
EECS 583 – Class 6

Dataflow Analysis II

University of Michigan

January 31, 2024



- 1 -

Announcements & Reading Material
 HW 2 is available

» See: https://web.eecs.umich.edu/~mahlke/courses/583w24/homeworks.html

» Due: Wed Feb 21

» HW2 is significantly harder than HW1 so get started early!

» Aditya will go over the HW2 spec and template code at the end of today’s 

class (continued in discussion section)

 Slides posted on the course website if you cannot attend discussion

 Today’s class

» Compilers: Principles, Techniques, and Tools,

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.

(Sections: 10.5, 10.6, 10.9, 10.10 Edition 1; 9.2, 9.3 Edition 2)

 Next class

» “Practical Improvements to the Construction and Destruction of Static 

Single Assignment Form,” P. Briggs, K. Cooper, T. Harvey, and L. 

Simpson, Software--Practice and Experience, 28(8), July 1998, pp. 

859-891.

https://web.eecs.umich.edu/~mahlke/courses/583w24/homeworks.html


- 2 -

Recap: Liveness vs Reaching Defs

OUT = Union(IN(succs))

IN = GEN + (OUT – KILL)

Liveness Reaching Definitions/DU/UD

IN = Union(OUT(preds))

OUT = GEN + (IN – KILL)

Bottom-up dataflow

Any path

Keep track of variables/registers

Uses of variables  GEN

Defs of variables  KILL

Top-down dataflow

Any path

Keep track of instruction IDs

Defs of variables  GEN

Defs of variables  KILL



- 3 -

Generalizing Dataflow Analysis

 Transfer function

» How information is changed by “something” (BB)

» OUT = GEN + (IN – KILL)  /* forward analysis, e.g.,  rdefs */

» IN = GEN + (OUT – KILL)  /* backward analysis, e.g.,  liveness */

 Meet function

» How information from multiple paths is combined

» IN = Union(OUT(predecessors))  /* forward analysis */

» OUT = Union(IN(successors))  /* backward analysis */

 Generalized dataflow algorithm

» while (change)

 change = false

 for each BB

 apply meet function

 apply transfer functions

 if any changes  change = true



- 4 -

What About All Path Problems?

 Up to this point

» Any path problems (maybe relations)

 Definition reaches along some path

 Some sequence of branches in which def reaches

 Lots of defs of the same variable may reach a point

» Use of Union operator in meet function

 All-path: Definition guaranteed to reach

» Regardless of sequence of branches taken, def reaches

» Can always count on this

» Only 1 def can be guaranteed to reach

» Availability (as opposed to reaching)

 Available definitions

 Available expressions (could also have reaching expressions, but not 

that useful)



- 5 -

Reaching vs Available Definitions

1:r1 = r2 + r3

2:r6 = r4 – r5

3:r4 = 4

4:r6 = 8

5:r6 = r2 + r3

6:r7 = r4 – r5
1,2,3,4 reach

1 available

1,2 reach

1,2 available

1,3,4 reach

1,3,4 available

1,2 reach

1,2 available



- 6 -

Available Definition Analysis (Adefs)

 A definition d is available at a point p if along all paths 

from d to p, d is not killed

 Remember, a definition of a variable is killed between 2 

points when there is another definition of that variable 

along the path

» r1 = r2 + r3 kills previous definitions of r1

 Algorithm

» Forward dataflow analysis as propagation occurs from defs 

downwards

» Use the Intersect function as the meet operator to guarantee the 

all-path requirement

» GEN/KILL/IN/OUT similar to reaching defs

 Initialization of IN/OUT is the tricky part



- 7 -

Compute GEN/KILL Sets for each BB (Adefs)

for each basic block in the procedure, X, do

GEN(X) = 0

KILL(X) = 0

for each operation in sequential order in X, op, do

for each destination operand of op, dest, do

G = op

K = {all ops which define dest – op}

GEN(X) = G + (GEN(X) – K)

KILL(X) = K + (KILL(X) – G)

endfor

endfor

endwhile

Exactly the same as reaching defs !!!



