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One of the top two causes of software vulnerabilities in operating systems is the integer overflow.
A typical integer overflow vulnerability is the Integer Overflow to Buffer Overflow (IO2BO for short)
vulnerability. IO2BO is an underestimated threat. Many programmers have not realized the existence of
IO2BO and its harm. Even for those who are aware of IO2BO, locating and fixing IO2BO vulnerabilities
are still tedious and error-prone. Automatically identifying and fixing this kind of vulnerability are critical
for software security. In this article, we present the design and implementation of IntPatch, a compiler
extension for automatically fixing IO2BO vulnerabilities in C/C++ programs at compile time. IntPatch
utilizes classic type theory and a dataflow analysis framework to identify potential IO2BO vulnerabilities,
and then uses backward slicing to find out related vulnerable arithmetic operations, and finally instruments
programs with runtime checks. Moreover, IntPatch provides an interface for programmers who want to
check integer overflows manually. We evaluated IntPatch on a few real-world applications. It caught all
46 previously known IO2BO vulnerabilities in our test suite and found 21 new bugs. Applications patched
by IntPatch have negligible runtime performance losses which are on average 1%.
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1. Introduction

The Integer Overflow to Buffer Overflow vulnerability (IO2BO for short), de-
fined in Common Weakness Enumeration (CWE-680 [14]), is a kind of vulnerability
caused by integer overflows. If an integer overflow occurs when a program performs
a calculation to determine how much memory to allocate, a less than expected mem-
ory block will be allocated, and then a buffer overflow is triggered when the memory
block is used.

For instance, Fig. 1 shows a typical IO2BO vulnerability in Faad21 version 2.6.
The routine mp4ff_read_int32(f) at line 467 reads in an integer value (e.g.,
0x80000001) from external file f without any checks. This value is then used in
a memory allocation function at line 469. If an overflow occurs, a smaller than ex-
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Fig. 1. A real-world IO2BO vulnerability in Faad2.

pected memory region (e.g., 0x80000001 ∗ 4=4 mod 232) will be allocated, leading
to an IO2BO vulnerability. Further, at line 483, some unchecked values read from
external file f will be written to the allocated small memory chunk, causing the heap
corrupted and leading to arbitrary code execution attack [33].

IO2BO is an underestimated threat. In recent years, it has been witnessed that
IO2BO is being widely used by attackers [8,33]. For example, Vreugdenhil, who
won the computer hacking contest “Pwn2Own 2010”, exploited an IO2BO vulner-
ability [34] in IE8 to bypass the security-enhanced mechanisms provided by Win-
dows 7 – Address Space Layout Randomization (ASLR [32]) and Data Execution
Prevention (DEP [2]). Moreover, according to the statistical data collected in the Na-
tional Vulnerability Database (NVD [28]), from April 1st 2009 to April 1st 2010,
nearly half of all integer overflow vulnerabilities and one third of heap overflow vul-
nerabilities are IO2BO. Even worse, nearly 80% of these IO2BO vulnerabilities are
in high risk, i.e. their CVSS (Common Vulnerability Scoring System, [13]) severity
scores are greater than 7, and the remaining 20% are all in medium risk.

There are a number of studies focusing on detecting integer overflows, such as [6,
7,26,35]. They can be classified into two categories: static analysis and dynamic
analysis methods. For those static analysis tools, false positives are non-negligible.
The output of these tools need to be validated manually. For those dynamic analysis
tools, the major disadvantage is their false negatives. Although many systems (such
as KLEE [4], EXE [5], CUTE [31], DART [20]) have applied symbolic execution
techniques to improve code coverage and reduce false negatives, the analysis results
of these tools are still not sound due to the problem’s complexity.
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Some compilers or compiler extensions can automatically fix integer overflow vul-
nerabilities. For example, with the -ftrapv compiler option, GCC can generate
traps for each signed integer overflow in addition/subtraction/multiplication oper-
ations by inserting extra code after each signed arithmetic operation. When signed
integer overflow occurs at runtime, the compiled program aborts. Brumley et al. have
developed a static program transformation tool, called RICH [3]. RICH constructs
formal semantics for safe C integer operations and instruments the target program
with runtime checks against all unsafe integer operations.

However, there are some kinds of benign integer overflows. For example, when
an integer is used as the sequence number of a HTTP message, whether it overflows
does not matter. In some cases, integer overflow can be deliberately used in ran-
dom number generators and message encoding/decoding or modulo arithmetic [3].
Methods which make full instrumentation like GCC and RICH cannot tell the dif-
ferences between benign and harmful integer overflows and thus inevitably generate
false positives, i.e. many overflows captured by these tools at runtime are not really
vulnerabilities. Furthermore, the full instrumented programs usually suffer from a
non-trivial performance overhead.

In this article, we present IntPatch, a tool targeting only IO2BO vulnerabilities.
Integer overflows that exist in the context of IO2BO vulnerabilities usually are not
benign. And thus IntPatch has fewer false positives. On the other hand, IntPatch
applies conservative type analysis, and thus has few false negatives.

IntPatch is capable of identifying potential IO2BO vulnerabilities and fixing them
automatically. First, we use a type analysis pass to detect potential IO2BO vulnera-
bilities. Then, for each candidate vulnerability, another analysis pass is made to lo-
cate related vulnerable arithmetic operations. Finally, runtime check code is inserted
after these vulnerable arithmetic operations.

We implement IntPatch as an extension of LLVM (Low Level Virtual Ma-
chine [24,25]) and evaluate its performance on a number of real-world open-source
applications. It shows that IntPatch is a powerful and lightweight tool which can ef-
ficiently fix IO2BO vulnerabilities. IntPatch could help programmers to accelerate
software development and greatly promote programs’ security.

1.1. Contributions

This article presents an automatic tool for efficiently protecting against IO2BO
vulnerabilities. Specially, we:

• Survey 46 IO2BO vulnerabilities and compare them with publicly-available,
patched versions, then provide an analysis of the reasons why existing methods
of addressing IO2BO are tedious and error-prone.

