AddressSanitizer
A Fast Address Sanity Checker

Braden Crimmins, Matthew Ruiz, Alan Yang

[=] Code bases which are non-trivial in
nature are rarely proven to be correct.

[=] Buffer overflows, use-after-free
bugs, and other similar errors create
unexpected behavior and introduce
exploitable security issues.

[=] Detecting and preventing these
errors is valuable, especially with little
additional programmer effort.

Lra VeriFone

: - MS_WebcheckMonitor: explorer.exe - Application Error ﬁ’gjj‘

&%5 Theinstruction at 0x59a783ff referenced memory at 0x00000000. The
‘S@? memory could not be read.

Click on OK to terminate the program

Specification

Goal: Develop a tool that can detect undefined/incorrect behavior.
[=] Should not modify observable program behavior
[=] Should be (reasonably) efficient
[-] Costs incurred: time, memory
[=] Should be statistically meaningful
[-] False negatives are OK

[-] False positives are probably not

Techniques Before ASan

Shadow Stack Shadow Heap
Heap

header

[=] Shadow memory: reserving large Stack
chunks of memory for metadata

malloc | uninit |

[=] Instrumentation: insertion of
diagnostic code to track behavior

1206 = &iclp;

[=] Debug allocators: specialized .,
| | tz;;c:’z;mznstf";gn compl e
implementations of free and malloc — T | SO

1207 = x7_33 + x1.27;
1208 = t207 >> 14; zgromt(swx): t
1211 = (char *)*t206; 1211 = *)*£206;
1210 = t208 * 2; IncropCount(,*"); exefu e
n . t209=:£0t§10; - = (.)
—_— 0?12 = rt *)t209; ncropCount(,,+");
=] Valgrind dynam e cwioew W) SeemCD 1 |
[=] Valgrind uses dynamic o Gy |
215 = 0; o S
1214 =

instrumentation and shadow memory i - B o = H l_ G |

1217 = (short *)t214;

IncropCount(,,LOAD™) ;
IR code IncropCount(,,STORE™) ;
*t217 = *t212;

instrumented code

A collect statistics

Central Tensions

Coverage vs. Performance Memory Trade-Offs

[=] Instrumentgtion - how many [=] Multi-level lookup tables give
checks to add more flexibility

[-] Too many - too slow! S
[-] Adding indirection is slow

[-] Runtime vs. compile-time

[=] Detecting use-after-free [=] How much metadata to track?

[-] More coverage means

[-] Custom heap allocator
more memory cost

[-] Poison pages

[-] Magic value redzones

AddressSanitizer

First released by Google in 2012
Inserts instrumentation code which detects bugs at runtime.

Consists of two main components:
[=] Instrumentation module
[=] Runtime library

This introduced Google’s “code sanitizer” class of programs.

Other examples include LeakSanitizer, ThreadSanitizer and MemorySanitizer.

Shadow Memory

[=] Stores information about
application data by mapping to a
“shadow” address.

[=] Tracks information about the
base memory location

[-] Has it been allocated?

[-] Has it been initialized?

Shadow Memory in AddressSanitizer

Key Intuition: Most memory is aligned to
8 bytes or more. This allows for compact
encoding of memory states.

Memory \ Memory
, , Shadow Shadow
Each given 8-byte chunk of memory is _>—

Shadow Shadow

assigned one corresponding byte in /
shadow memory. This allows a compact Memory Memory
Figure 1: AddressSanitizer memory mapping.

representation of the full memory space.

AddressSanitizer uses scale-offset
mapping for the stack and heap.

Shadow Memory and Redzoning - Example

void foo() {
char a[10];
<function body> }

AddressSanitizer uses this tool to place canaries or ‘redzones’ between each piece of
application data. Any read or write into a redzone is detected and reported as an error.

Shadow Memory and Redzoning - Example

void foo() {

void foo() {
char a[10];
<function body> }

AddressSanitizer uses this tool to place canaries or ‘redzones’ between each piece of
application data. Any read or write into a redzone is detected and reported as an error.

Shadow Memory and Redzoning - Example

void foo() {
char rz1[32]
char arr[10];
char rz2[32-10+32];

void foo() {
char a[10];
<function body> }

AddressSanitizer uses this tool to place canaries or ‘redzones’ between each piece of
application data. Any read or write into a redzone is detected and reported as an error.

