
EECS 583 – Advanced Compilers

Course Overview, Introduction to

Control Flow Analysis

Winter 2024, University of Michigan

Jan 10, 2024

https://web.eecs.umich.edu/~mahlke/courses/583w24

- 1 -

Lecture + Discussion
 Class meeting pattern

» Lecture: Mon/Wed 10:30-12:00

 Scott office hours right after lecture: noon-12:30

» Discussion: Wed 12:30-1:30, 1005 Dow (optional, some cancelled)

 Homework details, questions

 In-person lecture: G906 Cooley (White Auditorium)

» Try to attend, get more out of the lecture

» Please stay home if you are sick!

» May have some virtual classes during the semester

 Lecture will also be presented live on Zoom

» Participate from home if you wish

» Zoom videos also available (try to use just for review!)

 Bad idea if this is all you do: run 1.5x, multi-task, don’t pay attention

» Discussion section is not recorded

 Zoom info

» Same link/password for all lectures, posted on course website

» Separate link for GSI office hrs – more later

- 2 -

Attending Class Virtually

 Lecture is synchronous and recorded

» Please try to attend live if you can

» We’ll start at 10:35 sharp

» Keep your camera and mic muted

 Critical to avoid disruptions

 Asking questions on Zoom

» Type the word “question” in the chat box

» GSI will unmute you and you can ask question

» If you prefer not to speak, then just type out your

question in chat and the GSI can ask it for you

» I will also pause regularly to ask if there are questions

» Discussion important in a grad class, so don’t be bashful

- 3 -

About Me

 Mahlke = mall key

» But just call me Scott

 Been at Michigan since 2001

» Compiler guy who likes hardware

» Program optimization to make programs go faster

» Building custom hardware for high performance/low

power

 Before this – HP Labs in Silicon Valley

 Before before – Grad student at UIUC

 Before ^ 3 – Undergrad at UIUC

- 4 -

More About Me

 3 kids – 7, 7, and 5

» So if I show up to lecture half asleep, you know why!

- 5 -

Contact Information

 Email: mahlke@umich.edu

 Office hours

» Mon/Wed 12:00-12:30 right outside lecture room

» Or send me an email for an appointment

 Visiting office hrs

» Mainly help on classroom material, concepts, etc.

» I am an LLVM novice, so likely I cannot answer any

non-trivial question

» See GSIs for LLVM details

mailto:mahlke@umich.edu

- 6 -

583 GSIs

 Yunjie Pan (panyj@umich.edu)

» Office hours: Mon 1-3pm, Tue 1-3pm,

Wed 1:30-3:30pm

 Aditya Vasudevan (adivasu@umich.edu)

» Office hours: Tue 3-5pm, Thu 3-5pm,

Fri 10am-12pm

 Location: Zoom (link on course website,

same link for the entire semester, same for

both GSIs, passcode = eecs583)

mailto:panyj@umich.edu

- 7 -

Getting Help from the GSIs

 LLVM help/questions

 But, you will have to be independent in this class

» Read the documentation and look at the code

» Come to them when you are really stuck or confused

» They cannot and will not debug your code

» Helping each other is encouraged

» Use the class piazza group (GSIs will monitor)

 Virtual office hours on Zoom

» Will offer a combination of appointments (EECS 583

calendar) and open slots. Details posted on piazza.

- 8 -

Class Overview

 This class is NOT about:

» Programming languages

» Parsing, syntax checking, semantic analysis

» Handling advanced language features – virtual functions, …

» Frontend transformations

» Debugging

» Simulation

 Compiler backend

» Mapping applications to processor hardware

» Retargetability – work for multiple platforms (not hard coded)

» Work at the assembly-code level (but processor independent)

» Speed/Efficiency

 How to make the application run fast

 Use less memory (text, data), efficiently execute

 Parallelize, prefetch, optimize using profile information

- 9 -

Background You Should Have

 1. Programming

» Good C++ programmer (essential)

» Linux, gcc, emacs (vi or other editor is ok too)

» Debugging experience – hard to debug with printf’s alone – gdb!

