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Abstract

We have developed compiler algorithms that analyze explic-

itly parallel programs and restructure their shared data to

reduce the number of false sharing misses. The algorithms

analyze per-process shared data accesses, pinpoint the data

structures that are susceptible to false sharing and choose

an appropriate e transformation to reduce it. The transfor-
mations either group data that is accessed by the same pro-

cessor or separate individual data items that are shared.

This paper evaluates that technique. We show through
simulation that our analysis successfully identifies the data
structures that are responsible for most false sharing misses,

and then transforms them without unduly decreasing spatial
locality. The reduction in false sharing positively impacts

both execution time and program scalability when executed
on a KSR2. Both factors combine to increase the maximum
achievable speedup for all programs, more than doubling

it for several. Despite being able to only approximate ac-

tual inter-processor memory accesses, the compiler-directed

transformations always outperform programmer efforts to

eliminate false sharing.

1 Introduction

On bus-based, shared memory multiprocessors, much of the

“unnecessary” bus traffic. i.e., that which could be elimi-
nated with better processor locality [AG88], is coherency
overhead caused by false sharing [TLH94, EJ9 1]. False shar-

ing occurs when multiple processors access (both read and
write) different words in the same cache block. Although the

processors do not actually share data, they incur its costs,

because coherency operations manipulate cache blocks. In

a write-invalidate coherency protocol the overhead of false

sharing takes the form of extra invalidations when a proces-
sor updates data and extra invahdation misses when other
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processors reread different data that reside in the invalidated
cache block.

False sharing is caused by a mismatch between the mem-

ory layout of write-shared data and the cross-processor mem-
ory reference pattern to it. By changing the way shared data

is laid out in memory to better conform to the memory refer-

ence pattern, false sharing can be eliminated. In particular,
all data that are accessed by the same processor should be

grouped together, improving processor locality. Individual

data objects that are accessed by multiple processors should

be separated and padded to the size of a cache block. Al-

though this restructuring reduces false sharing, applying it

universally may have a negative impact on spatial locality

that outweighs the gain in processor locality. Therefore, it

is important to carefully balance the tradeoff between pro-

cessor and spatial locality, so as to maximize program per-

formance.

To this end we have developed and incorporated into the

parafrase-2 [F’GH+89] source-to-source restructurer a series

of compiler algorithms [JE92, JE94] and a suite of data

transformations. The algorithms analyze explicitly paral-

lel programs; they produce information about each proces-

sor’s memory reference patterns that identifies data struc-

tures susceptible to false sharing, decide whether transform-

ing them will pay off and then choose appropriate transfor-

mations.

This paper evaluates that technique. We show through

simulation that the analysis successfully identifies the data

structures responsible for most false sharing misses, and

makes appropriate tradeoffs between eliminating false shar-

ing and reducing spatial locality. For example, with 128 byte

cache blocks, 70y0 of the cache misses in our workload are

due to false sharing. The transformations eliminate 80% of

them, while increasing other types of misses by only 19%.

The overall effect reduces the total number of cache misses

by half. No single transformation is responsible for the false

sharing reductions, even wit hin a single program: all are

important contributors to improved performance.

The reduction in false sharing misses has two effects on

run-time performance as measured on a KSR2: reductions

in execution time and improved program scalability. Of the

two, improved scalability (better performance with increas-

ing numbers of processors) is the decisive factor. Memory

contention from false sharing in the untransformed programs

grows more than linearly with the number of processors. The

compiler-directed transformations allevlate this bottleneck.
and extend scalability. often to the point where the max-

imum achievable speedup more than doubles. Before the

point at which the performance of the unoptirnized programs

no longer scales, the compiler-optimized programs still have
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lower execution times, ranging from a modest (2%) to a more

sizable (58~0) amount.

We also compare the compiler-optimized approach to sev-

eral programs m which considerable programming effort had

been expended to improve data locality, including eliminat-

ing false sharing. Despite being able to only approximate

actual inter-processor memory accesses, the compiler analy-

sis always outperforms programmer hand-tuning, often sub-

stantially.

