EECS 583 – Class 10 ILP Optimization and Intro. to Code Generation

University of Michigan

February 14, 2024

Announcements & Reading Material

- Reminder: HW 2
 - » Due next Wed, You should have started by now
 - » Talk to Aditya & Yunjie if you are stuck
- Class project
 - » Focus on project team formation and general topic area
- Today's class
 - » "Machine Description Driven Compilers for EPIC Processors", B. Rau, V. Kathail, and S. Aditya, HP Technical Report, HPL-98-40, 1998. (long paper but informative)
- Next class
 - "The Importance of Prepass Code Scheduling for Superscalar and Superpipelined Processors," P. Chang et al., IEEE Transactions on Computers, 1995, pp. 353-370.

Class Problem From Last Time – Solution

Assume:
$$+ = 1$$
, $* = 3$

operand arrival times r1

Back sushstitute Re-express in tree-height reduced form Account for latency and arrival times

Expression after back substitution r14 = r1 * r2 + r3 + r4 - r5 + r6

Want to perform operations on r1,r2,r3,r6 first due to operand arrival times

$$t1 = r1 * r2$$

 $t2 = r3 + r6$

The multiply will take 3 cycles, so combine t2 with r4 and then r5, and then finally t1

$$t3 = t2 + r4$$

 $t4 = t3 - r5$
 $r14 = t1 + t4$

Equivalently, the fully parenthesized expression r14 = ((r1 * r2) + (((r3 + r6) + r4) - r5))

From Last Time: Loop Unrolling

```
loop: r1 = load(r2)
for (i=x; i<100; i++)
                                                              r3 = load(r4)
   sum += a[i]*b[i];
                                                              r5 = r1 * r3
                                                              r6 = r6 + r5
                                                     iter1
                                                              r2 = r2 + 4
                                 unroll 3 times
                                                              r4 = r4 + 4
       r1 = load(r2)
loop:
                                                             if (r4 \ge 400) goto exit
       r3 = load(r4)
                                                              r1 = load(r2)
       r5 = r1 * r3
                                                              r3 = load(r4)
       r6 = r6 + r5
                                                              r5 = r1 * r3
                                                     iter2
       r2 = r2 + 4
                                                              r6 = r6 + r5
       r4 = r4 + 4
                                                              r2 = r2 + 4
       if (r4 < 400) goto loop
                                                              r4 = r4 + 4
                                                            if (r4 \ge 400) goto exit
                                                              r1 = load(r2)
  Unroll = replicate loop body
                                                              r3 = load(r4)
                                                     iter3
  n-1 times.
                                                              r5 = r1 * r3
                                                              r6 = r6 + r5
                                                              r2 = r2 + 4
  Hope to enable overlap of
                                                              r4 = r4 + 4
  operation execution from
                                                              if (r4 < 400) goto loop
  different iterations
                                                      exit:
```

Smarter Loop Unrolling with Known Trip Count

Want to remove early exit branches

Trip count = 400/4 = 100

r4 = 0loop: r1 = load(r2)

r3 = load(r4)

r5 = r1 * r3

r6 = r6 + r5

r2 = r2 + 4

r4 = r4 + 4

if (r4 < 400) goto loop

unroll multiple of trip count


```
loop: r1 = load(r2)
         r3 = load(r4)
         r5 = r1 * r3
         r6 = r6 + r5
iter1
         r2 = r2 + 4
        r4 = r4 + 4
         r1 = load(r2)
         r3 = load(r4)
         r5 = r1 * r3
iter2
         r6 = r6 + r5
         r2 = r2 + 4
         r4 = r4 + 4
         r1 = load(r2)
         r3 = load(r4)
         r5 = r1 * r3
iter3
         r6 = r6 + r5
         r2 = r2 + 4
         r4 = r4 + 4
         r1 = load(r2)
         r3 = load(r4)
         r5 = r1 * r3
iter4
         r6 = r6 + r5
```