• Construct a type system to model IO2BO vulnerabilities and present a frame-
work for automatically identifying and fixing them at compile time, and thus
freeing programmers from fixing IO2BO vulnerabilities.
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• Provide an API for programmers who want to capture integer overflows manu-
ally.

• Implement a tool called IntPatch. It inserts dynamic check code to protect
against IO2BO. The patched version’s performance overhead is low, on aver-
age about 1%. Experiments also show that IntPatch is able to capture all 46
IO2BO vulnerabilities we surveyed.

• Identify 21 zero-day bugs (i.e., bugs unexposed before) in open-source applica-
tions with IntPatch.

1.2. Outline

We first describe the result of our survey and discuss the difficulties that program-
mers may face when fixing integer overflows in Section 2. Our type system which
models IO2BO vulnerabilities and the framework for eliminating IO2BO threat are
described in Section 3. In Section 4, we discuss the implementation of our tool Int-
Patch, including the extra interface provided for programmers. Section 5 evaluates
our work, and shows the performance and false positives of IntPatch. Related work
and conclusion are discussed in Sections 6 and 7.

2. Motivation

We have surveyed 46 IO2BO vulnerabilities consisting of 17 bugs found by
IntScope [35] and 29 bugs reported in CVE [11], Secunia,2 VUPEN,3 CERT4 and
oCERT.5 In addition, 18 patches of these vulnerabilities were investigated. In this
section, we will discuss in detail what we have learned from the survey and what
difficulties programmers may face when fixing IO2BO vulnerabilities.

2.1. Input validation problem

Fixing integer overflows is essentially an input validation problem. Incomplete
input validation is the origin of IO2BO vulnerability.

To check whether signed integer multiplication a ∗ b overflows, the widely used
method in practice looks like:

if ( b != 0 && (a*b)/b != a )
MSG("overflow occurs");

2http://secunia.com.
3http://www.vupen.com/english/.
4http://www.cert.org/advisories.
5http://www.ocert.org/.
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This method is called postcondition testing. It depends on the computation of a ∗ b.
This method is efficient. But it may fail in some occasions, especially when compiler
optimizations exist. Some aggressive optimizations may discard checks like “(a ∗
b)/b! = a” and cause postcondition testing to be useless.

Another widely used method for checking overflow is precondition testing. It
checks whether a ∗ b may overflow before the actual multiplication is calculated.
Precondition testing method looks like:

if ( a>0 && b>0 && a > INT_MAX/b )
MSG("overflow occurs");

else if ( a>0 && b<0 && b < INT_MIN/a )
MSG("overflow occurs");

else if ( a<0 && b>0 && a < INT_MIN/b )
MSG("overflow occurs");

else if ( a<0 && b<0 && b < INT_MAX/a )
MSG("overflow occurs");

else
c = a*b;
// normal statements

Because the check is taken prior to the actual multiplication, this method can cir-
cumvent compiler optimization problem. In other words, whatever undefined be-
havior the compiler may take when signed integer overflow occurs, precondition
testing is robust. However, detecting an overflow in this manner is expensive. For
each signed integer operation, at least four extra statements are inserted. Further-
more, branches are expensive on modern hardware, and thus precondition testing
introduces a non-trivial performance overhead.

Detecting integer overflow can also be done at the assembly code level. At this
level, programmers can utilize hardware features to facilitate checking. For example,
an x86 processor has two flags named an overflow flag and a carry flag, and then these
flags can be used to determine whether an operation overflows. However, checking
an integer overflow correctly is still difficult. On x86 architecture, methods for check-
ing overflows in signed/unsigned multiplications/additions are different. Instructions
jo, jc and js should be used in combination to check those overflows [22]. Fur-
thermore, there are no general interfaces for C/C++ programmers to query these
flags. Besides, no statements in high-level language are handy for programmers to
efficiently invoke these assembler instructions. Thus, programmers who want to de-
tect integer overflows at the assembly code level have to write compiler-specific and
platform-specific inline assembler code, causing portability problems.

Even when programmers know how to detect integer overflows, protecting pro-
grams from integer overflows is still error-prone and tedious. In the following, we
describe the difficulties programmers may face when fixing integer overflows.
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2.2. Fixing IO2BO is tedious and error-prone

2.2.1. Awareness of IO2BO
First of all, many programmers have not yet realized the existence of integer

overflow, not to speak of IO2BO. The following code snippet shows a patch re-
leased in Dillo6 version 2.1 against a vulnerability in version 2.0 whose ID is CVE-
2009-2294. The original vulnerability is due to the product of png->width and
png->height being too large. In this patch, the developers’ intention is to check
the upper bound of this product. However, the existence of integer overflow has
changed the program logic assumed by programmers and thus causing this patch
to be useless, i.e. the product of png->width and png->height is wrapped and
the check is still not violated.

+ if(abs(png->width*png->height) > IMG_MAX_W*IMG_MAX_H){
+ // handle overflow here
+ }

2.2.2. Fallibility of fixing IO2BO
For programmers who are aware of integer overflows, fixing integer overflow

manually is still error-prone. The following code snippet illustrates an erroneous
patch in CUPS7 version 1.3.9 against a vulnerability in revision 7434 whose ID
is CVE-2008-1722. The original vulnerability is due to an overflow when calcu-
lating img->xsize*img->ysize*3. However, if img->ysize*3 overflows,
this check is useless.

+ bufsize = img->xsize * img->ysize * 3;
+ if (bufsize / (img->ysize * 3) != img->xsize) {
+ // handle overflow here
+ }

2.2.3. Complexity of fixing IO2BO
Even for programmers who are careful enough, fixing IO2BO is tedious. For ex-

ample, in order to correctly check whether img->xsize*img->ysize*3 over-
flows, we first need to check the product (denoted as temp) of img->ysize and 3,
and then check the product of temp and img->xsize. Similarly, if a programmer
wants to check whether the product of N operands overflows, at least N − 1 checks
are needed.

