EECS 583 — Class 6
Dataflow Analysis I

University of Michigan

January 31, 2024



Announcements & Reading Material
<« HW 2 is available

» See: https://web.eecs.umich.edu/~mahlke/courses/583w24/homeworks.html
» Due: Wed Feb 21
» HW?2 is significantly harder than HW1 so get started early!

» Aditya will go over the HW2 spec and template code at the end of today’s
class (continued in discussion section)
 Slides posted on the course website if you cannot attend discussion

<+ Today’s class

» Compilers: Principles, Techniques, and Tools,
A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.
(Sections: 10.5, 10.6, 10.9, 10.10 Edition 1; 9.2, 9.3 Edition 2)

<+ Next class

» “Practical Improvements to the Construction and Destruction of Static
Single Assignment Form,” P. Briggs, K. Cooper, T. Harvey, and L.
Simpson, Software--Practice and Experience, 28(8), July 1998, pp.
859-891.


https://web.eecs.umich.edu/~mahlke/courses/583w24/homeworks.html

Recap: Liveness vs Reaching Defs

L Iveness

OUT = Union(IN(succs))
IN = GEN + (OUT — KILL)

Bottom-up dataflow

Any path

Keep track of variables/registers
Uses of variables > GEN

Defs of variables - KILL

Reaching Definitions/DU/UD

IN = Union(OUT (preds))
OUT = GEN + (IN — KILL)

Top-down dataflow

Any path

Keep track of instruction 1Ds
Defs of variables > GEN
Defs of variables - KILL



Generalizing Dataflow Analysis

< Transfer function
» How information is changed by “something” (BB)
» OUT = GEN + (IN — KILL) /* forward analysis, e.g., rdefs */
» IN =GEN + (OUT — KILL) /* backward analysis, e.g., liveness */

< Meet function
» How information from multiple paths is combined
» IN = Union(OUT (predecessors)) /* forward analysis */
» OUT = Union(IN(successors)) /* backward analysis */

< Generalized dataflow algorithm
» while (change)

e change = false

* for each BB

+ apply meet function
+ apply transfer functions
+ if any changes - change = true

-3-



What About All Path Problems?

< Up to this point
» Any path problems (maybe relations)
 Definition reaches along some path
» Some sequence of branches in which def reaches
* Lots of defs of the same variable may reach a point

» Use of Union operator in meet function

< All-path: Definition guaranteed to reach
Regardless of sequence of branches taken, def reaches
Can always count on this

Only 1 def can be guaranteed to reach

Availability (as opposed to reaching)
* Available definitions

* Available expressions (could also have reaching expressions, but not
that useful)

h

v

h

v

h

v

h

v




Reaching vs Avalilable Definitions

l:rl=r2+1r3
2:r6 =r4 —r5 1,2 reach
1,2 available
__—9
1,2 reach 3:rd=4
1,2 available 4:r6 =8
e
5:r6 =‘r2 +r3 I
6:r7 =r4—-r5
1,2,3,4 reach
1 available

1,3,4 reach
1,3,4 available



Avallable Definition Analysis (Adefs)

< A definition d is available at a point p if along all paths
from d to p, d is not killed

<+ Remember, a definition of a variable is killed between 2
points when there is another definition of that variable
along the path

» rl=r2+r3Kkills previous definitions of rl1
< Algorithm
» Forward dataflow analysis as propagation occurs from defs
downwards

» Use the Intersect function as the meet operator to guarantee the
all-path requirement

» GEN/KILL/IN/OUT similar to reaching defs
* [Initialization of IN/OUT is the tricky part




Compute GEN/KILL Sets for each BB (Adefs)

Exactly the same as reaching defs !!!

for each basic block in the procedure, X, do
GEN(X)=0
KILL(X)=0
for each operation in sequential order in X, op, do
for each destination operand of op, dest, do
G=o0p
K = {all ops which define dest — op}
GEN(X) = G + (GEN(X) — K)
KILL(X) = K + (KILL(X) - G)
endfor




Compute IN/OUT Sets for all BBs (Adefs)

U = universal set of all operations in the Procedure
IN(0) =0
OUT(0) = GEN(0)
for each basic block in procedure, W, (W !=0), do
IN(W)=0
OUT(W) = U — KILL(W)

change =1
while (change) do
change =0
for each basic block in procedure, X, do
old_ OUT = OUT(X)
IN(X) = Intersect(OUT(Y)) for all predecessors Y of X
OUT(X) = GEN(X) + (IN(X) — KILL(X))
if (old_OUT = OUT(X)) then
change =1
endif
endfor
endwhile



Example Adef Calculation

G=o0p

K = {all ops which define dest — op} BB1
GEN(X) = G + (GEN(X) — K) 1. r1 = MEM[r2+0]
KILL(X) = K + (KILL(X) - G) 2.r2=MEM[rl + 1|

3.r8=rl1*r2

S

BB2 4.rl=r1+5 7.r2=0

5.r3=r5-rl 8r7—r1+r2
6.r7=r3*2 9.r3=4

o~

10. r3=r3+r7
11.r1=r2-r8
12.r3=rl1*2




Example Adef Calculation - Continued

IN = Intersect(OUT (preds))
OUT = GEN + (IN — KILL)

BB2

GEN=4,5,6
KILL =1, 8,9, 10, 11, 12

BB1

1. rl = MEM[r2+0]