The next section identifies the parallel programming

paradigm for which our algorithms are appropriate and de-

scribes the particular model used in our workload. Sec-

tion 3 presents a brief overview of our compile time analysis,

and describes the shared data transformations and heuris-

tics for applying them. Section 4 describes our methodology

and workload. Section 5 presents the experimental results

which are the contribution of this paper. They are based on

both simulation and execution time experiments and com-

pare compiler-optimized programs to both unoptimized and

hand-optimized programs. Related work is discussed in sec-

tion 6, and section 7 concludes.

2 Model of Parallel Programming

Our analysis and transformations are appropriate for shared

memory paradigms where accesses to shared data can be

parameterized by variables that have different values for dif-

ferent processes. Examples of these variables include induc-

tion variables of FORALL loops in HPF [Hig93] and private

variables, such as pzd in Figure 1, in the fork/join model.

Our current implementation targets programs that use the

latter: coarse-grained, explicitly parallel C programs that

execute on shared memory multiprocessors. Examples of

such programs can be found in the Stanford SPLASH appli-

cation suite [SWG91]. These programs currently execute on

small to medium scale multiprocessors, both commercially

(e.g., Sequent Symmetry [LT88]. SGI Challenge [GW94],

SPARCcenter 2000 [M. 93], and the KSR2 [Ken94] ) and

in research environments (e.g., DASH [LLG+92], FLASH

[LLG+94]).

The granularity of parallelism in these programs is coarse,

on the level of an entire process. Our analysis assumes the

number of processes equals the number of processors and

processes do not migrate. (This restriction can be relaxed

to allow a larger number of processes, but the analysis may

then overestimate the amount of false sharing between the

processors. ) The programs conform to an SPMD model of

parallel programmmg: the processes all have identical code,

but they need not take the same paths through the code.

They may or may not access different data.

Processes are created explicitly, e.g., using a forko system

call (Illustrated in Figure 1) They are typically spawned in

a loop that iterates over the number of processes, each value

of the induction variable (e. g., p~d) 1s stored in a prl~-ate (to

each process) variable as a de facto process identifier. We

call this variable a process dzjferentzutzng varr,able (PDV)

Process synchronization IS performed using both locks and

global barriers. Locks are used to enforce mutual excluslon,

i.e., they seriahze access to critical sections. Barriers seP-

arate phases of program execution, When the control flow

of a process reaches a barrier, it must wait until all partlc-

lpat]ng processes also reach it, Barriers are often used m

shared memory multiprocessors as a (relatively) inexpensive

mechamsm to enforce large sets of cross-process data depen-

dence that otherwme would have to be enforced by a large

number of locks. 1

While our workload consists of programs written in C,

our compile-time analysis and transformations rely on prop-

erties that are more restrictive than what the C program-

ming model rmovides. The most imDortant constraints in-. .
volve pointers and separate compilation (a full description

will appear in [Jer95] ).

While our model allows for pointers, the full generality

of pointers in C is restricted to reduce pointer aliasing of

statically allocated data to that induced by pointer type

parameters to functions. For example, pointers may only

point to objects of the same type as in their declarations,

and pointer arithmetic and indirection through arithmetic

expressions are disallowed.

In order to ensure that any shared data transformation is

applied universally to all accesses to a target data structure,

separate compilation is restricted to only those modules that

do not access shared data that may be targeted for transfor-

mat ion.

3 Compile-time Analysis and Transfor-

mations

Since this paper evaluates the ability of the static analysis
to eliminate false sharing rather than the algorithms per se,
we provide only an overview of the analysis and transforma-

tions. Section 3.1 briefly describes the compile-time analysis

used to pinpoint data structures that are susceptible to false

sharing. Section 3 2 illustrates how our four transformations

eliminate false sharing, and Section 3.3 discusses under what

conditions they are applied.

3.1 Compile-t ime Analysis

In order to determme which data structures are suscepti-

ble to false sharing, where locality may be improved, and

which transformations to apply at compile time, we ana-

lyze a program and compute an approximation of the mem-

ory access pattern of each of its processes, This compiler

analysis involves three separate stages. The first uses inter-

procedural analysis of the control flow to determine which

sections of code each process executes, and annotates the

nodes of the control-flow graphs accordingly [JE92]2. The

second performs non-concurrency analysis [MR93] interpro-

cedurally by examining the barrier synchronization pattern

of the program, delineating the phases that cannot exe-

cute in parallel and computing the flow of control between

them [JE94]. The thmd stage performs an enhanced in-

terprocedural, flow-msensitlve, summary side-effect analysis

[Bar78, Ban79, Mye81, CK88b] and static profiling on a per-

process basis (based on the control flow determined in stage

one) for each phase (determined in stage two).