- 8 -

Compute IN/OUT Sets for all BBs (Adefs)

U = universal set of all operations in the Procedure

IN(0) = 0

OUT(0) = GEN(0)

for each basic block in procedure, W, (W != 0), do

IN(W) = 0

OUT(W) = U – KILL(W)

change = 1

while (change) do

change = 0

for each basic block in procedure, X, do

old_OUT = OUT(X)

IN(X) = Intersect(OUT(Y)) for all predecessors Y of X

OUT(X) = GEN(X) + (IN(X) – KILL(X))

if (old_OUT != OUT(X)) then

change = 1

endif

endfor

endwhile



- 9 -

Example Adef Calculation

1. r1 = MEM[r2+0]

2. r2 = MEM[r1 + 1]

3. r8 = r1 * r2

4. r1 = r1 + 5

5. r3 = r5 – r1

6. r7 = r3 * 2

7. r2 = 0

8. r7 = r1 + r2

9. r3 = 4

10. r3 = r3 + r7

11. r1 = r2 – r8

12. r3 = r1 * 2

BB1

BB2 BB3

BB4

G = op

K = {all ops which define dest – op}

GEN(X) = G + (GEN(X) – K)

KILL(X) = K + (KILL(X) – G)



- 10 -

Example Adef Calculation - Continued

1. r1 = MEM[r2+0]

2. r2 = MEM[r1 + 1]

3. r8 = r1 * r2

4. r1 = r1 + 5

5. r3 = r5 – r1

6. r7 = r3 * 2

7. r2 = 0

8. r7 = r1 + r2

9. r3 = 4

10. r3 = r3 + r7

11. r1 = r2 – r8

12. r3 = r1 * 2

BB1

BB2 BB3

BB4

IN = Intersect(OUT(preds))

OUT = GEN + (IN – KILL)

GEN = 7, 8, 9

KILL = 2, 5, 6, 10, 12

GEN = 4, 5, 6

KILL = 1, 8, 9, 10, 11, 12

GEN = 1, 2, 3

KILL = 4, 7, 11

GEN = 11, 12

KILL = 1,4,5,9,10



- 11 -

Example Adef Calculation - Answer

1. r1 = MEM[r2+0]

2. r2 = MEM[r1 + 1]

3. r8 = r1 * r2

4. r1 = r1 + 5

5. r3 = r5 – r1

6. r7 = r3 * 2

7. r2 = 0

8. r7 = r1 + r2

9. r3 = 4

10. r3 = r3 + r7

11. r1 = r2 – r8

12. r3 = r1 * 2

BB1

BB2 BB3

BB4

IN = Intersect(OUT(preds))

OUT = GEN + (IN – KILL)

GEN = 7, 8, 9

KILL = 2, 5, 6, 10, 12

IN = 0  1,2,3

OUT = 1,3,4,7,8,9,11  1,3,7,8,9

GEN = 4, 5, 6

KILL = 1, 8, 9, 10, 11, 12

GEN = 1, 2, 3

KILL = 4, 7, 11

GEN = 11, 12

KILL = 1,4,5,9,10

OUT = 2,3,6,7,8,11,12  3,11,12

OUT = 2,3,4,5,6,7  2,3,4,5,6

OUT = 1,2,3  1,2,3

IN = 0  0

IN = 0  1,2,3

IN = 0  3



- 12 -

Available Expression Analysis (Aexprs)

 An expression is a RHS of an operation

» r2 = r3 + r4, r3+r4 is an expression

 An expression e is available at a point p if along all paths 
from e to p, e is not killed

 An expression is killed between 2 points when one of its 
source operands are redefined

» r1 = r2 + r3 kills all expressions involving r1

 Algorithm

» Forward dataflow analysis as propagation occurs from defs 
downwards

» Use the Intersect function as the meet operator to guarantee the 
all-path requirement

» Looks exactly like adefs, except GEN/KILL/IN/OUT are the 
RHS’s of operations rather than the LHS’s