-4-
$$r2 = r2 + 4$$

 $r4 = r4 + 4$
 $r4 = r4 + 4$
 $r4 = r4 + 4$
 $r4 = r4 + 4$

What if the Trip Count is not Statically Known?

```
for (i=0; i<((400-r4)/4)\%3; i++)
                                                        preloop
                                                                      sum += a[i]*b[i];
                                                            loop: r1 = load(r2)
                            Create a preloop to
                                                                    r3 = load(r4)
                                                                    r5 = r1 * r3
                            ensure trip count of
                                                           iter1
                                                                    r6 = r6 + r5
                            unrolled loop is a multiple
        r4 = ??
                                                                    r2 = r2 + 4
                            of the unroll factor
       r1 = load(r2)
                                                                    r4 = r4 + 4
loop:
        r3 = load(r4)
                                                                    r1 = load(r2)
                                                                    r3 = load(r4)
        r5 = r1 * r3
                                                                    r5 = r1 * r3
                                                           iter2
        r6 = r6 + r5
                                                                    r6 = r6 + r5
        r2 = r2 + 4
                                                                    r2 = r2 + 4
        r4 = r4 + 4
                                                                    r4 = r4 + 4
                                                                   r1 = load(r2)
        if (r4 < 400) goto loop
                                                                    r3 = load(r4)
                                                                    r5 = r1 * r3
                                                                   r6 = r6 + r5
                                                           iter3
                                                                    r2 = r2 + 4
                                                                    r4 = r4 + 4
                                                                    if (r4 < 400) goto loop
                                                            exit:
```

Unrolling Not Enough for Overlapping Iterations: Register Renaming

```
loop: r1 = load(r2)
  loop: r1 = load(r2)
         r3 = load(r4)
                                                     r3 = load(r4)
                                                     r5 = r1 * r3
         r5 = r1 * r3
                                                     r6 = r6 + r5
         r6 = r6 + r5
iter1
                                           iter1
         r2 = r2 + 4
                                                     r2 = r2 + 4
         r4 = r4 + 4
                                                     r4 = r4 + 4
         r1 = load(r2)
                                                     r11 = load(r2)
         r3 = load(r4)
                                                     r13 = load(r4)
                                                     r15 = r11 * r13
         r5 = r1 * r3
iter2
                                            iter2
         r6 = r6 + r5
                                                     r6 = r6 + r15
                                                     r2 = r2 + 4
         r2 = r2 + 4
         r4 = r4 + 4
                                                     r4 = r4 + 4
         r1 = load(r2)
                                                     r21 = load(r2)
         r3 = load(r4)
                                                     r23 = load(r4)
         r5 = r1 * r3
                                                     r25 = r21 * r23
iter3
                                            iter3
         r6 = r6 + r5
                                                     r6 = r6 + r25
         r2 = r2 + 4
                                                     r2 = r2 + 4
         r4 = r4 + 4
                                                     r4 = r4 + 4
         if (r4 < 400) goto loop
                                                     if (r4 < 400) goto loop
```

Register Renaming is Not Enough!

```
loop: r1 = load(r2)
         r3 = load(r4)
         r5 = r1 * r3
         r6 = r6 + r5
iter1
         r2 = r2 + 4
         r4 = r4 + 4
         r11 = load(r2)
         r13 = load(r4)
         r15 = r11 * r13
iter2
         r6 = r6 + r15
         r2 = r2 + 4
         r4 = r4 + 4
         r21 = load(r2)
         r23 = load(r4)
         r25 = r21 * r23
iter3
         r6 = r6 + r25
         r2 = r2 + 4
         r4 = r4 + 4
         if (r4 < 400) goto loop
```

- Still not much overlap possible
- Problems
 - » r2, r4, r6 sequentialize the iterations
 - » Need to rename these
- 2 specialized renaming optis
 - Accumulator variable expansion (r6)
 - Induction variable expansion (r2, r4)

Accumulator Variable Expansion

```
r16 = r26 = 0
 loop: r1 = load(r2)
         r3 = load(r4)
         r5 = r1 * r3
         r6 = r6 + r5
iter1
         r2 = r2 + 4
         r4 = r4 + 4
         r11 = load(r2)
         r13 = load(r4)
         r15 = r11 * r13
iter2
         r16 = r16 + r15
         r2 = r2 + 4
         r4 = r4 + 4
         r21 = load(r2)
         r23 = load(r4)
         r25 = r21 * r23
iter3
         r26 = r26 + r25
         r2 = r2 + 4
         r4 = r4 + 4
         if (r4 < 400) goto loop
         r6 = r6 + r16 + r26
```

