
Page 1 of 9

EECS 583 – Fall 2023 – Midterm Exam

Friday, November 3, 2023
Exam duration: 1 hr 45 min
Open book, open notes

Name: ______________SOLUTION KEY_______________________

Please sign indicating that you have upheld the Engineering Honor Code at the
University of Michigan.

"I have neither given nor received aid on this examination."

Signature: _________________________________________________

There are 10 questions divided into 2 sections. The point value for each question is
specified with that question. Please show your work unless the answer is obvious. If you
need more space, use the back side of the exam sheets.

Part I: Short Answer
5 questions, 25 pts total Score:_____

Part II: Long Answer
5 questions, 75 pts total Score:_____

Total (100 possible): _______



Page 2 of 9

Part I. Short Answer (Questions 1-5) (25 pts)

1) A new compiler identifies possibly uninitialized variables by examining the USE-DEF
chains for each variable where an empty chain (e.g., no DEFs that reach the use) indicates
an uninitialized variable. Would this method identify all uninitialized variables? Briefly
explain why or why not. (5 pts)

False. This method will not catch variables that are conditionally initialized, e.g., a
variable is initialized on the “then” path, and then consumed after the “if-then-else”, so
there is no initialization on the else path. This occurs because reaching defs used to
calculate USE-DEF chains is any-path (Union meet function).

2) Profile information can be used for a variety of purposes in a compiler. Name a way it
can be used to optimize instruction cache performance. Briefly explain. (5 pts)

Profile data can be used to co-locate hot code blocks, which reduces instruction footprints
and increases Icache performance. Examples include trace selection, superblock
formation, etc. Another acceptable answer is to code expanding optimizations like
loop unrolling and function inlining to only the most important segments of code so as to
reduce the size of binary growth and indirectly improve Icache performance.

3) When scheduling a basic block, all instructions must be scheduled at their Estart (earliest
start) time to ensure the basic block finishes in the fewest cycles. Is this statement True
or False? Briefly explain. (5 pts)

False. Instructions must be scheduled by their Lstart to ensure the basic block finishes in
the fewest possible cycles. The range of [Estart-Lstart] provides a scheduling range for
each instruction such that the block finishes in the minimal cycles, thus scheduling at the
Estart time is not necessary.

4) Is it possible to unroll the following loop, for (i=0; i<100; i+=X) { … } where X is a
value input by the user immediately before the for loop statement? You may assume there
are no breaks or continues in the loop and X is not modified. Briefly explain. (5 pts)

Yes. This can be done by creating a Preloop for the non-multiple of unroll factor
iterations. The number of iterations spent in the Preloop and unrolled body will be
computed at run time, hence the fact that X is unknown is fine. The number of iterations
just needs to be known before the loop is invoked (e.g., the loop is a counted loop).
Another acceptable answer is to say the loop is unrolled by keeping the loop back
branches in the loop with the reverse condition to conditionally exit the loop. Such
unrolling is less effective because fewer branches are eliminated, but still creates a larger
loop body.



Page 3 of 9

5) For graph coloring based register allocation, all nodes in the interference graph with
degree >= N (the number of registers) will be spilled to achieve a successful allocation.
Is this statement True or False? Briefly explain. (5 pts)

False. When a node is selected for spilling, the node and all of its edges are removed
from the graph. Hence, the degree of nodes with degree >= N can be reduced by spilling
its neighbors which can eventually lead to the node having degree < N which will make it
colorable.



Page 4 of 9

Part II. Longer Problems (Questions 6-10) (75 pts)

6) You are designing a dataflow analysis for a processor with unreliable memory.
Specifically, data in memory between addresses 0xC000 - 0xEFFF gets lost. Loads from
this address range get garbage values and stores to this address range result in data loss.
Such loads and stores are considered as faulty. Any subsequent instructions which use the
faulty loaded values (arithmetic, memory, or control) are also deemed faulty. Your
dataflow analysis needs to identify such faulty instructions. (15 points)
Note: store (A, B) implies that the value B is being stored at address A in memory.
Assume that all registers are initialized properly before BB1 outside the faulty range.

a) Is this a top-down or bottom-up dataflow analysis problem? ____top-down_________

b) Is this an all-path or any-path dataflow analysis problem? ____any-path________

c) Write the GEN and KILL sets for each basic block (just specify the contents of each
set for each BB, no need to define the algorithm).

BB1 BB2 BB3 BB4

GEN 2, 3, 5 - 8, 9 10

KILL 1, 4 6, 7 - 11



Page 5 of 9

7) Fill in the blanks using r4, r5, r7, and r8, so that a maximum number of instructions from
BB2, BB3, BB4, and BB6 become eligible for hoisting via LICM. (10 pts)

r4 and r8 are liveout on all edges out of the loop (BB5, BB7, BB8) and hence can only be placed
in BB2 to be hoisted correctly. Hence, only one of the two can be hoisted successfully. Observe
that by placing r8 in BB2 and allowing it to be hoisted, we also make the instruction in BB4
invariant and able to be hoisted. Hence r8 is preferred over r4, for placement in BB2.
r5 is liveout on BB5 and hence can only be placed in BB2 or BB3, but since we want r8 to be in
BB2, we place it in BB3.
r7 is liveout on BB7 and hence can only be placed in BB2 or BB4, but since we want r8 to be in
BB2, we place it in BB4.
r4 has to be placed in BB6 and will not be hoisted by the LICM optimization. r8, r5, and r7 will
be hoisted.