2.2.4. Compiler problem
Finally, for programmers who are careful and patient enough, the method they use

to check integer overflow may work in some cases while failing in others, especially
when postcondition testing method is used.

6http://www.dillo.org.
7http://www.cups.org.
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According to C99 standard [17], signed integer overflow is undefined and thus
compiler-specific. For example, a wrapped value or a maximum value [12] may be
returned as the result. Due to the non-determinacy of signed integer overflow, GCC
developers argue that programmers should not make any assumptions on the result
of the overflow. Specifically, programmers should detect an overflow before an over-
flow is going to happen, rather than using the overflowed result to check the exis-
tence of overflow. In other words, precondition testing should be applied to check
integer overflow rather than postcondition testing. The detailed discussion between
programmers and GCC developers can be found in [16].

As a result, postcondition testing statement such as if(x>0 && x+x<0) may
be removed totally when the program is compiled with GCC, especially when it
is compiled with optimization options. The Python interpreter is a victim of this
issue [30].

So, fixing integer overflow is not an easy task for programmers. Programmers
should first have the knowledge of IO2BO, and then be careful and patient enough,
and finally choose to use the robust but expensive precondition testing when needed.
Furthermore, even if programmers satisfy those requirements, the performance over-
head of the code they write may be relatively high.

On the other hand, compilers can both access source code and generate efficient
platform-specific assembler code, and thus it is a good choice to eliminate IO2BO
vulnerabilities at compile time. With the help of compilers, IO2BO is transparent to
programmers, i.e. they do not need to know what IO2BO is and how to fix IO2BO.
IntPatch is such a compiler extension. In the following sections, we will describe
IntPatch’s method and its implementation in detail.

3. Methodology

In this section, we present a framework to automatically identify potential IO2BO
vulnerabilities and fix them in three steps, as shown in Fig. 2.

First, tainted data are tracked along with the dataflow. In this process, arithmetic
operations which have tainted operands are identified. These arithmetic operations
are potential vulnerable operations which may trigger IO2BO vulnerabilities. If
some of these operations’ results flow into a memory allocation function, a potential
IO2BO vulnerability is found.

Not all those identified arithmetic operations may influence a memory allocation
function, i.e. the results of some arithmetic operations with tainted operands can
never reach any memory allocation functions. IntPatch applies a backward slicing
analysis in the second step to find out those vulnerable arithmetic operations that
may trigger IO2BO vulnerabilities.

Finally, runtime check statements are inserted after those remaining vulnerable
operations. If a runtime overflow occurs at check points, the program execution flow
is directed to predefined error handler.
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Fig. 2. Overview of IntPatch’s method.

3.1. Identifying potential IO2BO vulnerabilities

IntPatch targets only IO2BO vulnerabilities. From the survey we made, IO2BO
vulnerabilities have some common attributes, i.e. untrusted inputs were read in and
then propagated to an arithmetic operation and finally used in a memory allocation
function. Thus, a data flow analysis is suitable to identify potential IO2BO vulnera-
bilities.

Taking into account IO2BO vulnerabilities’ characteristics, each variable’s at-
tributes taint and overflow are considered. A value is tainted (i.e., untrusted) if
it originates from some program inputs. Meanwhile, a value is overflowed if it comes
from an arithmetic operation which may overflow at runtime. If a tainted and over-
flowed value is used as a memory allocation size, a potential IO2BO vulnerability is
found.

In order to track each variable’s taint and overflow attributes, a type system
is constructed. In this system, type inference rules are built according to each state-
ment’s semantic. Then a type analysis based on classic dataflow analysis is made to
infer each variable’s type.

3.1.1. Type system
Our type system is shown in Fig. 3(b). The type system forms a lattice. The bottom

of the lattice is type T00, representing values untainted and non-overflowed. Variables
with this type are trusted, i.e. program inputs and overflowed variables never flow
into these variables.

The top of this lattice is type T11, representing values tainted and overflowed.
Variables with this type originate from program input and some overflowed variables.
If a variable with type T11 is used as a memory allocation size, a potential IO2BO
vulnerability is found.

There are also two other types T10 and T01, which represents for the taint and
the overflow attribute respectively, in our type system.
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Fig. 3. (a) Type inference rules in our system and (b) our type system.

3.1.2. Type initialization
Our type system is different from embedded type system of the C/C++ program-

ming language. So, when applying our type system on programs, we must assign
each variable to a new type.

If a variable is read from program inputs (called sources), type T10 is assigned to
this variable. If a variable is used in memory allocation (called sinks), it may not be
type T11. In the process of type inference, type T00 is given to operands whose types
have not been initialized.

File/socket reads or command line options are considered as program inputs (i.e.,
sources). Standard APIs which access program inputs are identified and related val-
ues are assigned with type T10. If the target program uses third-party libraries which



1092 C. Zhang et al. / Mitigate integer-overflow-to-buffer-overflow threat in compiler

wrap standard program input interfaces, a custom configuration file containing such
APIs is needed. In a similar way, all sinks can be identified.

3.1.3. Type inference
In order to calculate each variable’s type, type inference along with dataflow anal-

ysis is made. Each variable’s type is inferred according each statement’s semantic.
The type inference rules for each statement are shown in Fig. 3(a).

We assume that the target program is represented in a SSA (Static Single As-
signment [15]) form. In a SSA form program, each variable has only one definition.
Thus, a variable can be used interchangeably with the operation which generates this
variable.

A supergraph (i.e., an expanded CFG that is used for interprocedure analysis) of
the target program is constructed for dataflow analysis. In the supergraph, each node
corresponds to a statement in the program. Each function call statement is replaced
by some assignment statements which assign the actual parameters to each formal
parameter of the callee function. In addition, an edge from the call site to the callee’s
entry node is added. Similarly, an edge from each return instruction of the callee
function to the caller is added. An statement which assigns the callee’s return value
(i.e., the operand of the return instruction) to the corresponding variable in the caller
is added too.

Assignment statement. For each assignment, the operand’s attributes are directly
passed to the result. Thus, the right-hand side variable’s type will be directly assigned
to the left-hand side variable.