Per-process references to shared data occur either as a

result of the processes executing different code (and thus ac-

cessing different shared data) or by the irnphcit partitioning

of arrays across the processes when they execute the same

code. Per-process control-flow analysis (stage 1) detects the

first case, and summary side-effect analysis and process dif-

ferentiating variables (PDVS)3 (stage 3) help detect the sec-

lHPF has direct cc)llnt,erpart? to constructs In the fork/jo]n model

For example, Ite, at,,ons of FORALL loops a,-e “forked” ,mpl]cltly val-

ues of the FORALL Il]tiuct,lon variables could act as a PDVS, and there

m an Impl]clt barrier ,~ftel- a FORALL

2Th,s reference dewr, bes the general techmque, but a,, implemen-

tation we no longer us<,

3As mcnt] oned Ill section ‘2 process dlfferent]atlng variables are

private var]ables that have value. t hat vary across the processes and

are Invariant througho!lt the I] fetlme of the processes ptd In F]gure 1
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private int pid;

shared barrier_t Barrl, Barr2, Barr3;

shared int NumProcs;

for ( pid = 1; pid < NumProcs; pid++) {

if (forko == O) {

Worko;

exit(0);

Worko;

Worko {

while (converged != O) {

SubPartl(pid);

Wait_Barrier(&Barrl);

SubPart2(pid);

Wait_Barrier(&Barr2);

if (pid == 1)

converged = TestConvergedo;

Wait_Barrier(&Barr3);

SubPartl (proc)

Int proc;

celll = valuel [proc];

cel12 = value2[proc];

(a) (b) (c)

Figure 1: Example program segments that illustrates the use of a process differentiating variable in process creation (a),

per-process control flow (b), and shared data access (c) in our parallel program model.

end. The side-effect analysis represents the sections of each

array that each process accesses using bounded regular sec-

tion descriptors to describe the index expressions [HK91].

When a regular section descriptor contains a PDV in the

index expressions, we test whether the descriptor identifies

disjoint sections of the array for different values of the vari-

able. The array is implicitly partitioned across processes if

the sections are disjoint. The per-process control-flow anal-

ysis, on the other hand, identifies control statements where

the control flow of different processes diverges, and uses this

information to compute a separate control-flow graph for

each process. Analyzing shared arrays and structures that

are indexed by PDVS, and applying the side effect analy-

sis to the separate control-flow graphs yields the sections of

shared data that each process reads and writes.

We improve upon traditional summary side-effect analysis

in two respects. First, to improve its accuracy we allow

multiple regular sect ion descriptors [CK88a, HK91] and only

merge them when very little or no information will be lost,

or when the number of descriptors for a single array exceeds

some small preset limit. (None of the arrays used in our

benchmarks required more than 10 descriptors). Second, to

pinpoint data structures most responsible for false sharing,

we use static profiling to produce a weighting of the side-

effects with respect to estimated execution frequency.

The non-concurrency analysis (stage 2) uses barrier syn-

chronization points to determine which portions of a pro-

gram can execute in parallel and which cannot. It therefore

detects the memory access pattern of distinct phases of a

program between barriers, and, more importantly, when the

pattern shifts. Coupled with static profiling, it determines

the dominant sharing pattern in the program and restruc-

tures shared data for that pattern.

Including all techniques in the source-to-source restruc-

turer had little impact on the overall compile costs. When

techniques commonly used in optimizing compilers (such as

1s an example.

4 A bounded regular sect]on descriptor 1s a vector of subscript posl-

t,!ons In which each element descr]bes the accessed portion of the array

]n that dlmenslon. Each element M either a simple. Invariant expres-

sion of program variables or constants (when the Index expression for

that dimension does not, contain an Induct Ion variable) a range (glv-

Ing s,mple, Invariant expressions for the lower boun<i I]pper bound

a,ld str]cfe) or unknown (when the Index expressions are too , omplex

C,I- I,al-lable)

call and flow graph construction, alias, dependence and loop

analysis) were included in our source-to-source restructurer,

the execution time of our algorithms made up only 5’%0 (on

average) of the total running time.

