
EECS 583 – Class 9

Classic + ILP Optimization

University of Michigan

February 12, 2024

- 1 -

Announcements & Reading Material

 Hopefully everyone is making some progress on HW 2

» Due Feb 21

 Today’s class

» “Compiler Code Transformations for Superscalar-Based High-

Performance Systems,” S. Mahlke, W. Chen, J. Gyllenhaal, W.

Hwu, P, Chang, and T. Kiyohara, Proceedings of

Supercomputing '92, Nov. 1992, pp. 808-817

 Next class (code generation)

» “Machine Description Driven Compilers for EPIC Processors”,

B. Rau, V. Kathail, and S. Aditya, HP Technical Report, HPL-

98-40, 1998. (long paper but informative)

- 2 -

Course Project – Time to Start Thinking About This

 Mission statement: Design and implement something
“interesting” in a compiler
» LLVM preferred, but others are fine

» Groups of 3-5 people (other group sizes are possible in some cases)

» Extend existing research paper or go out on your own

 Topic areas (Not in any priority order)
» Automatic parallelization/SIMDization

» High level synthesis/FPGAs

» Approximate computing

» Memory system optimization

» Reliability

» Energy

» Security

» Dynamic optimization

» Machine learning for compilers

» Optimizing for GPUs

- 3 -

Course Projects – Timetable

 Now - Start thinking about potential topics, identify group members

» Use piazza to recruit group members

 Mar 11-14: Project proposal discussions, No class Mar 11/13, Regular class

resumes Mon Mar 18

» Aditya, Yunjie and I will meet with each group virtually for 5-10 mins, slot

signups the week before

» Ideas/proposal discussed at meeting – don’t come into the meeting with too

many ideas (1-2 only)

» Short written proposal (a paragraph plus 1-2 references) due Mon, Mar 18

from each group, submit via email

 Mar 25 – End of semester: Research presentations (details later)

» Each group presents a research paper related to their project (15 mins)

 Mid April - Optional quick discussion with groups on progress

 Apr 23-29: Project demos

» Each group, 15 min slot - Presentation/Demo/whatever you like

» Turn in short report on your project

- 4 -

Sample Project Ideas (Traditional)
 Memory system

» Cache profiler for LLVM IR – miss rates, stride determination

» Data cache prefetching, cache bypassing, scratch pad memories

» Data layout for improved cache behavior

» Advanced loads – move up to hide latency

 Control/Dataflow optimization

» Superblock formation

» Make an LLVM optimization smarter with profile data

» Implement optimization not in LLVM

 Reliability

» AVF profiling, vulnerability analysis

» Selective code duplication for soft error protection

» Low-cost fault detection and/or recovery

» Efficient soft error protection on GPUs/SIMD

- 5 -

Sample Project Ideas (Traditional cont)
 Energy

» Minimizing instruction bit flips

» Deactivate parts of processor (FUs, registers, cache)

» Use different processors (e.g., big.LITTLE)

 Security/Safety

» Efficient taint/information flow tracking

» Automatic mitigation methods – obfuscation for side channels

» Preventing control flow exploits

» Rule compliance checking (driving rules for AV software)

» Run-time safety verification

 Dealing with pointers

» Memory dependence analysis – try to improve on LLVM

» Using dependence speculation for optimization or code

reordering

- 6 -

Sample Project Ideas (Parallelism)

 Optimizing for GPUs

» Dumb OpenCL/CUDA smart OpenCL/CUDA – selection of

threads/blocks and managing on-chip memory

» Reducing uncoalesced memory accesses – measurement of

uncoalesced accesses, code restructuring to reduce these

» Matlab CUDA/OpenCL

» Kernel partitioning, data partitioning across multiple GPUs

 Parallelization/SIMDization

» DOALL loop parallelization, dependence breaking

transformations

» DSWP parallelization

» Access-execute program decomposition

» Automatic SIMDization, Superword level parallelism

- 7 -

More Project Ideas

 Dynamic optimization (Dynamo, LLVM, Dalvik VM)

» Run-time DOALL loop parallelization

» Run-time program analysis for reliability/security

» Run-time profiling tools (cache, memory dependence, etc.)