- 13 -

Computation of Aexpr GEN/KILL Sets

for each basic block in the procedure, X, do

GEN(X) = 0

KILL(X) = 0

for each operation in sequential order in X, op, do

K = 0

for each destination operand of op, dest, do

K += {all ops which use dest}

endfor

if (op not in K)

G = op

else

G = 0

GEN(X) = G + (GEN(X) – K)

KILL(X) = K + (KILL(X) – G)

endfor

endfor

We can also formulate the GEN/KILL slightly differently so you do not

need to break up instructions like “r2 = r2 + 1”.



- 14 -

Example Aexpr Calculation

1: r1 = r6 * r9

2: r2 = r2 + 1

3: r5 = r3 * r4

4: r1 = r2 + 1

5: r3 = r3 * r4

6: r8 = r3 * 2

7: r7 = r3 * r4

8: r1 = r1 + 5

9: r7 = r1 - 6

10: r8 = r2 + 1

11: r1 = r3 * r4

12: r3 = r6 * r9



- 15 -

Example Aexpr Calculation - Continued

1: r1 = r6 * r9

2: r2 = r2 + 1

3: r5 = r3 * r4

4: r1 = r2 + 1

5: r3 = r3 * r4

6: r8 = r3 * 2

7: r7 = r3 * r4

8: r1 = r1 + 5

9: r7 = r1 - 6

10: r8 = r2 + 1

11: r1 = r3 * r4

12: r3 = r6 * r9

GEN = 1,3 (remember {1, 3} means {“r6*r9”, “r3*r4”})

KILL = 2, 4, 8, 9, 10

GEN = 7, 9

KILL = 8

GEN = 10, 12

KILL = 3, 5, 6, 7, 8, 9, 11

GEN = 4, 6

KILL = 3, 5, 7, 8, 9, 11



- 16 -

Example Aexpr Calculation - Answer

1: r1 = r6 * r9

2: r2 = r2 + 1

3: r5 = r3 * r4

4: r1 = r2 + 1

5: r3 = r3 * r4

6: r8 = r3 * 2

7: r7 = r3 * r4

8: r1 = r1 + 5

9: r7 = r1 - 6

10: r8 = r2 + 1

11: r1 = r3 * r4

12: r3 = r6 * r9

GEN = 1,3 (remember {1, 3} means {“r6*r9”, “r3*r4”})

KILL = 2, 4, 8, 9, 10

GEN = 7, 9

KILL = 8

GEN = 10, 12

KILL = 3, 5, 6, 7, 8, 9, 11

GEN = 4, 6

KILL = 3, 5, 7, 8, 9, 11

IN = -  -

OUT = 1,3,5,6,7,11,12   1,3

IN = -  1,3

OUT = 1,2,3,4,5,6,7,9,10,11,12   1,3,7,9

IN = -  1

OUT = 1,2,4,10,12  1,10,12

IN = -  1,3

OUT = 1,2,4,6,10,12  1,4,6

IN/OUT sets

A  B

A = initial state

B = after first iteration



- 17 -

Dataflow Summary

OUT = Union(IN(succs))

IN = GEN + (OUT – KILL)

Liveness Reaching Definitions/DU/UD

IN = Union(OUT(preds))

OUT = GEN + (IN – KILL)

Bottom-up dataflow

Any path

Keep track of variables/registers

Uses of variables  GEN

Defs of variables  KILL

Top-down dataflow

Any path

Keep track of instruction IDs

Defs of variables  GEN

Defs of variables  KILL

Available Definitions

IN = Intersect(OUT(preds))

OUT = GEN + (IN – KILL)

Top-down dataflow

All path

Keep track of instruction IDs

Defs of variables  GEN

Defs of variables  KILL

Available Expressions

IN = Intersect(OUT(preds))

OUT = GEN + (IN – KILL)

Top-down dataflow

All path

Keep track of instruction IDs

Expressions of variables  GEN

Defs of variables  KILL