Statement which terminates a basic block. This kind of statements include di-
rect/indirect branch instructions, direct/indirect function calls and return instructions.

For each branch instruction, its result usually is useless and can be assigned with
type T00. For each return instruction, it is expanded with an edge and an assignment
statement in the supergraph. And thus, a similar rule as assignment rule is applied.

For each call instruction, it is expanded in the supergraph as if the callee function
is an inlined function. The type inference rule can be simulated through analyzing the
whole callee function statement by statement. Moreover, recursive or nested function
calls will not introduce any troubles because they are represented as a big loop in
the supergraph. Our dataflow analysis applies a fixed point algorithm and is able to
handle loops.

However, for return instructions or indirect branch/call instructions, their jump tar-
gets may be undetermined due to the limitation of the alias analysis [21]. As a result,
some type information flows are lost and some potential IO2BO vulnerabilities are
ignored (i.e., there are false negatives).

Compare instruction. The result of a compare instruction is a Boolean value, i.e.
True or False. If one of the operand is tainted, the result may be controlled by pro-
gram input indirectly, and thus the result is tainted.

Qiping Pan

Qiping Pan

Qiping Pan
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Table 1

Kinds of arithmetic operations leading to integer overflow

Arithmetic operations May overflow? Example (suppose register width is n)

pos.signed + pos.signed � (2n−1 − 1) + (2n−1 − 1) = −2

pos.signed − pos.signed × none

pos.signed ∗ pos.signed � (2n−1 − 1) ∗ (2n−1 − 1) = 1

pos.signed + neg.signed × none

pos.signed − neg.signed � (2n−1 − 1) − (−2n−1) = −1

pos.signed ∗ neg.signed � (2n−1 − 1) ∗ (−2n−1 + 1) = −1

neg.signed + pos.signed × none

neg.signed − pos.signed � (−2n−1) − (2n−1 − 1) = 1

neg.signed ∗ pos.signed � (−2n−1 + 1) ∗ (2n−1 − 1) = −1

neg.signed + neg.signed � (−2n−1) + (−2n−1) = 0

neg.signed − neg.signed × none

neg.signed ∗ neg.signed � (−2n−1 + 1) ∗ (−2n−1 + 1) = 1

unsigned + unsigned � (2n − 1) + (2n − 1) = 2n − 2

unsigned − unsigned � 1 − (2n − 1) = 2

unsigned ∗ unsigned � (2n − 1) ∗ (2n − 1) = 1

Arithmetic operation. Overflow could only occurs in some addition, subtraction,
multiplication or left shift operations as listed in Table 1. So, the listed rule for arith-
metic operation covers only these four kinds of operations. Results of arithmetic
operations may overflow. Besides, if one of the operand is tainted, the result is also
tainted. So, the result’s type is joined by the two operands’ types and T01 (i.e., over-
flowed).

Store operation. Type inference rule for memory store operation is a little more
complex. In order to make a conservative analysis, for each pointer variable v, we
record an additional type information tp_v, which represents the possible Type of
those memory chunks Pointed by v. If variable v1 with type τ is stored into a memory
pointed by v, the target memory will be assigned with type τ , and the memory’s type
information will be joined into tp_v.

Load operation. If variable v2 is loaded from memory pointed by v1, it may have
a type same as any memory pointed by v1. Furthermore, if pointer v1 is an alias of
pointers in set V (denoted as v1 ∼ V), then variable v2’s type may also be same as
any memory pointed by any pointer v in V. Thus, variable v2’s type is the upper
bounds of tp_v1 and tp_v for each pointer v in V.

Struct field access. For instructions that access struct fields or array elements, the
offset also have types. For example, when accessing an element of an array, the offset
may be an expression related to program input, and thus it have the attribute taint.
If the offset is a constant rather than a variable, then it will be treated as a variable

Qiping Pan
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with type T00. When the struct or the offset is tainted or overflowed, the result of this
struct filed access is tainted or overflowed too.

ϕ-node statements. A ϕ-node statement is a virtual statement introduced by SSA.
For a basic block BB, if a variable v is defined in all BB’s predecessors (denoted as
B1, . . . , Bk), a ϕ-node statement vBB = ϕ(vB1, . . . , vBk) is inserted at the begin-
ning of BB, where vB1, . . . , vBk are aliases of variable v in B1, . . . , Bk. For each
ϕ-node statement vBB = ϕ(vB1, . . . , vBk), the result is one of its operands vBi, i.e.
the definition of v in BB comes from Bi. Thus, the type of a ϕ-node statement’s re-
sult may be same as any of its operands. To make a conservative analysis, the upper
bound of each operand’s type is assigned to the ϕ-node statement’s result.

Miscellaneous. Remaining operations’ inference rules are straightforward. Most
operations’ results’ types are upper bounds of the operands’ types. Thus, detailed
rules are not listed here.

3.1.4. Data flow analysis
Type inference rules are applied along with a data flow analysis. First, for each

application to be analyzed, a configuration file which defines sources (i.e., functions
which read input) and sinks (i.e., memory allocation functions) is manually provided.
This configuration file is read in and used to initialize each variable’s type.

Then, a classic dataflow analysis is performed to calculate each variable’s type. In
order to handle loops and recursive function calls, we utilized a fixed point algorithm.
This algorithm is well known in compiling [1], similar to the reaching definitions
algorithm. And thus, the pseudo code of this algorithm is not listed here.

In addition, there is a premise for the reaching definition algorithm to halt [27],
i.e. the transfer function should be monotonic. In our algorithm, the transfer function
is the type inference rule. From the type system, we can conclude that this transfer
function is monotonic. And thus, this algorithm will halt. However, if we consider the
sanitization effect on taint attributes, i.e. tainted values are transformed to untainted,
the transfer function of this algorithm is no longer monotonic and this algorithm may
not halt. On the other hand, a sanitization routine itself is hard to detect. So, we do
not consider sanitization in our type analysis process.

As explained above, type T11 should not be used as memory allocation size at
sinks. If a sink’s type inferred from the dataflow analysis is T11, there is a type
conflict, i.e. there is a potential IO2BO vulnerability.