Page 6 of 9

8) For the given code, (15 points)
a) Compute the number of predicates required to if-convert the code.
b) To profile the code, we ran this function 100 times, we found that:

i) The loop back-edge was never taken.
ii) All other conditional branches were taken exactly 50% of the time.
iii) All branch probabilities were independent.
iv) Each instruction takes 1 unit of time to execute, except branches which take 3

units each.
Based on this information, will if-conversion of all eligible branches to utilize predicated
execution (no other optimizations) make the code run faster on the same profile test
cases? Justify your answer.
You may assume that there are no mispredictions, and that a CMPP instruction can
compute up to 2 predicates for every condition.

(BB1 and BB8 are always
executed. BB2 and BB5 will
have the same control
dependence set. All others
are unique. Remember that
back-edges are nuked when
computing these)

Time taken for normal code
= #non-branch + 3*#branch
=(300+50+50+25+50+25+25
+200) + 3(100+50+50+50)
=1475 units of time

Time taken for if-pred code
3 branches (except loop) get
replaced by CMPP.
= 1400 + 300 = 1700 units of
time.

Remember that code
correctness still needs to be
maintained, so the loop
backedge branch has to be
reinserted, and will take 3
cycles.

(a) Number of predicates required = ____________5___________

(b) If-predicated code will take longer (See calculations above) Partial credit will be given.



Page 7 of 9

9) Satisfy static single assignment (SSA) form by filling in the blanks in the code segment
below. Solving by inspection is fine. (15 points)

● The result and arguments of a phi node must be different instances of the same variable
(e.g. a1 = Φ(a2, a3)). Further, all variables with the same letter referred to a single
variable in the original program.

● Choose operands between a0 - a5, b0 - b5, c0 - c5. Repetition is allowed.
● There are no unnecessary phi nodes.



Page 8 of 9

10) Given below is a loop dependence graph and a processor model. (M), (A), and (B) refer
to memory, ALU, and branch instructions respectively. The memory instructions use the
memory units and the ALU and branch instructions use the ALU units. (20 points)

a. Determine the MII. Show your work. (5 points)
b. Generate the rolled and unrolled schedules using this MII. Lower instruction numbers

will have a higher priority, i.e. instruction 1 has the highest priority. (15 points)

Unrolled Schedule (may contain extra rows)

ALU1 ALU2 MEM1 MEM2

0 1

1 2 3

2 4

3

4 5 6

5

6

7 7

8

Rolled Schedule (may contain extra rows)

ALU1 ALU2 MEM1 MEM2

0 4 5 1 6

1 7 2 3

2

3

MII = ________2_________

Cycles: 1→2→1, 1→3→2→1, 4→ 4, 4→5→4, 4→ 6→5→4
ResMII = MAX(4/2, 3/2) = 2; RecMII = MAX(2/1,2/2, 1/1, 3/2, 4/3) = 2



Page 9 of 9

Scheduling Process:
1. Schedule branch instruction (7) in Rolled schedule first. Reserving Rolled(1, ALU1).
2. Since instructions are numbered in priority order, we schedule them one by one,

keeping track of which instructions have already been scheduled in the Rolled and
Unrolled tables:

a. Instruction 1: Memory instruction. Has no scheduled predecessors. So we
schedule in cycle 0. Reserve Rolled(0, MEM1), Schedule Unrolled(0,
MEM1).

b. Instruction 2: ALU instruction. Needs to wait for 1 cycle after Instruction 1.
So we can schedule in cycle 1. Cannot reserve Rolled(1, ALU1) because
Instruction 7 has done so. So instead we Reserve Rolled(1, ALU2) and
Schedule Unrolled(1, ALU2).

c. Instruction 3: Memory instruction. Needs to wait 1 cycle after Instruction 1.
So we can schedule in cycle 1. Reserve Rolled(1, MEM2) and Schedule
Unrolled(1, MEM2).

d. Instruction 4: ALU instruction. Can be scheduled at the same time as
Instruction 2 (i.e. Cycle 1). But can’t reserve either ALU at that cycle
because ALU1 is reserved by Instruction 7 and ALU2 is reserved by
Instruction 2. So we push it to Cycle 2. Reserve Rolled(0, ALU1) and
Schedule Unrolled(2, ALU1).

e. Instruction 5: ALU instruction. Needs to be scheduled 3 cycles after
Instruction 2 and 2 cycles after Instruction 4, so the earliest it can be
scheduled is cycle 4. Rolled(0, ALU1) is reserved by Instruction 4, so we
Reserve Rolled(0, ALU2) and Schedule Unrolled(4, ALU2).

f. Instruction 6: Memory instruction. Needs to be scheduled at least 2 cycles
after instruction 4, i.e. Cycle 4. Rolled(0, MEM1) is reserved by Instruction
1, so we Reserve Rolled(0, MEM2) and Schedule Unrolled(4, MEM2).

g. Instruction 7: Branch instruction. Needs to be scheduled at least 2 cycles
after Instruction 5 and 1 cycle after Instruction 6, so it cannot be scheduled
before cycle 6. However, in step 1, we have already reserved Rolled(1,
ALU1), so we need to push it to cycle 7 instead. So Schedule Unrolled(7,
ALU1)

Switching around MEM0 and MEM1 or ALU0 and ALU1 is okay as long as the rolled and
unrolled schedules are consistent.

Common mistakes during scheduling:
1. Rolled and unrolled schedules are inconsistent.
2. Forgetting to reserve a slot for branch instruction in the rolled schedule before

beginning scheduling.
3. Scheduling 6 at cycle 3 because calculated estart is 3. Remember that estart is just

the earliest possible time to schedule an instruction. Since a previous instruction (i.e.
Instruction 4) got pushed to the next cycle, every instruction that depended on it
could also be delayed.