 Binary optimizer

» Arm binary to LLVM IR, de-register allocation

 High level synthesis

» Custom instructions - finding most common instruction patterns,

constrained by inputs/outputs

» Int/FP precision analysis, Float to fixed point

» Custom data path synthesis

» Customized memory systems (e.g., sparse data structs)

- 8 -

And Yet a Few More

 Approximate computing

» New approximation optimizations (lookup tables, loop

perforation, tiling)

» Impact of local approximation on global program outcome

» Program distillation - create a subset program with equivalent

memory/branch behavior

 Machine learning for compilers

» Using ML/search to guide optimizations (e.g., unroll factors)

» Using ML/search to guide optimization choices (which

optis/order)

» Be careful with low compiler content!!

 Remember, don’t be constrained by my suggestions, you

can pick other topics!

- 9 -

Back to Code Optimization

 Classical (machine independent, done at IR level)

» Reducing operation count (redundancy elimination)

» Simplifying operations

» Generally good for any kind of machine

 We went through

» Dead code elimination

» Constant propagation

» Constant folding

» Copy propagation

» CSE

» LICM

- 10 -

Global Variable Migration

 Assign a global variable

temporarily to a register for the

duration of the loop

» Load in preheader

» Store at exit points

 Rules

» X is a load or store

» address(X) not modified in the

loop

» if X not executed on every

iteration, then X must provably

not cause an exception

» All memory ops in loop whose

address can equal address(X)

must always have the same

address as X

1. r4 = load(r5)

2. r4 = r4 + 1

3. r8 = load(r5)

4. r7 = r8 * r4
5. store(r5, r4)

6. store(r5,r7)

BB1

BB2

BB3 BB4

BB5

BB6

- 11 -

Global Variable Migration Example

1. r4 = load(r5)

2. r4 = r4 + 1

3. r8 = load(r5)

4. r7 = r8 * r4
5. store(r5, r4)

6. store(r5,r7)

BB1

BB2

BB3 BB4

BB5

BB6

- 12 -

Induction Variable Strength Reduction

 Create basic induction

variables from derived

induction variables

 Induction variable

» BIV (i++)

 0,1,2,3,4,...

» DIV (j = i * 4)

 0, 4, 8, 12, 16, ...

» DIV can be converted into a

BIV that is incremented by 4

 Issues

» Initial and increment vals

» Where to place increments

1. r5 = r4 - 3

2. r4 = r4 + 1

3. r7 = r4 * r9

4. r6 = r4 << 2

BB1

BB2

BB3 BB4

BB5

BB6

- 13 -

Induction Variable Strength Reduction (2)

 Rules

» X is a *, <<, + or – operation

» src1(X) is a basic ind var

» src2(X) is invariant

» No other ops modify dest(X)

» dest(X) != src(X) for all srcs

» dest(X) is a register

 Transformation

» Insert the following into the preheader

 new_reg = RHS(X)

» If opcode(X) is not add/sub, insert to the
bottom of the preheader

 new_inc = inc(src1(X)) opcode(X) src2(X)

» else

 new_inc = inc(src1(X))

» Insert the following at each update of
src1(X)

 new_reg += new_inc

» Change X dest(X) = new_reg

1. r5 = r4 - 3

2. r4 = r4 + 1

3. r7 = r4 * r9

4. r6 = r4 << 2

BB1

BB2

BB3 BB4

BB5

BB6

- 14 -

Induction Variable Strength Reduction - Example

1. r5 = r4 - 3

2. r4 = r4 + 1

3. r7 = r4 * r9

4. r6 = r4 << 2

BB1

BB2

BB3 BB4

BB5

BB6

- 15 -

Class Problem
Optimize this applying

induction var str

reduction

3. r5 = r5 + 1

4. r11 = r5 * 2

5. r10 = r11 + 2

6. r12 = load (r10+0)

7. r9 = r1 << 1

8. r4 = r9 - 10

9. r3 = load(r4+4)

10. r3 = r3 + 1

11. store(r4+0, r3)

12. r7 = r3 << 2

13. r6 = load(r7+0)