» Compiler system not ported to Windows

 2. Computer architecture

» EECS 370 is good, 470 is better but not essential

» Basics – caches, pipelining, function units, registers, virtual memory,

branches, multiple cores, assembly code

 3. Compilers

» Frontend stuff is not very relevant for this class, but good to know

» Basic backend stuff we will go over fast

 Non-EECS 483 people will have to do some supplemental reading

- 10 -

Textbook and Other Classroom Material

 No required text – Lecture notes, papers

 LLVM compiler system – we will use version 17.0.6

» LLVM webpage: http://www.llvm.org

» Read the documentation!

» LLVM users group

 Course webpage + course newsgroup

» https://www.eecs.umich.edu/~mahlke/courses/583w24

» Lecture notes – available the night before class

» Piazza – ask/answer questions, GSIs and I will try to check
regularly but may not be able to do so always

 http://www.piazza.com

http://www.llvm.org/
http://www.piazza.com/

- 11 -

What the Class Will be Like

 Core backend stuff

» Text book material – some overlap with 483

» 2 homeworks to apply classroom material

 Research papers

» Last 1/3rd of the semester, students take over

» Select paper related to your project

» Each project team - presents 1 paper. 15 min talk + Q&A.

» Entire class is expected to watch presentations and grade
presentations

» You will need to attend live for at least your own presentation

- 12 -

What the Class Will be Like (2)
 Learning compilers

» No memorizing definitions, terms, formulas,
algorithms, etc

» Learn by doing – Writing code

» Substantial amount of programming

 Fair learning curve for LLVM compiler

» Reasonable amount of reading

 Classroom

» Attendance – Best to join live, lots of examples solved
in class

» Discussion important

 Work out examples, discuss papers, etc

» Essential to stay caught up

» Extra meetings outside of class to discuss projects

- 13 -

Course Grading

 Yes, everyone will get a grade

» Grad class: Most (hopefully all) will get A’s and B’s

» Poor grades on homeworks are big problem

 Components

» Midterm exam – 25%

» Project – 45%

» Homeworks – 15%

» Paper presentation – 10%

» Class participation – 5%

- 14 -

Homeworks

 1 preliminary (HW0), available on course webpage now

» Get LLVM set up, nothing to submit

 2 real homeworks

» 1 small &1 harder programming assignment

» Design and implement something we discussed in class

 Goals

» Learn the important concepts

» Learn the compiler infrastructure so you can do the project

 Grading

» Working testcases?, Does anything work? Level of effort?

 Working together on the concepts is fine

» Make sure you understand things or it will come back to bite you

» Everyone must do and turn in their own assignment

- 15 -

Projects – Most Important Part of the Class

 Design and implement an “interesting” compiler technique
and demonstrate its usefulness using LLVM

 Topic/scope/work

» 3-5 people per project (Other group sizes allowed in some cases)

» You will pick the topics (I have to agree)

» You will have to

 Read background material

 Plan and design

 Implement and debug

 Deliverables

» Working implementation

» Project report: ~5 page paper describing what you did/results

» 15 min presentation at end (demo if you want)