3.2 Shared Data Transformations

In order to eliminate false sharing, data must be restruc-

tured so that (1) data that are only, or overwhelmingly, ac-

cessed by one processor are grouped together, and (2) write

shared data objects with no processor locality [AG88] do not

share cache lines. Two transformations, originally devised

for manual application, group and transpose and tndwectton
[EJ91], address item (l); the third, pad and altgn, is well

known and addresses item (2).

Group & Transpose: Group & transpose (Figure 2a)

physically groups per-process data together by changing the
layout of the data structures in memory. It gathers vectors
in which adj scent elements are accessed by different proces-

sors into a group and then transposes it. If each processor’s
data is less than the cache block size, it may be padded, so
that no two processors’ data share a cache block. In addi-

tion to eliminating false sharing misses, this transformation
Improves spatial locality.

Indirection: When it is not possible to physically change
the data layout (because, for example, the affected per-

process data structure is embedded into the elements of a

dynamically allocated list or graph), we can achieve a similar

effect by using indirection Indirection (Figure 2b) allocates

data areas of memory for each processor, places shared data
into them, and locates the shared data with pointers that

replace the values in the original data structures. Unlike
group and transpose, indu-ection has two possible sources of

run time overhead: additional space for the pointers, and an

additional memory access for each reference to the data

Pad & Align: The third transformation pads and aligns

on cache block boundanes data (scalars or array elements)

that are falsely shared In the short term but write-shared

by all processes over time. Padding the data structures in-

creases the data set size. and may therefore increase con-

fhct and capacity misses, and reduce spatial locality when
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Aftec

typeA Vectl [N]
~

typeB Vect2[N] w~j

typeC Vect3[N] -

typeD Vect4[N] ~

Struct {

t ypeA Vect 1;

typeB Vect2; Cache Blocks

typeC Vect3;

typeD Vect4;

} GTVect[N];

(a)

typeA Vect 1[N]

typeA Wed 1[N] I d

I

mml’m
I BuffesO Bufferl Buffer2 BufferN

(b)

Figure 2: Illustration of (a) group & transpose and (b) indirection.

mPmcessoro

B Processor 1

~ Processor2

1I D Processor

a m-ocessor accesses the entire shared area. However, iudi- at least an order of magnitude. This is done so that the. ,.
cious use of padding need not have these effects. In order

for spatial locality to benefit write-shared data, it must be

synonymous with processor locality, i.e., a processor must

access the data over a short period of time. If it does not,

other processors will invalidate the data before it can be ref-

erenced. Therefore we only pad data structures that lack

processor locality, i.e., where the possible loss of spatial lo-

cal it y is insignificant relative to the savings in false sharing.

Pad and align has been used to eliminate false sharing in

both cache blocks and pages in other work. Our application

of padding differs in that we apply it only when indicated by

the static analysis, as opposed to from feedback from off-line

cache simulation profiles [TLH94], or based on programmer

knowledge [BFS89].

Locks: Locks are also padded, to the size of the cache

block, rather than allocated with the write-shared data they
protect. Co-allocating locks and data [TLH94] improves spa-
tial locality, but generates coherence traffic when there is

content ion for the locks. The processor that holds the busy
lock loses exclusive ownership of its cache block, because of
reads by waiting processors. Its writes to the data cause

additional invalidations, and then invalidation misses when

the waiting processors reread the status of the lock. Our

approach of always padding locks decreases spatial localitY,
but eliminates any false sharing caused by lock contention.

3.3 Transformation Heuristics

Once all stages of the static analysis have been performed,
we use a number of heuristics to detect which data struc-

tures are susceptible to false sharing and which transforma-
tions should be applied to eliminate it. The heuristics were

developed by comparing the results of the per-process side-

effect analysis to profiling information from simulations that

showed the number of false sharing misses per data structure.

The factors used in the heuristics to make the transforma-

tion decisions are the type (read/write, shared/per-process),

stride (known/unknown) and frequency of access to the el-

ements of a data structure. In order to apply either group

& transpose or indirection to a data structure, the pattern

of writes to the data structure must be per-process and the

pattern of reads either per-process or read-shared without

spatial or processor locality. If the pattern of reads is read-

shared with locality, the data structure is transformed only

if the number of writes dominate the number of reads by

reduction in false sharing will exceed any performance loss

from reduced spatial locality. Except for locks, which are al-

ways padded, data structures are only padded and aligned on

cache block boundaries when both the reads and the writes

exhibit sharing without processor or spatial locality.