3.2. Locating vulnerable arithmetic operations

During the type analysis, candidate IO2BO vulnerabilities are identified. In order
to fix these vulnerabilities, runtime checks are inserted after arithmetic operations
which may trigger IO2BO vulnerabilities.

In the previous type analysis step, arithmetic operations of type T11 are identified.
Only these arithmetic operations may trigger real IO2BO vulnerabilities. However,

Qiping Pan

Qiping Pan

Qiping Pan
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not all of these operations may reach a IO2BO vulnerability. Thus, a backward slic-
ing [36] is used to filter out these unrelated arithmetic operations.

At each vulnerable sink, variables (i.e., memory allocation size) are being focused
on. A backward slicing analysis is then used to find out other variables which may
affect the focused variables. If a variable found by slicing is with type T11 and the
corresponding statement is an arithmetic operation, this statement is thought as a
vulnerable arithmetic operation.

3.3. Fixing vulnerable arithmetic operations

For vulnerable arithmetic operations, statements for checking overflow at runtime
are inserted after each of them, i.e. postcondition testing is used to check overflow.
Notably, IntPatch works at the link stage of a compiling process and all other op-
timizations have been finished yet. And thus, IntPatch can prevent runtime checks
from being optimized, i.e. postcondition testing works safely.

In summary, our framework first identifies potential IO2BO vulnerabilities and ig-
nores many unrelated arithmetic operations. Then it filters out arithmetic operations
which may not trigger IO2BO vulnerabilities. Finally, runtime checks are inserted
after those remaining vulnerable arithmetic operations.

4. Implementation

In this section, details of the implementation are discussed. We implement our sys-
tem as a compiler extension IntPatch based on LLVM. Figure 4 shows the workflow
of IntPatch.

The target program is first compiled with LLVM-GCC, a modified version of GCC
for generating LLVM object code instead of ELF object code. All source files (i.e.,
*.c, *.cpp) are compiled into LLVM object files (i.e., *.bc). The body of Int-
Patch is implemented in the file IntPatchPass.cpp. This file is then compiled
into a dynamic library.

Fig. 4. Workflow of IntPatch.
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The linker LLVM-LD then loads this library and invokes the analysis passes of
IntPatch to analyze target programs. Vulnerable integer operations in the target pro-
gram are located. The target programs are transformed. Specifically, runtime checks
are inserted after each vulnerable integer operation, and the control flow is directed
to a user-defined or default handler when an overflow occurs.

Then LLVM-LD links all the transformed object files and the default handler to-
gether. Finally, it generates another LLVM object file or a native executable file. The
final object file or executable file is thus robust against IO2BO vulnerabilities.

The body of IntPatch consists of two analysis passes. The first pass makes a classic
dataflow analysis to analyze each variable’s type and identify potential IO2BO vul-
nerabilities. Then, for each potential vulnerability, the second pass makes a slicing to
find related vulnerable arithmetic operations. Finally, check statements are inserted
after those vulnerable operations to catch runtime bugs.

4.1. LLVM

LLVM [24,25] is a compiler infrastructure which supports optimization and anal-
ysis at compile time, link-time and run-time. IntPatch utilizes some useful features
or interfaces provided by LLVM.

For example, LLVM provides us with an easy-to-use CFG which facilitates iter-
ating over whole programs. All memory accesses are explicitly using load and store
instructions in LLVM. Thus, our type inference rule for load and store operation is
easy to apply. Moreover, LLVM’s intermediate representation (IR) is in SSA (Static
Single Assignment [15]) form, i.e. each use of a variable has one and only one def-
inition, and thus facilitates our dataflow analysis. In addition, LLVM provides some
intrinsic instructions for catching integer overflows at runtime. LLVM also provides
some classic alias analysis pass for us to use, which helps us a lot when we perform
the type analysis.

4.2. Type analysis

IntPatch uses a type analysis to identify potential IO2BO vulnerability. In LLVM,
all kinds of instructions and operands are instances of class llvm::Value. A value
which represents an instruction could be used as another instruction’s operand, i.e.
a value representing an instruction also represents the result of the instruction. In
other words, an instruction can be used interchangeably with its result (i.e., a vari-
able).

A predefined file which annotates what sources and sinks are is read in to initial-
ize the mapping relationship between variables and types. IntPatch maintains a map
from variables to types. Then the fixed point algorithm explained in Section 3.1.4 is
performed. Along with the dataflow analysis, each variable’s type is computed.

Type inference rules are applied on each instruction. Some rules are based on
the result of the alias analysis, such as the rule for load operation. IntPatch utilizes

Qiping Pan



C. Zhang et al. / Mitigate integer-overflow-to-buffer-overflow threat in compiler 1097

the llvm::AliasSetTracker interface provided by LLVM to get information
about alias sets.

When the dataflow analysis reaches sinks, a type validation is performed. If vari-
ables at sinks are with type T11, there is a type conflict, and thus a potential IO2BO
vulnerability exists.

This type analysis process is implemented as a pass in LLVM and its result can
be used by other passes. Because our analysis is interprocedural, our analysis pass
needs to be invoked at link-time and is an instance of llvm::ModulePass which
uses the whole program as a unit.

4.3. Locating vulnerable operations and patching

The type analysis can identify potential IO2BO vulnerabilities. The remaining task
is to fix IO2BO vulnerabilities automatically. Fixing should be complete, i.e. if a bug
is caught at runtime, it should be a real bug. In other words, a mechanism is needed
to reduce false positive rates. Otherwise, users will complain about the quality of
the program because the program is usually disturbed when a runtime overflow is
caught.

To reduce false positives, another analysis pass is implemented to locate those vul-
nerable arithmetic operations and instrument runtime checks after those operations.
This analysis uses classic slicing method to find variables which may flow into vul-
nerable memory allocation. If the related variable’s type is T11 and the variable (i.e.,
instruction) is an integer arithmetic operation, a check statement is inserted after that
instruction.