Shadow Memory and Redzoning - Example

void foo() {
char rz1[32]
char arr[10];
char rz2[32-10+32];

3 unsigned *shadow =
void foo () { (unsigned*) (((long)rz1>>8)+0ffset);
char a[10];

<function body> }

AddressSanitizer uses this tool to place canaries or ‘redzones’ between each piece of
application data. Any read or write into a redzone is detected and reported as an error.

Shadow Memory and Redzoning - Example

void foo() {
char rz1[32]
char arr[10];
char rz2[32-10+32];

i unsigned *shadow =
void fOO() { (unsigned#) (((long)rz1>>8)+0ffset);
char a[lO] - // poison the redzones around arr.
: shadow[0] = Oxffffffff; // rzi
<function body> } shadow[1] = Oxffff0200; // arr and rz2

shadow([2] = Oxffffffff; // rz2

AddressSanitizer uses this tool to place canaries or ‘redzones’ between each piece of
application data. Any read or write into a redzone is detected and reported as an error.

Shadow Memory and Redzoning - Example

void foo() {
char rz1[32]
char arr[10];
char rz2[32-10+32];

i unsigned *shadow =
void fOO() { (unsigned#) (((long)rz1>>8)+0ffset);
char a[lO] - // poison the redzones around arr.
: shadow[0] = Oxffffffff; // rzil
<function body> } shadow[1] = Oxffff0200; // arr and rz2

shadow[2] = Oxffffffff; // rz2
<function body>

AddressSanitizer uses this tool to place canaries or ‘redzones’ between each piece of
application data. Any read or write into a redzone is detected and reported as an error.

Shadow Memory and Redzoning - Example

void foo() {
char rz1[32]
char arr[10];
char rz2[32-10+32];

i unsigned *shadow =
void fOO() { (unsigned#) (((long)rz1>>8)+0ffset);
char a[lO] - // poison the redzones around arr.
: shadow[0] = Oxffffffff; // rzil
<function body> } shadow[1] = Oxffff0200; // arr and rz2

shadow[2] = Oxffffffff; // rz2
<function body>

// un-poison all.

shadow[0] = shadow[1] = shadow[2] = 0; }

AddressSanitizer uses this tool to place canaries or ‘redzones’ between each piece of
application data. Any read or write into a redzone is detected and reported as an error.

Runtime Library

[=] Enables runtime updates to the
shadow memory by overwriting
malloc and free.

[=] malloc reserves memory with
appropriate redzone and padding.
It also ‘poisons’ the redzones.

[=] free poisons the memory and
quarantines it, so it will not be
used again soon.

Results and Metrics

[=] 3.4x average memory usage increase

[-] Valgrind induces a 2.125x increase =] Detects use-after-free and

out-of-bounds accesses to

[=] 3.7x average slowdown heap, stack, and global objects

[-] Valgrind has a 20x average

[=] Discovered over 300 bugs in
slowdown

the Chromium browser at time

[=] Some false negatives can occur 2ljiblcaen

[-] Unaligned partially out-of-bounds accesses

=] Detect veral h
[-] Larger redzones can catch more bugs [] etected severa Sl

based use-after-free bugs in
LLVM itself!

Work Since Initial Publication

Google has produced a sanitizer tool suite

[=] AddressSanitizer google/sanitizers P
[=] Memowsan |t|Zer AddressSanitizer, ThreadSanitizer,

MemorySanitizer
[=] ThreadSanitizer

[=] LeakSanitizer A 23 O517 trok ¥ e 3

___W |
Debloating Address Sanitizer (2022)
Zhang et al.
[=] Introduces ASan--
[=] Nearly 30% speedup

Analysis

Strengths Limitations

[=] ASan’s use of compile-time [=] Insecure against adversarial inputs
instrumentation makes it powerful :
: . [-] Canary avoidance
and (relatively) efficient

=] Can't find uninitialized reads
[=] Covers wide range of bugs =]

=] High performance cost
[=] Easy-to-use and widely [=] High p

available (LLVM/clang, gcc) [-] Large memory footprint

[-] Runtime can be improved

Readings

[=] Serebryany et al. AddressSanitizer: A Fast Address Sanity
Checker. 2012

[=] Zhang et al. Debloating Address Sanitizer. 2022

[=] Seward, Nethercote. Using Valgrind to detect undefined value
errors with bit-precision. 2005

AddressSanitizer
A Fast Address Sanity Checker

Braden Crimmins, Matthew Ruiz, Alan Yang