4 Methodology and Workload

We perform both simulation and execution-time experiments

to quantify the effects of transforming shared data on the

programs in our workload. False sharing reductions and

other cache miss metrics were measured using trace-driven

simulation. Each program was traced (both before and af-

ter shared data was transformed), using a software tracing

tool for parallel programs [EKKL90]. Cache miss rates were

analyzed with a multiprocessor simulator that emulates a

simple, shared memory architecture. The processors are as-

sumed to be RISC-like, with a 32 KB first level cache and an

infinite second level cache5. We studied block sizes ranging

from 4 to 256 bytes.

Execution times were measured on a 56-processor Kendall

Square Research KSR2 [Ken94]. Each processor has a 512

KB first level cache, divided equally between data and in-

struct ions. The second level cache cent ains 32 MB, and uses

a coherency unit of 128 bytes. The second level cache miss

latency is 175 cycles, if it is serviced by a processor on the

same ring, and 600 cycles if the servicing processor is on a

different ring.

The KSR2 default lock data structure is large (80

bytes) and aligned on cache block boundaries. To make

implementation-independent comparisons with the simula-

tions, and to study the effect of padding and aligning

locks. we used KSR2 synchronization primitives to provide

a smaller ( 1 word), alternate implementation of locks in the

untransformed versions of the programs.

Gauging the impact of the static algorithms and transfor-

mations on program performance and comparing the com-

piler analysis to programmer efforts to eliminate false shar-

ing requires three versions of each program: an unopti-

mized version, a compiler-transformed version and a hand-

optirnized version. The programs we collected had been

hand-optimized for locality to varying degrees. In one group,

that included Maxflow [Car88], Pverify [MDWSV87] and

‘infinite caches can be used to approximate very large (on the

order of several megabytes) second level caches [Egg91].
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Program Description Lines of C Versions

Maxflow Maximum flow in a directed graph 810 NC
Pverify Logical verification 2759 NCP
Topopt Topological optimization 2206 NCP

Fmm Fast multipole method (n-body) 4395 NCP
Radiosity Equilibrium distribution of light 10908 NCP
Raytrace Rendering of 3-dimensional scene 12391 NCP

LocusRoute VLSI standard cell router 6709 CP
Mp3d Rarefied fluid flow 1653 CP
Pthor Circuit simulator 9420 CP
Water N-body molecular dynamics 1451 CP

Table 1: Benchmarks used in our study. Version refers to (N)ot optimized, (C)ompiler optimized, or (Programmer optimized.

Topopt [DN87], no effort had been made to improve locality.

For Pverify and Topopt, in particular, the programmers had

constructed data structures to match their “natural” way

of thinking about the semantics of the program algorithms,

rather than for better memory system performance. To pro-

vide hand-opt imized versions oft hese programs ( Pverify and

Topopt), we manually transformed them [EJ91].

In another group that comprised the original SPLASH

benchmark suite [SWG91] (LocusRoute, Mp3d, Pthor, Wa-

ter) and the SPLASH2 benchmarks (From [SHHG93], Ra-

diosity and Raytrace [S GL94]), programs had been highly

optimized for locality, including eliminating false sharing.

The SPLASH2 programs contained several easily identifi-

able data structures whose elements had been organized

by processor (in our terminology, grouped and transposed),

and padded. We undid these transformations to produce

unoptimized versions of the programs, but made no other

changes. In addition to providing a general comparison be-

tween the compiler-directed and hand-tuned optimizations,

these hand-unoptimized programs enabled us to gauge the

compiler’s ability to detect and transform data structures

the programmer had chosen. The programmer efforts to im-

prove locality in the original SPLASH benchmarks were not

as obvious. Therefore we left them as is.

5 Results

We present two sets of results to describe the impact of our

analysis and transformations on the benchmarks. The first

demonstrates their overall effectiveness in eliminating false

sharing and the relative contribution of the different trans-

formations, all via simulation. The second measures the

impact of eliminating false sharing on execution time and

program scalability and compares the compiler approach to

that of programmer hand-tuning.

