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Announcements

 Project proposal meeting signups – No regular class next week!

» 10 minute Zoom meeting (GSI office hrs link) with Aditya, Yunjie, and I

 Show up few mins early so you are ready to go, strict meeting timings

» Planned for next Monday, Wednesday (10am-noon); Thursday (10:30am-noon)

» Each group should sign up ASAP for a slot on the EECS 583 calendar

 Midterm Exam – Wed Mar 20 (2 weeks from today)

» Exam review – Mon Mar 18

» Exam scope: Covers all lecture material through today’s class

» Exam format: Hybrid (Virtual or in-person, each person can choose) 

 In-person: 10:30-11:50, walk outside to get questions answered

 Send Aditya email if you plan to take the exam in-person

 Virtual: 10:30-11:50 + 15 mins extra time (Extra time for printing, scanning, 

uploading), post private questions on piazza to get answers

 Piazza questions answered up to 11:50

 Today’s class reading

» “Register Allocation and Spilling Via Graph Coloring,” G. Chaitin, Proc. 

1982 SIGPLAN Symposium on Compiler Construction, 1982.
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Homework Problem From Last Class - Answer

1: r1[-1] = load(r2[0])

2: r3[-1] = r1[1] – r1[2]

3: store (r3[-1], r2[0])

4: r2[-1] = r2[0] + 4

5: p1[-1] = cmpp (r2[-1] < 100)

remap r1, r2, r3

6: brct p1[-1] Loop

Calculate RecMII, ResMII, and MII

Latencies: ld = 2, st = 1, add = 1, cmpp = 1, br = 1

Resources: 1 ALU, 1 MEM, 1 BR
1

2

3

4

5

6

<0,0>
<2,3><2,2>

<1,0>

<1,1>

<1,1>

<1,0>

<1,0>

<1,1><0,0>

<1,0>
<1,1>

ResMII: ALU: 3 instrs / 1 unit = 3

MEM: 2 instrs / 1 unit = 2

BR:  1 instr / 1 unit = 1

MAX(3,2,1) = 3

RecMII: 4  4: 1/1 = 1

3  4  3: (0 + 1) / (0 +1) = 1

1  3  1: (1 + 1) / (0 + 1) = 2

1  2  3  1: (2+1+1) / (2+0+1) = 2

1  2  3  1: (2+1+1) / (3+0+1) = 1

MAX(1,1,2,2,1) = 2
MII = MAX(ResMII, RecMII) = MAX(3,2) = 3
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From Last Time: Example – Step 12

1: r3[-1] = load(r1[0]) if p1[0]

2: r4[-1] = r3[-1] * 26 if p1[1]

4: r1[-1] = r1[0] + 4 if p1[0]

3: store (r2[0], r4[-1]) if p1[2]

5: r2[-1] = r2[0] + 4 if p1[2]

7: brlc Loop if p1[2]

Loop:

LC = 99 // Remember, 0 relative

ESC = 2

p1[0] = 1

Finishing touches - Sort ops, initialize ESC, insert BRF and staging predicate,

initialize staging predicate outside loop

Unrolled

Schedule

1

2

3

4

5 7

Stage 1

Stage 2

Stage 3

Staging predicate, each

successive stage increment

the index of the staging predicate

by 1, stage 1 gets px[0]

0

1

2

3

4

5

6
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Example – Dynamic Execution of the Code

1: r3[-1] = load(r1[0]) if p1[0]

2: r4[-1] = r3[-1] * 26 if p1[1]

4: r1[-1] = r1[0] + 4 if p1[0]

3: store (r2[0], r4[-1]) if p1[2]

5: r2[-1] = r2[0] + 4 if p1[2]

7: brlc Loop if p1[2]

Loop:

LC = 99

ESC = 2

p1[0] = 1

0: 1, 4

1: 

2: 1,2,4

3: 

4: 1,2,4

5: 3,5,7

6: 1,2,4

7: 3,5,7

…

198: 1,2,4

199: 3,5,7

200: 2

201: 3,5,7

202: -

203 3,5,7

time: ops executed

Total time = II(num_iteration + num_stages – 1)

= 2(100 + 3 – 1) = 204 cycles 
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Class Problem

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

for (j=0; j<100; j++)

b[j] = a[j] * 26

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

7: brlc Loop

Loop:

LC = 99

How many resources of each type are

required to achieve an II=1 schedule?