» Project proposal (early March) scheduled with each group during
semester

- 16 -

Types of Projects
 New idea

» Small research idea

» Design and implement it, see how it works

 Extend existing idea

» Take an existing paper, implement their technique

» Then, extend it to do something small but interesting

 Generalize strategy, make more efficient/effective

 Implementation

» Take existing idea, create quality implementation in LLVM

» Try to get your code released into main LLVM system

 Using other compilers/systems (GPUs, JIT, mobile

phone, etc.) is possible

- 17 -

Topic Areas (You are Welcome to Propose Others)
 Automatic parallelization

» Loop parallelization

» Vectorization/SIMDization

» Transactional
memories/speculation

» Breaking dependences

 Memory system performance

» Instruction/data prefetching

» Use of scratchpad memories

» Data layout

 Reliability

» Catching transient faults

» Reducing AVF

 Customized hardware

» High level synthesis

» HW optimization

 Power

» Instruction scheduling techniques to
reduce power

» Identification of narrow computations

 Streaming/GPUs

» Stream scheduling

» Memory management

» Optimizing CUDA programs

 Security

» Program analysis to identify
vulnerabilities

» Eliminate vulnerabilities via xforms

 Dynamic optimization

» DynamoRIO

» Run-time optimization

- 18 -

Class Participation

 Interaction and discussion is essential in a
graduate class

» Try to join live if you can (not required)

» If you are here, don’t just stare at the wall

» Be prepared to discuss the material

» Have something useful to contribute

 Opportunities for participation

» Research paper presentations – thoughts, comments,
questions

» Saying what you think during class or in project
discussions outside of class

» Lectures: Solving class problems, asking questions

» Helping answer questions on piazza!

- 19 -

Class Schedule (on course website)

Week Date Topic

1 Mon -

Wed Jan 10 Course intro, Control flow analysis, HW #0 out

2 Jan 15 No class, MLK Day

Jan 17 Control flow analysis, HW #0 due (nothing to turn in), HW #1 out

3 Jan 22 Control flow analysis

Jan 24 Control flow analysis

4 Jan 29 Dataflow analysis, HW #1 due

Jan 31 Dataflow analysis, HW #2 out

5 Feb 5 SSA form

Feb 7 Code optimization

6 Feb 12 Code optimization

Feb 14 Code generation

7 Feb 19 Code generation

Feb 21 Code generation, HW #2 due

8 Feb 26 No class, Spring Break

Feb 28 No class, Spring Break

9 Mar 4 Code generation

Mar 6 Code generation

10 Mar 11 No regular class - Project proposals

Mar 13 No regular class - Project proposals

11 Mar 18 Midterm Review

Mar 20 Midterm Exam

12 Mar 25 Research paper presentations

Mar 27 Research paper presentations

13 Apr 1 Research paper presentations

Apr 3 Research paper presentations

14 Apr 8 Research paper presentations

Apr 10 Research paper presentations

15 Apr 15 Research paper presentations

Apr 17 Research paper presentations

16 Apr 22 No regular class – Finish projects

-

Apr 23-29 Project demos

- 20 -

Target Processors: 1) VLIW/EPIC Architectures

 VLIW = Very Long Instruction Word

» Aka EPIC = Explicitly Parallel Instruction Computing

» Compiler managed multi-issue processor

 Desktop

» IA-64: aka Itanium I and II, Merced, McKinley

 Embedded processors

» All high-performance DSPs are VLIW

 Why? Cost/power of superscalar, more scalability

» TI-C6x, Philips Trimedia, Starcore, ST-200

- 21 -

Target Processors: 2) Multicore

 Sequential programs – 1 core busy, 3 sit idle

 How do we speed up sequential applications?

» Switch from ILP to TLP as major source of performance

» Memory dependence analysis becomes critical

- 22 -

Target Processors: 3) SIMD/GPU

 Do the same work on different data: GPU, SSE, etc.

 Energy-efficient way to scale performance

 Must find “vector parallelism”

- 23 -

So, lets get started… Compiler Backend IR – Our Input

 Variable home location

» Frontend – every variable in memory

» Backend – maximal but safe register promotion

 All temporaries put into registers

 All local scalars put into registers, except those accessed via &

 All globals, local arrays/structs, unpromotable local scalars put in
memory. Accessed via load/store.

 Backend IR (intermediate representation)

» machine independent assembly code – really resource indep!