Intrinsic instructions provided by LLVM such as llvm.sadd.with.over-
flow.* are used by IntPatch to check integer overflow. These intrinsic instructions
can bridge the gap between programmers and the underlying hardware. At the code
generation stage, some hardware features are utilized by LLVM to implement the
check in order to elevate performance. If an overflow occurs, the control flow is
redirected to a predefined default handler or a user-supplied handler. The default
handler that IntPatch provides blocks the program and waits for user debugging. Of
course, in order to be user-friendly, the default handler can only send a message to
the user and then exit.

Using these two analysis passes, IntPatch is able to automatically identify and fix
IO2BO vulnerabilities in target program with a reasonable false positive rate.

4.4. An interface for programmers

At assembler code level, it is usually easy to detect overflow and redirect pro-
gram’s control flow, such as using jo/jc instructions on x86 platforms. But there
are no interfaces for C/C++ programmers to query this information except writing
compiler-specific inline assemble code. Fortunately, IntPatch can efficiently capture
runtime overflows using intrinsic instructions provided by LLVM.

Qiping Pan

Qiping Pan
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However, in some situations, programmers still want to capture overflows manu-
ally. In order to shield programmers from the tedious and error-prone fixing work,
IntPatch also provides an easy-to-use interface. With this interface, programmers
can specify what expressions to be monitored and what actions will be taken when
overflow occurs in these expressions.

This interface, named IOcheck(int exp, void (*f)()), is implemented
as an API. Programmers pass the expression to be monitored itself or any variable
stored the result of the expression as the first argument, and pass the error handler
function into the second argument. The second argument is by default set to NULL,
which means we will use a handler predefined in IntPatch.

When IntPatch begins to work at the link stage, it scans all instructions in the
program and finds out all call sites which call the function IOcheck(). IntPatch
treats these function calls as memory allocation function calls. And then IntPatch
works in the same way as fixing IO2BO vulnerabilities. Finally, runtime checks are
inserted after vulnerable arithmetic operations to make sure the expression monitored
by IntPatch does not overflow, and the control flow will be redirected to the user-
defined handler if runtime overflow occurs.

However, after inserting runtime checks, instructions which call the function
IOcheck() still exist in the program. To make sure it does not disturb the orig-
inal program execution, we provide an implementation of the function IOcheck()
which does nothing in fact. The library hosting the function IOcheck() will be
linked by LLVM-LD.

5. Evaluation

We evaluate IntPatch with several real-world open-source applications, including
libtiff,8 ming,9 faad2, dillo, gstreamer10 and some GNU applications and so on. The
evaluation was performed on an Intel Core2 2.40 GHz machine with 2 GB memory
and Linux 2.6.27.25 kernel.

5.1. Compile time

We first compiled applications with original LLVM and recorded the compile time.
Then, applications were compiled with LLVM which is extended by IntPatch using
the same compilation options and the time was recorded too. Figure 5 shows the
recorded time result.

For applications which need to do a lot of memory allocations, such as dillo, faad2,
gstreamer, libtiff and ming, IntPatch analysis takes much more time than original

8http://www.libtiff.org/.
9http://www.libming.org/.
10http://gstreamer.freedesktop.org.
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Fig. 5. Compile time with/without IntPatch (in seconds).

LLVM, about 9% more time is spent. For other applications, IntPatch consumes
shorter time, which is about 5%.

Applications which allocates a lot of memory are more likely to suffer from
IO2BO vulnerabilities. IntPatch tries to identify all potential IO2BO vulnerabilities
and related vulnerable integer operations. Thus, compiling these applications takes
more time than traditional applications.

Although IntPatch may introduce extra 5–10% time consumption when compile
target programs, compile time usually is not so critical for end-user because pro-
grams usually are distributed in binary form.

5.2. Check density

We also measure how many checks IntPatch has inserted into programs. Table 2
shows, for each benchmark program, the number of total instructions in the pro-
gram (in LLVM IR form), the number of arithmetic operations in the program,
and the number of checks inserted by IntPatch. Then the checking ratios are cal-
culated, i.e. (number of checks)/(number of arithmetic operations) and (number of
checks)/(number of instructions).

Results show that, about every tenth arithmetic operations may trigger IO2BO
vulnerabilities and are fixed by IntPatch. In fact, this ratio is a little bit higher than
that in regular applications, because most of the test suites are image-related appli-
cations which needs to allocate a lot of memory. Compared to results of tools which
captures all integer overflows, such as CQUAL [6] and RICH [3], the checking ratio



1100 C. Zhang et al. / Mitigate integer-overflow-to-buffer-overflow threat in compiler

Table 2

Number of checks inserted

Application #inst #arith-ops #checks Checks/arith Checks/inst

libtiff-3.8.2 781,212 20,739 1751 8.44% 0.22%

faad2-2.7 37,993 1189 150 12.6% 0.39%

ming-0.4.2 35,901 1375 241 17.5% 0.67%

dillo-2.0 641,574 8053 345 4.28% 0.05%

gstreamer-0.8.5 2,060,335 10,683 1067 9.98% 0.05%

cpio-2.9 39,153 831 28 3.37% 0.07%

patch-2.6 57,203 1035 47 4.54% 0.08%

Table 3

Performance overhead of IntPatch

Application Original (s) Patched (s) Overhead

ming-0.4.2 236.143 239.549 1.44%

libtiff-3.8.2 127.571 129.123 1.01%

dillo-2.0 3.762 3.805 1.14%

faad2-2.7 361.163 364.478 0.91%

is very low. Although the checking ratio is low, most of the IO2BO vulnerabilities
can be caught by IntPatch (i.e., there are few false negatives). The only false nega-
tives are introduced by incomplete alias analysis, e.g. the targets of indirect jumps
are missed.

With a low checking ratio, the patched programs’ performance overheads are low.
Moreover, fewer false positives exist in the patched programs if the checking ratio
is low. Whereas, tools like RICH which instruments lots of checks may generate a
lot of false positives. We will measure the performance and false positives in the
following sections.