Accumulator variable

$$x = x + y \text{ or } x = x - y$$

- » where y is loop <u>variant!!</u>
- Create n-1 temporary accumulators
- Each iteration targets a different accumulator
- Sum up the accumulator variables at the end
- May not be safe for floatingpoint values

Induction Variable Expansion

```
r12 = r2 + 4, r22 = r2 + 8
         r14 = r4 + 4, r24 = r4 + 8
         r16 = r26 = 0
  loop: r1 = load(r2)
         r3 = load(r4)
         r5 = r1 * r3
         r6 = r6 + r5
iter1
         r2 = r2 + 12
         r4 = r4 + 12
         r11 = load(r12)
         r13 = load(r14)
         r15 = r11 * r13
iter2
         r16 = r16 + r15
         r12 = r12 + 12
         r14 = r14 + 12
         r21 = load(r22)
         r23 = load(r24)
         r25 = r21 * r23
iter3
         r26 = r26 + r25
         r22 = r22 + 12
         r24 = r24 + 12
         if (r4 < 400) goto loop
```

- Induction variable
 - x = x + y or x = x y
 - » where y is loop <u>invariant!!</u>
- Create n-1 additional induction variables
- Each iteration uses and modifies a different induction variable
- Initialize induction variables to init, init+step, init+2*step, etc.
- Step increased to n*original step
- Now iterations are completely independent !!

Better Induction Variable Expansion

```
r16 = r26 = 0
 loop: r1 = load(r2)
         r3 = load(r4)
         r5 = r1 * r3
         r6 = r6 + r5
iter1
         r11 = load(r2+4)
         r13 = load(r4+4)
         r15 = r11 * r13
iter2
         r16 = r16 + r15
         r21 = load(r2+8)
         r23 = load(r4+8)
         r25 = r21 * r23
iter3
         r26 = r26 + r25
         r2 = r2 + 12
         r4 = r4 + 12
         if (r4 < 400) goto loop
         r6 = r6 + r16 + r26
```

- With base+displacement addressing, often don't need additional induction variables
 - » Just change offsets in each iterations to reflect step
 - Change final increments to noriginal step

Homework Problem

loop:

$$r1 = load(r2)$$

$$r5 = r6 + 3$$

$$r6 = r5 + r1$$

$$r2 = r2 + 4$$

if
$$(r2 < 400)$$
 goto loop

Optimize the unrolled loop

Renaming Tree height reduction Ind/Acc expansion

loop:

$$r1 = load(r2)$$

$$r5 = r6 + 3$$

$$r6 = r5 + r1$$

$$r2 = r2 + 4$$

$$r1 = load(r2)$$

$$r5 = r6 + 3$$

$$r6 = r5 + r1$$

$$r2 = r2 + 4$$

$$r1 = load(r2)$$

$$r5 = r6 + 3$$

$$r6 = r5 + r1$$

$$r2 = r2 + 4$$

if
$$(r2 < 400)$$
 goto loop

Homework Problem - Answer

loop:

$$r1 = load(r2)$$

$$r5 = r6 + 3$$

$$r6 = r5 + r1$$

$$r2 = r2 + 4$$

if (r2 < 400) goto loop

Optimize the unrolled loop

Renaming
Tree height reduction
Ind/Acc expansion

loop:

r1 = load(r2)

$$r5 = r6 + 3$$

$$r6 = r5 + r1$$

$$r2 = r2 + 4$$

$$r1 = load(r2)$$

$$r5 = r6 + 3$$

$$r6 = r5 + r1$$

$$r2 = r2 + 4$$

$$r1 = load(r2)$$

$$r5 = r6 + 3$$

$$r6 = r5 + r1$$

$$r2 = r2 + 4$$

if
$$(r2 < 400)$$

goto loop

loop:

$$r1 = load(r2)$$

$$r5 = r1 + 3$$

$$r6 = r6 + r5$$

$$r2 = r2 + 4$$

$$r11 = load(r2)$$

$$r15 = r11 + 3$$

$$r6 = r6 + r15$$

$$r2 = r2 + 4$$

$$r21 = load(r2)$$

$$r25 = r21 + 3$$

$$r6 = r6 + r25$$

$$r2 = r2 + 4$$

if
$$(r2 < 400)$$

goto loop

$$r16 = r26 = 0$$

loop:

$$r1 = load(r2)$$

$$r5 = r1 + 3$$

$$r6 = r6 + r5$$

$$r11 = load(r2+4)$$

$$r15 = r11 + 3$$

$$r16 = r16 + r15$$

$$r21 = load(r2+8)$$

$$r25 = r21 + 3$$

$$r26 = r26 + r25$$

$$r2 = r2 + 12$$

if
$$(r2 < 400)$$

$$r6 = r6 + r16$$

$$r6 = r6 + r26$$

after renaming and tree height reduction

after acc and ind expansion

Code Generation

- Map optimized "machine-independent" assembly to final assembly code
- Input code
 - » Classical optimizations
 - » ILP optimizations
 - » Formed regions (sbs, hbs), applied if-conversion (if appropriate)
- ❖ Virtual → physical binding
 - » 2 big steps
 - » 1. Scheduling
 - Determine when every operation executions
 - Create MultiOps (for VLIW) or reorder instructions (for superscalar)
 - » 2. Register allocation
 - Map virtual → physical registers
 - Spill to memory if necessary

Scheduling Instructions

- Need information about the processor
 - » Number of resources, latencies, encoding limitations
 - » For example:
 - 2 issue slots, 1 memory port, 1 adder/multiplier
 - load = 2 cycles, add = 1 cycle, mpy = 3 cycles; all fully pipelined
 - Each operand can be register or 6 bit signed literal
- Need ordering constraints amongst operations
 - » What order defines correct program execution?
- Given multiple operations that can be scheduled, how do you pick the best one?
 - » Is there a best one? Does it matter?
 - » Are decisions final?, or is this an iterative process?
- How do we keep track of resources that are busy/free
 - » Reservation table: Resources x time

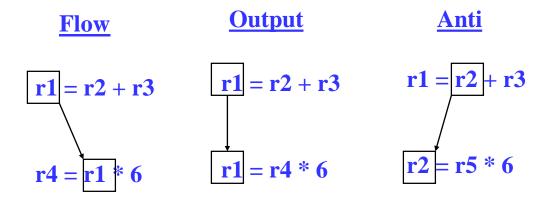
Schedule Before or After Register Allocation?

virtual registers

r1 = load(r10) r2 = load(r11) r3 = r1 + 4 r4 = r1 - r12 r5 = r2 + r4 r6 = r5 + r3 r7 = load(r13) r8 = r7 * 23 store (r8, r6)

physical registers

Too many artificial ordering constraints if schedule after allocation!!!!


But, need to schedule after allocation to bind spill code

Solution, do both! Prepass schedule, register allocation, postpass schedule

Data Dependences

Data dependences

- » If 2 operations access the same register, they are dependent
- » However, only keep dependences to most recent producer/consumer as other edges are transitively redundant
- » Types of data dependences

More Dependences

- Memory dependences
 - » Similar as register, but through memory
 - » Memory dependences may be certain or maybe
- Control dependences
 - » We discussed this earlier
 - » Branch determines whether an operation is executed or not
 - » Operation must execute after/before a branch

Mem-flow	Mem-output	Mem-anti	Control
store (r1, r2) r3 = load(r1)	store (r1, r2) store (r1, r3)	r2 = load(r1) / store (r1, r3)	if (r1 != 0) r2 = load(r1)

Dependence Graph

- Represent dependences between operations in a block via a DAG
 - » Nodes = operations/instructions
 - » Edges = dependences

(1)

 Single-pass traversal required to insert dependences

2

Example

3

1: r1 = load(r2)2: r2 = r1 + r4

4

3: store (r4, r2)

5

4: p1 = cmpp (r2 < 0)

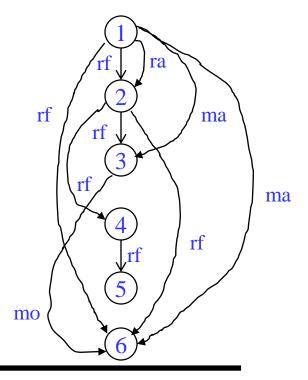
 \bigcirc

5: branch if p1 to BB36: store (r1, r2)

(6)

BB3:

Dependence Graph - Solution


Example

```
1: r1 = load(r2)
2: r2 = r1 + r4
3: store (r4, r2)
4: p1 = cmpp (r2 < 0)
5: branch if p1 to BB3
6: store (r1, r2)

BB3:
```

Instructions 1-4 have control dependence to instruction 5

 $5 \rightarrow 6$ control dependence

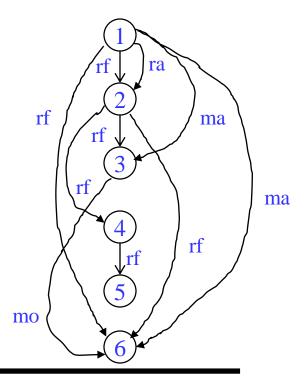
Dependence Edge Latencies

- ★ Edge latency = minimum number of cycles necessary between initiation of the predecessor and successor in order to satisfy the dependence
- * Register flow dependence, $a = b + c \rightarrow d = a + 1$
 - » Latency of producer instruction for most processors
- Register anti dependence, $a = b + c \rightarrow b = d + e$
 - » 0 cycles for most processors
- Register output dependence, $\mathbf{a} = \mathbf{b} + \mathbf{c} \rightarrow \mathbf{a} = \mathbf{d} + \mathbf{e}$
 - » 1 cycle for most processors
- Is negative latency possible?
 - yes, means successor can start before predecessor
 - \rightarrow We will only deal with latency ≥ 0

Dependence Edge Latencies (2)

- Memory dependences
 - » Store → load (memory flow)
 - » Load → Store (memory anti)
 - \rightarrow Store (memory output)
 - » All 1 cycle for most processors
- Control dependences
 - \rightarrow branch \rightarrow b
 - Instructions inside then/else paths dependent on branch
 - 1 cycle for most processors
 - \rightarrow branch
 - Op a must be issued before the branch completes
 - 0 cycles for most processors

Class Problem – Add Latencies to Dependence Edges


add: 1 cmpp: 1 load: 2 store: 1

Example

```
1: r1 = load(r2)
2: r2 = r1 + r4
3: store (r4, r2)
4: p1 = cmpp (r2 < 0)
5: branch if p1 to BB3
6: store (r1, r2)
BB3:
```

Instructions 1-4 have control dependence to instruction 5

 $5 \rightarrow 6$ control dependence

Homework Problem 1 – Answer Next Time

machine model

latencies

add: 1

mpy: 3

load: 2

store: 1

- 1. Draw dependence graph
- 2. Label edges with type and latencies

1.
$$r1 = load(r2)$$

$$2. r2 = r2 + 1$$

3. store (r8, r2)

4.
$$r3 = load(r2)$$

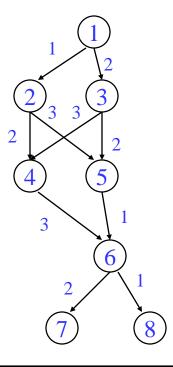
$$5. r4 = r1 * r3$$

6.
$$r5 = r5 + r4$$

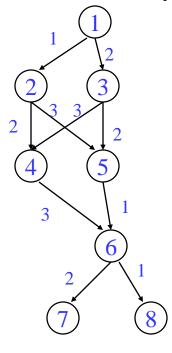
7.
$$r2 = r6 + 4$$

8. store (r2, r5)

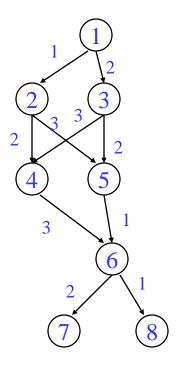
1



8


Dependence Graph Properties - Estart

- Estart = earliest start time, (as soon as possible ASAP)
 - » Schedule length with infinite resources (dependence height)
 - \rightarrow Estart = 0 if node has no predecessors
 - » Estart = MAX(Estart(pred) + latency) for each predecessor node
 - » Example


Lstart

- Lstart = latest start time, ALAP
 - » Latest time a node can be scheduled s.t. sched length not increased beyond infinite resource schedule length
 - » Lstart = Estart if node has no successors
 - » Lstart = MIN(Lstart(succ) latency) for each successor node
 - » Example

Slack

- ❖ Slack = measure of the scheduling freedom
 - » Slack = Lstart Estart for each node
 - » Larger slack means more mobility
 - » Example