Simulation Results: Figure 3 and Table 2 show the re-
sults of applying the algorithms and transformations to the

unopt imized programs in our workload. In the figure, the
white portion of each bar is the miss rate due to false shar-

ing; the black portion represents the remaining misses. It

also indicates what the total minimum miss rate for that

block size would be if false sharing were elimmated without
any effects on spatial locality.

The compiler-directed shared data restructuring reduced
false sharing in all programs for all block sizes, regardless of
the size of the original false sharing miss rate. (False shar-
ing is greater with larger block sizes; and in our programs

the amount of false sharing, of course, varied.) The greatest

reductions occurred for From, Pverify and Radiosity, where

on average more than 90?Z0of all false sharing misses were
eliminated. False sharing miss rates in Maxflow, Raytrace

and Topopt, were also significantly reduced, although not to
the same extent. In Maxflow and Raytrace, the remain-
ing false sharing is mostly caused by a few busy, write-

shared scalars that were allocated to the same cache block.

They did not appear as candidates for restructuring, because
the static profiling underestimated their dynamic access fre-

quency. The remaining false sharing misses in Topopt occur
mostly in a write-shared array that is dynamically parti-
tioned across the processes in a revolving manner. False

sharing misses occur in the cache blocks that contain ele-
ments from more than one partition. Since the partitioning

of the array is dynamic and revolving, the static analysis
cannot detect the per-process accesses. Nor does the array
appear to the compiler to have poor spatial locality, because

the writes to the elements in a processor’s partition occur
with unit stride.

Although, overall, the transformations were very success-

ful in eliminating false sharing misses, no single transforma-
tion was responsible for the reductions for all programs, or

even for a single program. Group & transpose and padding
locks were most applicable, used in 5 out of 6 programs.
However, the majority of false sharing misses were elimi-
nated by group & transpose and indirection. Unlike padding,

these transformations are harder to apply using simulation
profiles; static analysis can more easily ensure that only data

that are accessed by the same process are grouped together.

Our compiler-driven transformations provide this.

One transformation (group & transpose) improves spatial
locality, while others (indirection and pad & align) decrease

it. Since both sets of transformations were applied to all but

one program, our results reflect both effects. For most pro-
grams the change in spatial locality (as reflected by the black

portion of the bars in Figure 3) was modest, since the effecix
of the transformations canceled one another. The increase
in misses other than those attributable to false sharing was

significant only for Maxflow (it almost doubled at 128 byte
cache blocks ), which is restructured with two t ransforma-

tions, both of which increase the shared data size. However,

for all programs and at all block sizes (data not shown) the

reduction in false sharing more than compensated for any
decrease in spatial locality, and the total miss rate fell.

Execution Time Results: Eliminating false sharing af-

fected two aspects of overall program performance: execu-
tion time and program scalability. The difference in execu-
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Figure 3: Total cache miss rates for unoptimized (left) and compiler-transformed (right) versions of programs for 16 and 128

byte cache blocks. (Recall that the KSR2 has a 128 byte block. ) The portion of the miss rate that is due to false sharing is

the white portion of each bar. Each program was run on 12 processors, except for Topopt which was run on 9.

tion time between the unoptimized and compiler-optimized grams not only run faster, but, since they scale better with

versions of the programs, over the range of processors where the number of processors, the maximum performance they

the unoptimized version still scaled (i.e., where an increase can achieve is often much higher (Table 3, columns 2 and 3).

in the number of processors produced a drop in execu- This maximum performance difference is particularly strik-

tion time), progressively increased. Maximum improvements ing for From, Pverify, Radiosity and Maxflow, where the

were modest for Fmm (3~0), Radiosity (6~0) and Raytrace transformed versions exceed the maximum speedup of the

(2%), all programs in which we undid only the easily identi- original by factors of 2.1, 2.4, 2.7 and 3.1, respectively.

fiable programmer transformations to produce unoptimized

versions. Reductions were better for the programs with no

hand-tuning, Maxflow (50%), Pverify (58%) and Topopt

(2o%) Situations where the transformations had minimal

performance impact occurred primarily when (1) there were

few processors accessing the shared data, and either (2) the

absolute miss rate value was small (Radiosity), or (3) the re-

duction in false sharing misses, although large, was a small

proportion of total misses and therefore had little effect on

the total miss rate (From, Raytrace).