If the resources are non-pipelined,

how many resources of each type are

required to achieve II=1

Assuming pipelined resources, generate

the II=1 modulo schedule.
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Class Problem – Answers in Red

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

for (j=0; j<100; j++)

b[j] = a[j] * 26

1: r3 = load(r1)

2: r4 = r3 * 26

3: store (r2, r4)

4: r1 = r1 + 4

5: r2 = r2 + 4

7: brlc Loop

Loop:

LC = 99

How many resources of each type are

required to achieve an II=1 schedule?

For II=1, each operation needs a dedicated resource,

so: 3 ALU, 2 MEM, 1 BR

If the resources are non-pipelined,

how many resources of each type are

required to achieve II=1

Instead of 1 ALU to do the multiplies, 3 are needed,

and instead of 1 MEM to do the loads, 2 are needed.

Hence: 5 ALU, 3 MEM, 1 BR

Assuming pipelined resources, generate

the II=1 modulo schedule.

See next few slides
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Problem continued

1

2

3

4

5

7

1,1

3,0

2,0

1,1

1,1

1,1

1,1

RecMII = 1

RESMII = 1

MII = MAX(1,1) = 11: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

Dependence graph

0,0

0,0

DSA converted code below (same

as example in class)

Assume II=1 so resources are: 3 ALU, 2 MEM, 1 BR

Priorities

1: H = 5

2: H = 3

3: H = 0

4: H = 4

5: H = 0

7: H = 0
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Problem continued 

resources: 3 alu, 2 mem, 1 br

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

alu0 alu1 m2 br

MRT
0

0

Rolled

Schedule

Unrolled

Schedule

0

1

2

3

4

5

6

m1alu2
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Problem continued 

resources: 3 alu, 2 mem, 1 br

latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

1: r3[-1] = load(r1[0])

2: r4[-1] = r3[-1] * 26

3: store (r2[0], r4[-1])

4: r1[-1] = r1[0] + 4

5: r2[-1] = r2[0] + 4

remap r1, r2, r3, r4

7: brlc Loop

Loop:

LC = 99

alu0 alu1 m2 br

MRT
0 X

0 7

Rolled

Schedule

Unrolled

Schedule

0

1

2

3

4

5

6

m1alu2

Scheduling steps:

Schedule brlc at time II-1

Schedule op1 at time 0

Schedule op4 at time 0

Schedule op2 at time 2

Schedule op3 at time 5

Schedule op5 at time 5

Schedule op7 at time 5

1

1

X X X X X

4 2 3 5

4

2

3 5 7

stage 1

stage 2

stage 3

stage 4

stage 5

stage 6
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Problem continued 

r3[-1] = load(r1[0]) if p1[0]; r4[-1] = r3[-1] * 26 if p1[2]; store (r2[0], r4[-1]) if p1[5]; r1[-1] = r1[0] + 4 if p1[0]; r2[-1] = r2[0] + 4 if p1[5]; brlc Loop

Loop:

LC = 99

The final loop consists of a single MultiOp containing 6 operations,

each predicated on the appropriate staging predicate.  Note register allocation

still needs to be performed.
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What if We Don’t Have Hardware Support 

for Modulo Scheduling?

 No predicates

» Predicates enable kernel-only code by selectively 

enabling/disabling operations to create prolog/epilog

» Now must create explicit prolog/epilog code segments

 No rotating registers

» Register names not automatically changed each iteration

» Must unroll the body of the software pipeline, explicitly 

rename

 Consider each register lifetime i in the loop

 Kmin = min unroll factor = MAXi (ceiling((Endi – Starti) / II))

 Create Kmin static names to handle maximum register lifetime

» Apply modulo variable expansion



Register Allocation
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Register Allocation: Problem Definition

 Through optimization, assume an infinite number of 
virtual registers

» Now, must allocate these infinite virtual registers to a limited 
supply of hardware registers

» Want most frequently accessed variables in registers

 Speed, registers much faster than memory

 Direct access as an operand

» Any VR that cannot be mapped into a physical register is said to 
be spilled

 Questions to answer

» What is the minimum number of registers needed to avoid 
spilling?