14. r13 = r2 - 1

15. r1 = r1 + 1

16. r2 = r2 + 1

1. r1 = 0

2. r2 = 0

r13, r12, r6, r10

liveout

BB1

BB2

BB3

- 16 -

Class Problem Solution

Optimize this applying

induction var str reduction

r5 = r5 + 1

r11 = r5 * 2

r10 = r11 + 2

r12 = load (r10+0)

r9 = r1 << 1

r4 = r9 - 10

r3 = load(r4+4)

r3 = r3 + 1

store(r4+0, r3)

r7 = r3 << 2

r6 = load(r7+0)

r13 = r2 - 1

r1 = r1 + 1

r2 = r2 + 1

r1 = 0

r2 = 0

r13, r12, r6, r10

liveout

r5 = r5 + 1

r111 = r111 + 2

r11 = r111

r10 = r11 + 2

r12 = load (r10+0)

r9 = r109

r4 = r9 - 10

r3 = load(r4+4)

r3 = r3 + 1

store(r4+0, r3)

r7 = r3 << 2

r6 = load(r7+0)

r13 = r113

r1 = r1 + 1

r109 = r109 + 2

r2 = r2 + 1

r113 = r113 + 1

r1 = 0

r2 = 0

r111 = r5 * 2

r109 = r1 << 1

r113 = r2 -1

r13, r12, r6, r10

liveout

Note, after copy

propagation, r10

and r4 can be

strength reduced

as well.

- 17 -

ILP Optimization

 Traditional optimizations

» Redundancy elimination

» Reducing operation count

 ILP (instruction-level parallelism) optimizations

» Increase the amount of parallelism and the ability to overlap

operations

» Operation count is secondary, often trade parallelism for extra

instructions (avoid code explosion)

 ILP increased by breaking dependences

» True or flow = read after write dependence

» False or (anti/output) = write after read, write after write

- 18 -

Back Substitution

 Generation of expressions by
compiler frontends is very
sequential

» Account for operator
precedence

» Apply left-to-right within
same precedence

 Back substitution

» Create larger expressions

 Iteratively substitute RHS
expression for LHS variable

» Note – may correspond to
multiple source statements

» Enable subsequent optis

 Optimization

» Re-compute expression in a
more favorable manner

1. r9 = r1 + r2

2. r10 = r9 + r3

3. r11 = r10 - r4

4. r12 = r11 + r5

5. r13 = r12 – r6

Subs r12:

r13 = r11 + r5 – r6

Subs r11:

r13 = r10 – r4 + r5 – r6

Subs r10

r13 = r9 + r3 – r4 + r5 – r6

Subs r9

r13 = r1 + r2 + r3 – r4 + r5 – r6

y = a + b + c – d + e – f;

- 19 -

Tree Height Reduction

 Re-compute expression as a

balanced binary tree

» Obey precedence rules

» Essentially re-parenthesize

» Combine literals if possible

 Effects

» Height reduced (n terms)

 n-1 (assuming unit latency)

 ceil(log2(n))

» Number of operations remains

constant

» Cost

 Temporary registers “live”

longer

» Watch out for

 Always ok for integer arithmetic

 Floating-point – may not be!!

r9 = r1 + r2

r10 = r9 + r3

r11 = r10 - r4

r12 = r11 + r5

r13 = r12 – r6

r13 = r1 + r2 + r3 – r4 + r5 – r6

r1 + r2 r3 – r4 r5 – r6

+

+

t1 = r1 + r2

t2 = r3 – r4

t3 = r5 – r6

t4 = t1 + t2

r13 = t4 + t3

r13

after back subs:

original:

final code:

- 20 -

Class Problem

Assume: + = 1, * = 3

0

r1

0

r2

0

r3

1

r4

2

r5

0

r6

operand

arrival times

1. r10 = r1 * r2

2. r11 = r10 + r3

3. r12 = r11 + r4

4. r13 = r12 – r5

5. r14 = r13 + r6

Back susbstitute

Re-express in tree-height reduced form

Account for latency and arrival times

- 21 -

Loop Unrolling

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

loop:

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 >= 400) goto exit

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 >= 400) goto exit

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3
Unroll = replicate loop body

n-1 times.

Hope to enable overlap of

operation execution from

different iterations

loop:

unroll 3 times

exit:

for (i=x; i< 100; i++) {

sum += a[i]*b[i];

}

- 22 -

Smarter Loop Unrolling with Known Trip Count

r4 = 0

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

loop:

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

loop:

unroll multiple

of trip count

exit:

Want to remove early exit branches

Trip count = 400/4 = 100

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

iter3

iter4

- 23 -

What if the Trip Count is not Statically Known?

r4 = ??

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

loop:

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4
r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

iter1

iter2

iter3

loop:
Create a preloop to

ensure trip count of

unrolled loop is a multiple

of the unroll factor

exit:

for (i=0; i< ((400-r4)/4)%3; i++) {

sum += a[i]*b[i];

}

preloop