As the number of processors grew, so did the mter-

processor contention for data structures that are falsely

shared. At some threshold number of processors. which

varies across the programs, the memory contention created

by false sharing had such a severe impact that it reversed the

speedup trend of the unoptimized versions of the programs

However, the performance of the transformed versions con-

tinued to improve, reaching maximum scalabdity at a greater

number of processors (representative programs appear In

Figure 4) (The only exception was Pverify, for which the un-

optlmlzed and compiler-optimized versions both scaled to 16

processors ) Thus, compiler-transformed versions of the pro-

Despite being based on algorithms and heuristics that

can only approximate dynamic per-processor accesses and

processor interaction, the compder-directed transformations

always outperformed programmer efforts, sometimes more

than doubling the maximum obtainable speedup. The com-

pder was able to eliminate more false sharing misses in all

programs In some cases. it was simply more exhaustive in

lts coverage For example, the programmer missed oppor-

tunities to apply group & transpose in Pthor, Pverify and

Topopt; indirection m Pverify and Topopt; and pad & align

in Radiosity and Pthor, In others, it made a better trade-

off between spatial and processor locality. For example, the

programmer padded and aligned an array in Raytrace that

the static analysis had concluded was not predominantly ac-

cessed on a per-process basis Finally, the programmer some-

times left locks unpadded or associated them with the data

they protected, Radlosity, LocusRoute and MP3D suffered

from both.
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Total reduction Fraction of reduction by transformation

Program in false sharing Group & Transpose Indirection Pad & Al ign Locks

Maxflow 56.5% 49.2% 7.3%

Pverify 91.2% 6.4% 81.6% 3.1%

Topopt 79.9% 61.3% 18.6%

Fmm 90.8% 84.8% 6.0%

Radiosity 93.5% 85.6% 1.0% 6.8%

Raytrace 78.3% 70.4% 3.3% 4.6%

Table 2: The false sharing miss rate reduction broken down by transformation. Numbers are averages over 8-256 byte cache

blocks.
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versions for 3 representative programs. Raytrace is typical of programs where the compiler and programmer approaches were

comparable, From, of those where programmer efforts brought little gain and Pverify, which falls in between. All data points

are speedups relative to the uniprocessor execution of the unoptimized version. Note the different scales on the vertical axis.

6 Related Work

The research that is most closely related to ours is Torrellas

et al. [TLH94], who reduced false sharing using a somewhat

different set of transformations that were applied manually.

Like us, they pad and align records and busy scalars; how-

ever, they did not use group & transpose or indirection, and

they co-allocated locks with the scalars they protect rather

than placing them in separate cache blocks. In addition,

they used detailed, trace-driven simulation profiles, rather

than static analysis, to determine which data structures suf-

fered from false sharing and to guide the application of the

transformations. On average, for 64 byte cache blocks, they

reduced the number of shared misses b,v 10~0 and 13~o, for 16

and 32 processor simulations, respectively. In cent rast, on a

slightly different workload, our transformations reduced the

total miss rate by an average of 4991G (on the unoptimized

programs, also for 64 byte blocks, but with 12 processors).

Dubois et al. [DSR+93] reduced false sharing with hard-

ware, either by delaying invalidations (at the sender, receiver

or both) until special acqmre or release instructions were ex-

ecuted, or by performing invalidations on a word basis. De-

laying invalidations both at the sender and the receiver and

invalidating cache subblocks consistently perform well. The

former reduced false sharing misses by 85% to 100%; the lat-

ter totally eliminated them. These reductions were aclneved

at the cost of increased memory traflic and additional hard-

ware complexity. The first approach requires a change in

the instruction set architecture. as well as hardware to im-

plement invalidation buffers at each processor node. The

second requires an invalid bit per word in the cache block,

and causes more invalidations when the writes exhibit spa-

tial locality.

