
AddressSanitizer

Braden Crimmins, Matthew Ruiz, Alan Yang

A Fast Address Sanity Checker



Motivation

[=] Code bases which are non-trivial in 
nature are rarely proven to be correct.

[=] Buffer overflows, use-after-free 
bugs, and other similar errors create 
unexpected behavior and introduce 
exploitable security issues.

[=] Detecting and preventing these 
errors is valuable, especially with little 
additional programmer effort.



Specification

Goal: Develop a tool that can detect undefined/incorrect behavior.

[=] Should not modify observable program behavior

[=] Should be (reasonably) efficient

[-] Costs incurred: time, memory

[=] Should be statistically meaningful

[-] False negatives are OK

[-] False positives are probably not



Techniques Before ASan

[=] Shadow memory: reserving large 
chunks of memory for metadata

[=] Instrumentation: insertion of 
diagnostic code to track behavior

[=] Debug allocators: specialized 
implementations of free and malloc

[=] Valgrind uses dynamic 
instrumentation and shadow memory



Central Tensions

Coverage vs. Performance

[=] Instrumentation - how many 
checks to add?

[-] Too many - too slow!

[-] Runtime vs. compile-time

[=] Detecting use-after-free

[-] Custom heap allocator

[-] Poison pages

[-] Magic value redzones

 Memory Trade-Offs

[=] Multi-level lookup tables give 
more flexibility

[-] Adding indirection is slow

[=] How much metadata to track?

[-] More coverage means 
more memory cost



AddressSanitizer

This introduced Google’s “code sanitizer” class of programs.

Other examples include LeakSanitizer, ThreadSanitizer and MemorySanitizer.

First released by Google in 2012

Inserts instrumentation code which detects bugs at runtime.

Consists of two main components:
[=] Instrumentation module
[=] Runtime library



Shadow Memory

[=] Stores information about 
application data by mapping to a 
“shadow” address.

[=] Tracks information about the 
base memory location

[-] Has it been allocated?

[-] Has it been initialized?



Shadow Memory in AddressSanitizer

AddressSanitizer uses scale-offset 
mapping for the stack and heap.

Key Intuition: Most memory is aligned to 
8 bytes or more. This allows for compact 
encoding of memory states.

Each given 8-byte chunk of memory is 
assigned one corresponding byte in 
shadow memory. This allows a compact 
representation of the full memory space.



Shadow Memory and Redzoning - Example

AddressSanitizer uses this tool to place canaries or ‘redzones’ between each piece of 
application data. Any read or write into a redzone is detected and reported as an error.



Shadow Memory and Redzoning - Example

AddressSanitizer uses this tool to place canaries or ‘redzones’ between each piece of 
application data. Any read or write into a redzone is detected and reported as an error.



Shadow Memory and Redzoning - Example

AddressSanitizer uses this tool to place canaries or ‘redzones’ between each piece of 
application data. Any read or write into a redzone is detected and reported as an error.



Shadow Memory and Redzoning - Example

AddressSanitizer uses this tool to place canaries or ‘redzones’ between each piece of 
application data. Any read or write into a redzone is detected and reported as an error.



Shadow Memory and Redzoning - Example

AddressSanitizer uses this tool to place canaries or ‘redzones’ between each piece of 
application data. Any read or write into a redzone is detected and reported as an error.



Shadow Memory and Redzoning - Example

AddressSanitizer uses this tool to place canaries or ‘redzones’ between each piece of 
application data. Any read or write into a redzone is detected and reported as an error.



Shadow Memory and Redzoning - Example

AddressSanitizer uses this tool to place canaries or ‘redzones’ between each piece of 
application data. Any read or write into a redzone is detected and reported as an error.



Runtime Library

[=] Enables runtime updates to the 
shadow memory by overwriting 
malloc and free.

[=] malloc reserves memory with 
appropriate redzone and padding. 
It also ‘poisons’ the redzones.

[=] free poisons the memory and 
quarantines it, so it will not be 
used again soon.



Results and Metrics

[=] 3.4x average memory usage increase
[-] Valgrind induces a 2.125x increase

[=] 3.7x average slowdown
[-] Valgrind has a 20x average 

slowdown

[=] Some false negatives can occur
[-] Unaligned partially out-of-bounds accesses
[-] Larger redzones can catch more bugs

[=] Detects use-after-free and 
out-of-bounds accesses to
heap, stack, and global objects

[=] Discovered over 300 bugs in 
the Chromium browser at time 
of publication

[=] Detected several heap 
based use-after-free bugs in 
LLVM itself!



Work Since Initial Publication

Google has produced a sanitizer tool suite

[=] AddressSanitizer

[=] MemorySanitizer

[=] ThreadSanitizer

[=] LeakSanitizer

Debloating Address Sanitizer (2022)
Zhang et al.
[=] Introduces ASan--
[=] Nearly 30% speedup



Analysis

Strengths

[=] ASan’s use of compile-time 
instrumentation makes it powerful 
and (relatively) efficient

[=] Covers wide range of bugs

[=] Easy-to-use and widely 
available (LLVM/clang, gcc)

 Limitations

[=] Insecure against adversarial inputs

[-] Canary avoidance

[=] Can’t find uninitialized reads

[=] High performance cost

[-] Large memory footprint

[-] Runtime can be improved



Readings

[=] Serebryany et al. AddressSanitizer: A Fast Address Sanity 
Checker. 2012

[=] Zhang et al. Debloating Address Sanitizer. 2022

[=] Seward, Nethercote. Using Valgrind to detect undefined value 
errors with bit-precision. 2005



AddressSanitizer

Braden Crimmins, Matthew Ruiz, Alan Yang

A Fast Address Sanity Checker