2.r12=MEM[rl +1] ©ti=12°
3.r8=rl1*r2 o

4.rl=r1+5 7.r2=0

5.r3=r5-rl 8 r7=rl+r2 GEN=7,8,9

6.r7 =r3* 2 9 r3=4 KILL =2, 5,6, 10, 12

o~

10. r3=r3+r7

GEN =11, 12

11.r1=r2-r8 | kiL=145910

12.r3=rl1*2

-10 -



Example Adef Calculation - Answer

IN = Intersect(OUT (preds))
OUT = GEN + (IN — KILL)

IN=0->0
BBl 11 r1=MEM[r2+0]
2.r2=MEM[rL +1] GeN-123

KILL = 4,7, 11
3.r8=rl1*r2
/ \OUT 123->123
IN= 01,23
" BB2 IN=0->123
4.r1=rl1+5 7.r2=0
E,EL'\'L:_‘;’%%N 112 r3=r5-rl 8 r‘'=rl+r2 GEN=7,8,9
-4 0 ) ) KILL:2,5,6,10,12
6.r7=r3*2 9.r3=4
OUT =2,34,5,6,7> 2,3,45,6 \ / ouUT=1,34,7,89,11 > 1,3,7,8,9
IN=0->3
10. r3=r3+r7 et 1
11.r1=r2-r8 | kiL=145910
12.r3=rl1*2

OuUT =2,3,6,7,8,11,12 - 3,11,12

-11 -



Avallable Expression Analysis (Aexprs)

\/
0’0

An expression is a RHS of an operation
» 12=r3+r4,r3+r4 is an expression

An expression e Is available at a point p if along all paths
from e to p, e is not killed

An expression is Killed between 2 points when one of its
source operands are redefined
» rl=r2+r3kills all expressions involving rl

Algorithm

» Forward dataflow analysis as propagation occurs from defs
downwards

» Use the Intersect function as the meet operator to guarantee the
all-path requirement

» Looks exactly like adefs, except GEN/KILL/IN/OUT are the
RHS’s of operations rather than the LHS’s

-12 -



Computation of Aexpr GEN/KILL Sets

We can also formulate the GEN/KILL slightly differently so you do not
need to break up instructions like “r2 =12 + 17,

for each basic block in the procedure, X, do
GEN(X) =0
KILL(X)=0
for each operation in sequential order in X, op, do
K=0
for each destination operand of op, dest, do
K += {all ops which use dest}
endfor
if (op not in K)
G=op
else
G=0
GEN(X) = G + (GEN(X) — K)
KILL(X) = K+ (KILL(X) — G)
endfor
endfor

-13-



Example Aexpr Calculation

1:rl=r6*r9
2:r2=r2+1
3:r5=r3*r4

==

4:rl=r2+1 r’=r3*r4
5:r3=r3*r4 8r1—r1+5
6:r8=r3*2 ‘r/=rl-6

~_

10:r8=r2+1
11:r1=r3*r4
12:r3=r6*r9

-14 -



Example Aexpr Calculation - Continued

GEN=4,6
KILL=3,5,7,8,9,11

1:rl=r6*r9
2:r2=r2+1
3:r5=r3*r4

GEN = 1,3 (remember {1, 3} means {“r6*r9”,

KILL=2,4,38,9, 10

==

4:r1l=r2+1
5:r3=r3*r4
6:r8=r3*2

r’=r3*r4 )
8 ri=rl+5 ST
r’=rl-6

~_

10:r8=r2+1
11: r1=r3*r4
12:r3=r6*r9

-15 -

GEN =10, 12
KILL=3,5,6,7,8,9, 11

(13 a3 2
13%1r4})



Example Aexpr Calculation - Answer

IN/OUT sets IN=-- -
A—->B
A = Initial state

. — *
Lirl=r6*r9 GEN = 1,3 (remember {1, 3} means {“r6*r9”, “r3*r4”})

. . . - = + KILL=2,4,8,9, 10
B = after first iteration 2:r2=r2+1
3:r5=r3*r4
OuUT=1,35,6,7,11,12 > 1,3
IN=->13 IN=-->13
4:rl=r2+1 r’=r3*r4
GEN=4,6 GEN=7,9
KILL=3.5,7.8,9, 11 5:r3=r3*r4 8 rit=rl+5> KILL = 8
6:r8=r3*2 r/7=rl-6
ouT=1,2,3,4,5,6,7,9,10,11,12 > 1,3,7,9
OUT=1,246,10,12> 14,6 \ /
IN=->1
10:r8=r2+1
. _ * GEN =10, 12
11:rl=r3*r4 KILL=3,56,78 09 11
12: r3=r6*r9
OuT=1,2,4,10,12 -> 1,10,12

-16 -



Dataflow Summary

L Iveness

OUT = Union(IN(succs))
IN = GEN + (OUT — KILL)

Bottom-up dataflow

Any path

Keep track of variables/registers
Uses of variables > GEN

Defs of variables - KILL

»

Reaching Definitions/DU/UD

IN = Union(OUT (preds))
OUT = GEN + (IN — KILL)

Top-down dataflow

Any path

Keep track of instruction 1Ds
Defs of variables 2> GEN
Defs of variables > KILL

Available Expressions «

IN = Intersect(OUT (preds))
OUT = GEN + (IN — KILL)

Top-down dataflow

All path

Keep track of instruction IDs
Expressions of variables - GEN
Defs of variables - KILL

-17 -

Avallable Definitions

¢

IN = Intersect(OUT (preds))
OUT = GEN + (IN - KILL)

Top-down dataflow

All path

Keep track of instruction IDs
Defs of variables > GEN
Defs of variables - KILL