5.3. Performance overhead

In this section, we evaluate the performance overhead introduced by IntPatch.
Each program is compiled both with original LLVM and LLVM extended by Int-
Patch with same compilation options. Then each program is run with a benchmark
and its running time is recorded.

Our experiments show that the overhead is quite low, on average about 1%. Ta-
ble 3 shows the overhead of applications patched by IntPatch relative to the uninstru-
mented versions (both compiled with the same options).

We test ming, a library for generating Macromedia Flash files (.swf), with the
benchmark PNGSuite.11 PNGSuite is a test-suite containing 157 different PNG for-

11http://www.schaik.com/pngsuite.
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mat images for PNG applications. These PNG files are converted into flash files using
ming and the consumed time is recorded.

For dillo, we test its CSS rendering speed using a CSS benchmark devised by
nontroppo.12 Libtiff is tested with a pack of TIFF format files distributed together
with itself. These tiff files are compressed to JPEG format files using libtiff and the
consumed time is recorded. For faad2, we use it to decode 100 MPEG-4 format
videos randomly downloaded from Mp4Point.13

The performance overhead is about 1%, lower than that of RICH [3] due to the
fact that fewer checks are inserted.

5.4. False positives and false negatives

IntPatch utilizes a type analysis to locate potential IO2BO vulnerabilities. The type
system itself is sound according to previous work [6]. However, as explained earlier,
the type analysis of IntPatch is based on a static dataflow analysis. Due to limitation
of static analysis, such as a precise alias analysis is impossible, the dataflow analysis
in IntPatch is not sound. For example, if the target of an indirect jump cannot be
determined in static analysis, the supergraph of the target program is not complete.
And thus, some type information are lost in the dataflow analysis, leading to false
negatives (i.e., some potential IO2BO vulnerabilities are not identified).

However, false negative rates are hard to measure because we can hardly find
out all potential vulnerabilities in real applications. In order to find out all potential
vulnerabilities, usually a lot of human work are needed. As a result, we have not
measured how many false negatives of IntPatch. But we believe the rates are low
because the only false negatives introduced by IntPatch are due to incomplete alias
analysis.

On the other hand, in order to evaluate the false positive rate of IntPatch, we test
these applications instrumented by IntPatch with normal and malicious inputs. Each
application is fed with 100 normal inputs, 5 known malicious inputs (i.e., those that
can trigger known vulnerabilities in this program), and 10,000 malformed inputs
which are generated by a custom fuzzer.

As shown in Table 4, all normal inputs do not trigger the runtime check. In other
words, no false positives exist in this situation. When feeding each program with
5 malicious inputs, all of them trigger the alert. That is to say, no false positives
and no false negatives exist in this situation too. In the third case, 10,000 malformed
inputs are fed to each programs and false positives are generated. For example, when
feeding ming with 10,000 random malformed inputs, 14 alerts are triggered. After
manual validation, we found that 6 of them are not real vulnerabilities.

Vulnerable integer operations found by IntPatch have a type T11 which means the
result is overflowed and untrusted. In other words, at least one of the operands is

12http://nontroppo.org/timer/csstest.html.
13http://www.mp4point.com.
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Table 4

False positives of IntPatch (alerts/false positives)

Application 100 normal inputs 5 malicious inputs 10,000 malformed inputs

ming-0.4.2 0/0 5/0 14/6

libtiff-3.8.2 0/0 5/0 5/0

dillo-2.0 0/0 5/0 9/9

faad2-2.7 0/0 5/0 10/0

gnash-0.8.5 0/0 5/0 31/22

InkScape-0.46 0/0 5/0 19/12

swftools-0.9.0 0/0 5/0 17/14

untrusted, i.e. it is propagated from program input. Thus, attackers can control the
operand directly or indirectly and may cause the vulnerable operation to overflow.
This overflowed and untrusted value will be used later in a memory allocation. Thus,
attackers may exploit this IO2BO vulnerability. So, in the context of IO2BO vulnera-
bility, overflows occurring in the related vulnerable integer operations usually cannot
be benign. Thus, there are few false positives in IntPatch.

However, our type inference rules depend on third-party alias analysis results. The
conservative alias analysis in LLVM we used brings some false positives, i.e. some
variables that have nothing to do with program inputs may be marked as tainted
by the conservative analysis. Moreover, our type analysis and slicing analysis are
static analysis and path-insensitive, infeasible paths may also bring false positives
to IntPatch. Even if tainted inputs trigger a runtime alert, the overflowed and tainted
result can not flow into any memory allocation functions in the actual execution.
During the analysis of these false positives, we figured out the existence of infeasible
paths is the major cause of false positives.

For example, in ming, an integer overflow was caught when tested with these mal-
formed inputs. However, the overflowed value is not passed to a memory allocation
immediately. Instead, a lot of other statements include some branch instructions exist
between the arithmetic operation and the memory allocation function. While we test
ming with that malformed input, the overflowed arithmetic operation was caught at
runtime. However, the program execution flows into another branch rather than the
one which leads to the memory allocation. Thus, it is not a real IO2BO vulnerability
(i.e., a false positive).

In addition, integer overflow checks (called sanitization routines) inserted by pro-
grammers will also lead to false positives because the sanitization routine will untaint
the variable. However, the sanitization routine may cause IntPatch’s fixed point algo-
rithm not halt. So, our type analysis process does not take into account the sanitiza-
tion effect in the process of type propagation. On the other hand, sanitization routines
that operate at the semantic level are hard to be detected. We suggest programmers
give up customized sanitization routines and use the interface IOcheck() provided
by IntPatch.
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Table 5

Zero-day bugs detected by IntPatch

Application swftools Inkscape gnash ming faad2 libtiff

Version 0.9.0 0.46 0.8.5 0.4.2 2.7 3.8.2

# bugs 2 4 5 3 3 4

5.5. Zero-day bugs

The type analysis pass in IntPatch has generated many candidate IO2BO vul-
nerabilities. Of course, there are many false positives. With manual validation and
dynamic testing, we can identify real vulnerabilities. During the time-consuming
validation process, we discover 21 new IO2BO vulnerabilities in 6 applications, as
shown in Table 5.