» Given n registers, is spilling necessary

» Find an assignment of virtual registers to physical registers

» If there are not enough physical registers, which virtual registers 
get spilled?
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Live Range

 Value = definition of a register

 Live range = Set of operations

» 1 more or values connected by common uses

» A single VR may have several live ranges

 Live ranges are constructed by taking the intersection of 

reaching defs and liveness

» Initially, a live range consists of a single definition and all ops in 

a function in which that definition is live
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Example – Constructing Live Ranges

1: x = 

2: x = 3:  

4: = x 

5: x = 

6: x = 

7: = x  

8: = x 

{x}, {5,6}

{x}, {6}

{}, {5}

{x}, {5}

{}, {1,2}

{}, {1}

{x}, {2}

{x}, {1}

{x}, {1}

{}, {5,6}

{liveness}, {rdefs}

LR1 for def 1 = {1,3,4}

LR2 for def 2 = {2,4}

LR3 for def 5 = {5,7,8}

LR4 for def 6 = {6,7,8}

Each definition is the

seed of a live range.

Ops are added to the LR

where both the defn reaches

and the variable is live
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Merging Live Ranges

 If 2 live ranges for the same VR overlap, they must be 

merged to ensure correctness

» LRs replaced by a new LR that is the union of the LRs

» Multiple defs reaching a common use

» Conservatively, all LRs for the same VR could be merged

 Makes LRs larger than need be, but done for simplicity

 We will not assume this

r1 = r1 = 

= r1 
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Example – Merging Live Ranges

1: x = 

2: x = 3:  

4: = x 

5: x = 

6: x = 

7: = x  

8: = x 

{x}, {5,6}

{x}, {6}

{}, {5}

{x}, {5}

{}, {1,2}

{}, {1}

{x}, {2}

{x}, {1}

{x}, {1}

{}, {5,6}

{liveness}, {rdefs}
LR1 for def 1 = {1,3,4}

LR2 for def 2 = {2,4}

LR3 for def 5 = {5,7,8}

LR4 for def 6 = {6,7,8}

Merge LR1 and LR2,

LR3 and LR4

LR5 = {1,2,3,4}

LR6 = {5,6,7,8}
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Interference

 Two live ranges interfere if they share one or more ops in 

common

» Thus, they cannot occupy the same physical register

» Or a live value would be lost

 Interference graph

» Undirected graph where

 Nodes are live ranges

 There is an edge between 2 nodes if the live ranges interfere

» What’s not represented by this graph

 Extent of interference between the LRs

 Where in the program is the interference
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Example – Interference Graph

1: a = load()

2: b = load()

3: c = load()

4: d = b + c

5: e = d - 3

6: f = a * b

7: e = f + c

8: g = a + e

9: store(g)

a

g

c

f

d

b

e

lr(a) = {1,2,3,4,5,6,7,8}

lr(b) = {2,3,4,6}

lr(c) = {1,2,3,4,5,6,7,8,9}

lr(d) = {4,5}

lr(e) = {5,7,8}

lr(f) = {6,7}

lr{g} = {8,9}
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Graph Coloring

 A graph is n-colorable if every node in the graph can be 

colored with one of the n colors such that 2 adjacent 

nodes do not have the same color

» Model register allocation as graph coloring

» Use the fewest colors (physical registers)

» Spilling is necessary if the graph is not n-colorable where n is the 

number of physical registers

 Optimal graph coloring is NP-complete for n > 2

» Use heuristics proposed by compiler developers

 “Register Allocation Via Coloring”, G. Chaitin et al, 1981

 “Improvement to Graph Coloring Register Allocation”, P. Briggs et 

al, 1989

» Observation – a node with degree < n in the interference can 

always be successfully colored given its neighbors colors
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Coloring Algorithm

 1. While any node, x, has < n neighbors

» Remove x and its edges from the graph

» Push x onto a stack

 2. If the remaining graph is non-empty

» Compute cost of spilling each node (live range)

 For each reference to the register in the live range

 Cost +=  (execution frequency * spill cost)

» Let NB(x) = number of neighbors of x

» Remove node x that has the smallest cost(x) / NB(x)

 Push x onto a stack (mark as spilled)

» Go back to step 1

 While stack is non-empty

» Pop x from the stack

» If x’s neighbors are assigned fewer than R colors, then assign x 
any unsigned color, else leave x uncolored
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Example – Finding Number of Needed Colors

A

B

E

D

C

How many colors are needed to color this graph?