» aka RTL (register transfer language), 3-address code

» r1 = r2 + r3 or equivalently add r1, r2, r3

 Opcode (add, sub, load, …)

 Operands

 Virtual registers – infinite number of these

 Literals – compile-time constants

- 24 -

First Topic: Control Flow Analysis

 Control transfer = branch (taken or fall-through)

 Control flow

» Branching behavior of an application

» What sequences of instructions can be executed

 Execution  Dynamic control flow

» Direction of a particular instance of a branch

» Predict, speculate, squash, etc.

 Compiler  Static control flow

» Not executing the program

» Input not known, so what could happen

 Control flow analysis

» Determining properties of the program branch structure

» Determining instruction execution properties

- 25 -

Basic Block (BB)

 Group operations into units with equivalent execution
conditions

 Defn: Basic block – a sequence of consecutive operations
in which flow of control enters at the beginning and
leaves at the end without halt or possibility of branching
except at the end

» Straight-line sequence of instructions

» If one operation is executed in a BB, they all are

 Finding BB’s

» The first operation in a function starts a BB

» Any operation that is the target of a branch starts a BB

» Any operation that immediately follows a branch starts a BB

- 26 -

Identifying BBs - Example

L1: r7 = load(r8)

L2: r1 = r2 + r3

L3: beq r1, 0, L10

L4: r4 = r5 * r6

L5: r1 = r1 + 1

L6: beq r1 100 L3

L7: beq r2 100 L10

L8: r5 = r9 + 1

L9: jump L2

L10: r9 = load (r3)

L11: store(r9, r1)

??

- 27 -

Control Flow Graph (CFG)

 Defn Control Flow Graph –

Directed graph, G = (V,E)

where each vertex V is a

basic block and there is an

edge E, v1 (BB1)  v2

(BB2) if BB2 can

immediately follow BB1 in

some execution sequence

» A BB has an edge to all

blocks it can branch to

» Standard representation used

by many compilers

» Often have 2 pseudo vertices

 entry node

 exit node

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

- 28 -

CFG Example

x = z – 2;

y = 2 * z;

if (c) {

x = x + 1;

y = y + 1;

}

else {

x = x – 1;

y = y – 1;

}

z = x + y

x = z – 2;

y = 2 * z;

if (c) B2 else B3

x = x + 1;

y = y + 1;

z = x + y

x = x – 1;

y = y – 1;

goto B4;

then

(taken)

else

(fallthrough)

B1

B2 B3

B4

- 29 -

Weighted CFG

 Profiling – Run the application on

1 or more sample inputs, record

some behavior

» Control flow profiling

 edge profile

 block profile

» Path profiling

» Cache profiling

» Memory dependence profiling

 Annotate control flow profile onto

a CFG  weighted CFG

 Optimize more effectively with

profile info!!

» Optimize for the common case

» Make educated guess

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

20

10 10

10 10

20 0

20 0

20

- 30 -

Property of CFGs: Dominator (DOM)

 Defn: Dominator – Given a CFG(V, E, Entry,

Exit), a node x dominates a node y, if every path

from the Entry block to y contains x

 3 properties of dominators

» Each BB dominates itself

» If x dominates y, and y dominates z, then x dominates

z

» If x dominates z and y dominates z, then either x

dominates y or y dominates x

 Intuition

» Given some BB, which blocks are guaranteed to have

executed prior to executing the BB

- 31 -

Dominator Example 1

BB1

BB2

BB4

BB3

Entry

Exit

- 32 -

Dominator Example 2

BB2

BB3

BB5BB4

Entry

Exit

BB6

BB1

BB7

- 33 -

Get Started ASAP!! Homework 0

 Go to http://llvm.org

 Setup LLVM 17.0.6 on the class server or your

favorite Linux box

» For server, use the central version that is already set up

» For your own system, read the installation instructions

» See Aditya’s post on piazza for detailed instructions

 Try to run it on a simple C program

 HW1 goes out next week and you need LLVM

 We will have 2 dedicated servers for class use

» eecs583a/eecs583b.eecs.umich.edu

» Everyone should have ssh access

http://llvm.org/