Some of them are exploitable and related proof-of-concept exploit payloads are
constructed. However, these information is sensitive, and thus we are not going to
discuss the detail here.

For example, we found a vulnerability in function readPNG in ming-0.4.2. Value
png.height is read from an input PNG file. This value then multiplies a con-
stant without any checks. The result of the multiplication is further used in function
malloc. Finally, data from the input PNG file is read into the allocated memory.
Attackers can control the program to allocate a smaller than expected memory. Then
attacker-controlled file content are read in and written to the allocated memory buffer.
The heap is then corrupted and arbitrary code execution attack may be launched. It
is a typical IO2BO vulnerability.

Another example is a vulnerability in Faad2. This vulnerability also has the same
features like other IO2BO vulnerabilities. But the statement where tainted input data
is read in is far from the statement that allocates memory. They are not in the same
function. Moreover, the statement which uses this allocated memory is far from the
memory allocation too. They are even in different modules. Thanks to IntPatch’s
capacity of inter-procedure analysis, it helps us find out this kind of vulnerability.

We have submitted some of these zero-day vulnerabilities to security service
providers such as Secunia and oCert. Some of the submissions, such as the vul-
nerability in libtiff (CVE-2009-2347), have been confirmed. Corresponding patches
from vendors have been released or are in preparation.

5.6. Limitation

Our work is based on LLVM, which is still in the development stage. Therefore
certain applications might have troubles compiling with LLVM. For example, some
compiler options supported by GCC are discarded by LLVM-GCC. Furthermore,
our analysis pass is a little time-consuming. These drawbacks limit the domain of
IntPatch’s applications.
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In our implementation, IntPatch depends heavily on alias analysis. However, alias
analysis is a well-known problem in static analysis. Its accuracy and performance
will affect IntPatch’s results.

Programmers’ sanitization routines are not encouraged as mentioned above. This
limitation is not friendly to programmers.

6. Related work

Many efforts have been made on integer overflow vulnerabilities.
Shuo Chen et al. [7] presented a FSM-based method uses finite state machines

(FSM) to identify integer overflows. Experts summarize a finite state machine repre-
senting the integer overflow vulnerability first. Then a tool is used to check whether
there are integer overflow vulnerabilities. It needs a lot of expert’s effort and the FSM
for applications may be different. Thus, it is not a general solution.

Ramkumar Chinchani et al. [9] describe each arithmetic operation formally and
then utilize architecture characteristics to check each arithmetic operation and catch
integer overflow at runtime [9]. This method does not pay much attention on distin-
guishing benign and unexpected overflows, thus there are a lot of false positives.

The sub-typing method presented by Brumley et al. [3] formalizes the seman-
tics for safe integer operations in C. Overflow checks are inserted after each unsafe
arithmetic operations to capture runtime overflows. It protects against many kinds of
integer errors, including signedness error, integer overflow/underflow or truncation
error. They implement a prototype called RICH and found several zero-day bugs too.
However, benign and unexpected overflows are not distinguished either.

The method presented by Ceesay [6] utilizes type qualifiers theory [18] and a tool
CQUAL [19] to detect type conflicts. Their work is implemented in the preprocessing
step. They extend traditional type system with new type qualifier trusted similar
to embeded type qualifier const. Then a type analysis is made and find all type con-
flicts. Each type conflict is reported as a potential vulnerability. Meanwhile, IntPatch
focuses on the most typical integer overflow vulnerability only and tries to present a
solution. IntPatch’s type system is more complex and effective than CQUAL’s.

GCC provides a -ftrapv compiler option that provides limited support for detecting
integer overflows at runtime. Each overflow that occurs at runtime will cause a trap,
i.e. function abort() will be called. David Chrisnall [10] implemented the -ftrapv op-
tion in another LLVM frontend–Clang. This implementation supports a user-defined
handler rather than only abort() implemented in GCC.

Both methods target integer overflows, and suffer from the indistinguishability
between benign overflows and unexpected overflows. Thus, their false positive rates
are high.

David Keaton et al. presents an As-if Infinitely Ranged integer model (AIR [23]).
This model either produces a value equivalent to one that would have been obtained
using infinitely ranged integers or results in a runtime constraint violation. Unlike
previous integer models, AIR integers do not require precise traps, and consequently
do not break or inhibit most existing optimizations. This model can correctly repre-
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sent integers whether they are overflowed and thus can prevent programs from being
exploited by integer overflows. However, this model is not compatible with existing
compilation systems and has not been implemented yet.

Yves Younan et al. presented PAriCheck [37], a novel method to reduce buffer
overflows. However, IO2BO vulnerabilities are usually exploited through buffer
overflow finally, and thus PAriCheck can protect IO2BO vulnerabilities from being
exploited. Target programs are translated into their CIL [29] forms and then are ana-
lyzed by PAriCheck. PAriCheck’s method is different from fat pointers (i.e., pointers
with size and offset information). It modifies memory allocation functions and as-
signs each object (i.e., memory region) with a unique label. Each time a pointer
arithmetic operation is met, PAriCheck looks up the operand pointer’s and the result
pointer’s label (i.e., the labels of memory regions pointed by these pointers), and
then checks whether these two labels match. If they do not match, a buffer overflow
is detected. PAriCheck mainly focuses on buffer overflows and cannot handle con-
versions between pointers and integers, and thus there are still false negatives and
false positives. In addition, PAriCheck has to modify memory allocation functions
(i.e., object layout and label storage) and has to maintain a map between memory
regions and labels. Thus, PAriCheck is more expensive than IntPatch.

7. Conclusion

This article surveys many IO2BO vulnerabilities, and presents a framework to
model and automatically fix this kind of vulnerabilities. A prototype tool IntPatch
is implemented based on LLVM. Experiments show that IntPatch is powerful and
lightweight and can effectively defend against IO2BO vulnerabilities. Twenty-one
zero-day vulnerabilities were found as a byproduct.
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