Try n=1, no, cannot remove any nodes

Try n=2, no again, cannot remove any nodes

Try n=3,

Remove B

Then can remove A, C

Then can remove D, E

Thus it is 3-colorable



- 23 -

Example – Do a 3-Coloring

a

g

c

f

d

b

e

a b c d e f g

cost 225 200 175 150 200 50 200

neighbors 6 4 5 4 3 4 2

cost/n 37.5 50 35 37.5 66.7 12.5 100

lr(a) = {1,2,3,4,5,6,7,8}

refs(a) = {1,6,8}

lr(b) = {2,3,4,6}

refs(b) = {2,4,6}

lr(c) = {1,2,3,4,5,6,7,8,9}

refs(c) = {3,4,7}

lr(d) = {4,5}

refs(d) = {4,5}

lr(e) = {5,7,8}

refs(e) = {5,7,8}

lr(f) = {6,7}

refs(f) = {6,7}

lr{g} = {8,9}

refs(g) = {8,9}

Profile freqs

1,2 = 100

3,4,5 = 75

6,7 = 25

8,9 = 100

Assume each

spill requires

1 operation
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Example – Do a 3-Coloring (2)

a

g

c

f

d

b

e

Remove all nodes < 3 neighbors

So, g can be removed

a

c

f

d

b

e

Stack

g
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Example – Do a 3-Coloring (3)

Now must spill a node

Choose one with the smallest

cost/NB  f is chosen

a

c d

b

e

Stack

f (spilled)

g

a

c

f

d

b

e
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Example – Do a 3-Coloring (4)

a

c d

b

Stack

e

f (spilled)

g

a

c d

b

e

Remove all nodes < 3 neighbors

So, e can be removed
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Example – Do a 3-Coloring (5)

a

d

b

Stack

c (spilled)

e

f (spilled)

g

Now must spill another node

Choose one with the smallest

cost/NB  c is chosen

a

c d

b
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Example – Do a 3-Coloring (6)

Stack

d

b

a

c (spilled)

e

f (spilled)

g

Remove all nodes < 3 neighbors

So, a, b, d can be removed

a

d

b

Null
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Example – Do a 3-Coloring (7)

Stack

d

b

a

c (spilled)

e

f (spilled)

g

a

g

c

f

d

b

e

Have 3 colors: red, green, blue, pop off the stack assigning colors

only consider conflicts with non-spilled nodes already popped off stack

d  red

b  green (cannot choose red)

a  blue (cannot choose red or green)

c  no color (spilled)

e  green (cannot choose red or blue)

f  no color (spilled)

g  red (cannot choose blue)
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Example – Do a 3-Coloring (8)

1: blue = load()

2: green = load()

3: spill1 = load()

4: red = green + spill1

5: green = red - 3

6: spill2 = blue * green

7: green = spill2 + spill1

8: red = blue + green

9: store(red)

d  red

b  green

a  blue

c  no color 

e  green

f  no color

g  red

Notes: no spills in the blocks

executed 100 times.  Most spills

in the block executed 25 times.

Longest lifetime (c) also spilled
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Homework Problem

Draw the interference graph. How many spills are needed with 3 physical registers?
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Homework Problem - Answer

Draw the interference graph.  How many spills are needed with 3 physical registers?

r1

r2

r3r4

r5

r1 r2 r3 r4 r5

Cost 11 18 20 6 11

Nbrs 4 4 4 3 3

C/N 2.75 4.5 5 2 3.67

Spill r4, spill r1, allocate r2, r3, r5   2 spills necessary


