
EECS 583: Advanced Compilers

Winter 2024 Syllabus

Class and Instructor

 Lecture: Mon/Wed, 10:30am-12:00pm, G906 Cooley

 Discussion: Wed: 12:30pm-1:30pm, 1005 Dow

 Prof. Scott Mahlke

 Email: mahlke@umich.edu

 Lecture will also be available live on Zoom 10:30am-12:00pm MW and recorded

Audio/Video Recordings

Course lectures will be audio/video recorded and made available to all students in this

course. As part of your participation in this course, you may be recorded. If you do not

wish to be recorded, please contact the instructor (Scott Mahlke, mahlke@umich.edu) the

first week of class to discuss alternative arrangements. To prevent revealing your identity

on recordings, please mute your video during lecture. Also, questions can be submitted

via Zoom chat if you do not wish to reveal your voice.

Students may not record or distribute any class activity without written permission from

the instructor, except as necessary as part of approved accommodations for students with

disabilities. Any approved recordings may only be used for the student’s own private use.

Course Description
An in-depth study of compiler backend design for high-performance architectures. Basic

topics include control-flow and dataflow analysis, optimization, instruction scheduling,

modulo scheduling, and register allocation. Advanced topics include memory dependence

analysis, automatic vectorization/thread extraction, streaming applications, predicated

and speculative execution, dynamic compilation, and security. The focus is backend

compilation, thus familiarity with computer architecture and compilers is recommended.

Reference Books
1. Advanced Compiler Design & Implementation, Muchnick, Morgan Kaufmann, 1997.

2. Compilers: Principles, Techniques, and Tools (2nd edition), Aho, Lam, Sethi, Ullman, Pearson

Addison-Wesley, 2007. (1st edition is also fine)

Prerequisites
Strong C++ programming skills (EECS 281), good background in computer architecture

(EECS 370 at minimum), some familiarity with compilers (EECS 483 or prior compiler

class is desirable but not needed).

Grade
Midterm exam - 25% Paper presentation – 10%

Project - 45% Class participation – 5%

Homeworks – 15%

mailto:mahlke@umich.edu

Midterm exam - There will be one in-class (1.5 hour) exam at about the 2/3 point of the

class. The tentative date is on the course schedule. The exam will be open book/notes

and has a hybrid format with in-person and remote options.

Project - The projects will consist of designing and implementing an advanced compiler

technique within the LLVM compiler infrastructure (or other compiler system in certain

cases). A report describing the project should be submitted along with a brief

presentation and/or demonstration of the resulting implementation. Typical projects

consist of 3-5 students; 1 or 2 person projects are discouraged due to the extra work

incurred by those teams. There will be a project proposal and project update for each

group scheduled during the semester.

Homeworks – 2 programming assignments will be done in the early portion of the

semester. Each homework will consist of implementing something within the LLVM

compiler system and showing its operation on several test programs. Each student must

do their own work and turn in their own assignment.

Paper presentation – During the research topic portion of the class, each project group

will present a research paper to the class related to their project. Each group is

responsible for selecting an appropriate conference paper and giving a 15-minute

presentation to the class. Scheduling will be done via signup on a shared calendar.

Class participation - Students are encouraged to take an active role in this class by

asking questions or providing comments.

Rough Topic list

 Control flow analysis and optimization

o Basics: control flow graphs, dominators, loop detection

o Regions: traces, superblocks

o Predicated execution: control dependence analysis, if-conversion

o Code layout, alignment

 Dataflow analysis and optimization

o Basics: liveness, reaching defs

o Static single assignment form

o Classical and ILP optimization

o Analysis applications (security, reliability)

 Code generation

o Basics: dependences, latencies, ASAP/ALAP times

o Instruction scheduling, superblock scheduling, control speculation

o Modulo scheduling, rotating registers

o Register allocation

 Compilation for multicore

o Parallelization of loops: Vector, DOALL, DOACROSS, DSWP

o Intro. to dynamic (JIT) compilation

 Research topics (presentations by the class)

