higher speedup compared to AtAx,
BiCG, etc due to its 2× more uncoalesced accesses.
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Figure 3: Effective bandwidth on Tesla K20. Y-axis is in
logarithmic scale

Figure 3 provides useful insights into the benefits of our
transformation algorithms. Five out of the ten benchmarks
reached over 100GB/s bandwidth after our optimization, and
the high memory bandwidth directly contributes to over-
all application performance, because the time for fetching
data from global memory is significantly reduced by coa-
lesced accesses. Memory bounded kernels benefit more from
our algorithms than compute bounded ones. The average
speedup is 6× for all of the applications tested.
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5.4 Discussions
Dynamic analysis, in general, can be inaccurate in some
cases as the analysis might be dependent on input data sets.
But the effectiveness of our specific characterizing tool does
not depends on choosing appropriate input sets. To the best
of our knowledge, we are not aware of any real benchmark
on which different input datasets can make the same memory
reference changing from being coalesced to uncoalesced,
or vice-versa. The input dataset may only change the run-
time uncoalesced access count/stride/bandwidth usage met-
ric. But, ignoring corner/artificial cases, it will not change
the fact whether a memory reference is coalesced or not.
However, the final performance of the transformed code can
be affected, of course, by the input dataset. In our test suite,
for 6 out of 10 benchmarks the control flow is independent
of the input, therefore the same transformation is always re-
quired whatever the input, and such transformation is auto-
matically computed and implemented in our framework.

Our dynamic analysis for detecting uncoalesced access
operates on arbitrary CUDA/PTX codes. Our transformation
scheme based on geometry permutation can also handle any
CUDA/PTX program. Therefore, we can analyze all Rodinia
benchmarks and apply the geometric permutation on them.
However our intra- and inter-thread optimization framework
using the polyhedral model is limited to affine CUDA pro-
grams, and cannot handle all Rodinia benchmarks.

Coalesced access may increase the register pressure and
result into higher amount of spill. But we observe signif-
icant speedup by achieving coalesced access (as shown in
Table 3). Therefore, the effects of other factors, if any, must
have been negligible.

6. Related Work
Many previous works focused on improving the program-
ming productivity by automate transformation tools such
as from C to CUDA [5, 6] and OpenMP to CUDA [22–
24]. PPCG [36] uses polyhedral analysis and convert legacy
affine sequential C codes to CUDA automatically. In con-
trast, our work can operate on arbitrary input CUDA/PTX
codes and takes as input a CUDA program, and our intra-
thread optimization focuses exclusively on data coalesc-
ing. Par4All [4] transforms C or Fortran code to CUDA
or OpenCL code. Par4All uses a polyhedral analysis tool
called PIPS but the tool itself is not entirely based on poly-
hedral analysis. Unlike PPCG, it does not use any shared
memory. Optimization techniques such as loop collapsing
or thread coarsening are used in [27, 38], they however dif-
fer from coalescing-centric approach to find a new thread
block geometry. Few works have been proposed for spe-
cific algorithms such as [15, 25, 28, 29]. Inspector/execu-
tor based strategies [35, 37] have been proposed to support
non-affine irregular codes. Another set of work provides
directive-based CUDA code optimizations [21, 33] or API

to transform CUDA codes [13] but rely on manual annota-
tions from the programmer.

CUPL [3] uses polyhedral methods to detect possible un-
coalesced accesses of affine CUDA codes. In contrast, our
dynamic analysis method can detect coalesced or uncoa-
lesced access pattern in any affine and irregular PTX codes.
To the best of our knowledge, CUPL limits to detecting un-
coalesced accesses, and does not automatically transform
programs. Therefore CUPL cannot lead to any automatic
improvement in performance, in contrast to our approach
which automatically transforms programs. GRace [39] and
GMProf [40] was developed to detect data races in shared
memory, using a similar approach to ours that combines dy-
namic analysis and static transformation. Previous dynamic
analysis techniques ( [9, 10]) also focuses on program cor-
rectness and aims to detect race conditions and bank con-
flicts. To the best of our knowledge, we present the first dy-
namic analysis approach for improving the global memory
access pattern on GPU. In addition, our framework targets at
PTX code that can be derived from any heterogeneous pro-
gramming language or directives.

7. Conclusion
In this paper, we have combined dynamic analysis approach
with static transformation with an aim to improve locality of
global memory data during a thread warp execution. Given
a PTX code of a program, we (1) characterize its global
memory access operations and separate coalesced and unco-
alesced access, (2) study access pattern of the uncoalesced
accesses and recommend some improvement strategy if pos-
sible and (3) implement transformations of the input PTX
(or CUDA) code to improve data coalescing. We have char-
acterized GPU benchmark suites using the dynamic analysis
and transformed a number of. Our transformed version en-
sures coalesced access and improves the kernel computation
time by 2× to 35×.
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