Several compiler approaches reorganize control structures

rather than data. One group used workloads that consisted

of either loops or library routines that have fine-grain paral-

lelism [JD91, GP91, PC89]. Their studies recorded perfor-

mance improvements only for the code fragments that were

transformed. Therefore the results are overly optimistic with

regard to the expected performance of executing entire pro-

grams. Ju and Dietz [JD91] restructured a program frag-

ment of several loops accessing array elements. Their re-

structuring algorithm applies loop transformations (such as

loop distribution) and data layout transformations (access-

ing arrays in row or column major order), according to a

coherency cost function. The restructuring provided a 25~o

improvement in execution time of the loops for a 64 KB

cache. Gupta and Padua [GP91] also examined sequential

programs that were automatically parallelized at the loop

level. They strip-mined the loops to the size of the cache

block and assigned each strip to a different processor. The

decline in miss ratios ranged from 470 to almost 60%, as

block size was increased to 128 bytes. No execution times
were reported Peir and Cytron [PC89] partitioned loops

to minimize inter-processor communication when process-

ing recurrences. Their mechanism for partitioning utilizes

loop unrolling and dependence vectors. Partitions are then

scheduled on different processors.
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Maximum Speedup and Scalability (# of’ processors)

Program Original Compder Programmer

Maxflow 1.4 ( 8) I 4.3 (16) I

Pverify 2.5 (’16j 5.9 ~16j 3.5 ( 8)

Topopt 9.2 (44) 10.3 (28) 10.2 (28)

Fmm 16.4 (20) 33.6 (48+) 16.4 (20)

Radiosity 7.0 ( 8) 19.2 (28) 7.4 ( 8)

Raytrace 7.0 ( 8) 9.6 (12) 9.2 (12)

LocusRoute 12.3 (20) 12.0 (20)

Mp3d 2.9 (28) 1.3 ( 4)

Pthor 2.8 ( 4) 2.2 ( 4)

Water 9.9 (40) 4.6 (12)

Table 3: Maximum speedups for original, compiler-optimized and programmer-optimized versions and the number of processors
at which they occur. Note, for LocusRoute, Mp3d, Pthor and Water only programmer- and compiler-optimized versions were

available, while for Maxflow, no programmer-optimized version was available.

Wolf and Lam [WL91] and Kennedy and McKinley

[KM92] do similar work, but on complete programs. They

reorganize control to improve locality in the inner loops.

They also detect a parallel loop, put it in the outermost

legal position and tile (i.e., strip mine and interchange) it

if it contains spatial locality. Their transformations remove

false sharing by improving processor locality.

Two studies focused on reducing false sharing in pages

rat her than cache blocks. Bolosky et al. [B FS89] eliminated

false sharing by coalescing objects into a larger object or

padding individual objects to page boundaries, all manually.

However, they do not quantify the effect of eliminating false

sharing. Granston [Gra93] presented a theory to identify and

eliminate page-level sharing between processors that occur

in parallel do-loops. The transformations select blocking and

alignment factors that cause minimal overlap between sets

of pages accessed by different processors.

7 Conclusion

In this paper we have analyzed the effectiveness of compile-
time analysis and shared data transformations in reducing

false sharing in explicitly parallel programs. Our results in-

dicate that the static analysis successfully identifies the data
structures that cause most false sharing and restructures

them to eliminate it, while keeping the negative impact on

spatial locality under control. No single transformation is
responsible for the false sharing reductions, even within a

single program: all are important contributors to improved

performance.

The reduction in false sharing misses brought different
performance benefits in different regions of the speedup
curves. As long as the unoptimized programs experienced

speedups with increasing numbers of processors. the trans-
formed versions improved execution time by modest (as
small as 2Y0) or more substantial (up to 58!ZO) amounts. Af-

ter the point at which the unoptimized programs no longer

scaled, most compiler-transformed programs still continued

to scale, resulting in more than a doubling of the overall

maximum speedups, on average.

With the trend toward larger caches, larger coherence

umts, and longer memory latencies, false sharing will have an

increasingly large, negative performance Impact Regaining

the performance will necessitate either a significant program-

ming effort to improve locality or the use of a compde-time

system like ours. This paper argues for the latter, on three

grounds. The first is performance. Our particular static

analyses led to transformations that were at least as suc-

cessful as programmer efforts, and sometimes more. The

second is portability of the program source across different

cache architectures. The third is ease of programming. Hand

transformations force the programmer to focus on details of

the caching structures and coherency operations, the shared

data structures’ layout in memory and the often nonintu-

itive (particularly over the temporal domain) cross-processor

memory accesses to them, rather than the semantics of the

programs. For our algorithms and transformations, all three

benefits were realized with only a 5% increase in compile

time.
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