EECS 583 Research
Paper Presentation

Hustin Cao, Aylin Gunal, Shinka Mori

Towards Neural Architecture-Aware Exploration Of Compiler
Optimizations in a Deep Learning {Graph} Compiler

Gaurav Verma Swetang Finviya Abid M. Malik

gaurav.verma@stonybrook.edu sfinviya@cs.stonybrook.edu amalik@bnl.gov
Stony Brook University Stony Brook University Brookhaven National Laboratory

Stony Brook, NY, USA Stony Brook, NY, USA Upton, NY, USA

Murali Emani Barbara Chapman

memani@anl.gov barbara.chapman@stonybrook.edu
Argonne National Laboratory Stony Brook University

Lemont, IL, USA Stony Brook, NY, USA

Published in ACM, 2022

https://bpb-us-e1.wpmucdn.com/you.stonybrook.edu/dist/6/1671/files/2022/07/Towards-Neural-Architecture-Aware-Exploration-Of-Compiler-Opti
mizations-in-a-Deep-Learning-Graph-Compiler.pdf

https://bpb-us-e1.wpmucdn.com/you.stonybrook.edu/dist/6/1671/files/2022/07/Towards-Neural-Architecture-Aware-Exploration-Of-Compiler-Optimizations-in-a-Deep-Learning-Graph-Compiler.pdf
https://bpb-us-e1.wpmucdn.com/you.stonybrook.edu/dist/6/1671/files/2022/07/Towards-Neural-Architecture-Aware-Exploration-Of-Compiler-Optimizations-in-a-Deep-Learning-Graph-Compiler.pdf

Background

e Development of graph-based deep learning compilers leads to massive
search space for optimizations targeting computation graphs generated

from Deep Neural Network code
o Depending on what optimizations are applied, the intermediate
representation (IR) differs significantly, affecting overall performance

e Prior work has investigated use of machine learning to narrow down the
search space for (1) pass selection; (2) pass ordering
e Authors propose (manual) categorization of passes as relevant to
different neural network architectures
o Experiments in TVM with pre-existing TVM passes

Computation Graph Optimization

Sample TensorFlow computation graph
representation of a neural network

total_lo... group.de... train . |
e Computation graph is a type of
total_loss mSCEIarSu___ ot count

s, — IR; popular software to create

ey .)

soge e { goftmax | 1 m them include TensorFlow,
nvl total_lo...
2’ mor 8 more

LabeICIass;s e 9\'::‘:1_—': 1 s:r?z:‘ving_a‘__ Pyto rc h 9 M X N et

-0 old_grad... softmax_linear Init
conv.

R

o Ideais to model dependencies
lobal_s... } sgd .
S B between operations
com it
e 2 m 9 m

global_s... gd

total_lo... moving_a...

old_grad... |oca|3 g. up_d
: :;jmor 9 m::r_e.I

https://cs230.stanford.edu/section/5/

https://cs230.stanford.edu/section/5/

Methodology - Neural Network
Architectures

Analyze architectural differences in deep neural networks to employ different
optimization passes. Researchers chose four different architectures.

1. ResNet - (ResNetb0, 50-layer deep CNN)
a. Task:Image classification // Dataset: ImageNet
2. MobileNet (MobileNetV2, 53-layer deep CNN)
a. Task: Image classification // Dataset: COCO
3. SSD (SSD-ResNethb0, Single Shot CNN)
a. Task: Object detection // Dataset: CIFAR-10
4. BERT (bi-directional encoder transformer)
a. Task: Question-Answering task // Dataset: SQUAD 2.0

Methodology - Compiler Optimization
Analysis

From observations, the researchers found that two or more optimization levels can
produce the exact same IR and an optimization level may contain a set of passes
that does not affect the IR.

Therefore, only consider passes that would will affect the IR of the target NN.

Baseline Passes (just setting OPT_LEVEL=3)

ResNet Class

MobileNet Class

SSD Class

BERT Class

Additional Passes (Certain passes are dependent on user's (programmer's)
intent on the code)

o 0k~ WN

Pass Categorization

Passes are categorized based on whether or not

they are directly relevant to a particular Deep

NN architecture

o Decided based on number of network

layers, types of tensor operations, and their
order

Core idea: prune the search space by removing

passes that are irrelevant to the given

architecture

| Pass

Description

| Category

Used for computing convolution in cus-
AlterOpLayout tom layouts or other general weight pre- | BL; RN; MN; SSD; BR
transformation.
AnnotateSpans Annotate a program with span information | AD
: Batching parallel operators into one for
BatchingOps Conv2D, Dense and BatchMatmul BR
CononioafipiCisk Canon%callze cast expressions to make opera- BL; RN
tor fusion more efficient.
CanonicalizeOps :iz;xsmmcahze special operators to basic opera- BL
CombineParallelConv2D Combine multiple conv2d operators into one | RN
CombineParallelDense Combine multiple dense operators into one | RN
ConvertLayout Alternate the layouts of operators BL
DeadCodeElimination 5;:10% expressions that do not have any us- RN: MN: SSD
DefuseOps Inverse operation of fusion pass. BL
: 2 Convert dynamic operations to static if possi-
DynamicToStatic ble AD
Elimi ommonSubexpr | Eliminate common subexpressions BL; RN; MN
FakeQuantizationTolnteger Takes fak.e quantized gralphs and convert them AD
to actual integer operations
FastMath CoxAlvert expensive fwn linear functions to MN; BR; SSD
their fast but approximate counterparts
Transform all global functions in the module
FirstOrderGradient to return the original result and the gradients | MN
of the inputs.
FoldConstant ;‘::n the constant expressions in a Relay pro- RN: MN: SSD
i ; Find explict padding before an operator that -
FoldExplicitPadding supports implicit padding and fuses them. RO;iSSD)
ForwardFoldScaleAxis Fold the scaling of axis into weights of BR
conv2d/dense
FuseOps Fuse operators in an expression to a larger RN: MN: SSD: BR
operator
MergeComposite Mer.ge multiple o_perators into a single com- RN: MN: SSD
posite relay function
PartitionGraph Partition a Rel?y prlcEram u:to ‘reg:ons that AD
can be on
B —— Remove unused global relay functions in a SSD
relay module
§ i Simplify the Relay expression, including merg- e
SimplifyExpr ing consecutive reshapes. RN MGSSD
SimplifyFCTranspose lS;;I;}:hfy the transpose operation on a dense MN; BR
SimplifyInference }S)::fehfy the data-flow graph for inference RN: MN: SSD
ToANormalForm Turn Graph Normal Florm expression into A AD
Normal Form Expression
ToGraphNormalForm Turn a normal form into graph normal form. | RN; MN
ToMixedPrecision Automatic mixed precision rewriter AD

*BL: baseline optimization passes having OPT_LEVEL=3; RN: ResNet Class; MN: MobileNet Class;
SSD: SSD_ResNet Class; BR: BERT Class; AD: Additional optimizations

Pass selection and ordering for SSD_ResNet50 in PyTorch

BL = baseline, AS-x = architecture-informed, PO-x = random selection from search space

Key

BL AlterOpLayout, CanonicalizeCast, CanonicalizeOps, ConvertLayout, DefuseOps, EliminateCommonSubexpr

AS-0 AlterOpLayout, FuseOps, SimplifyExpr, FoldConstant, DeadCodeElimination, MergeComposite, FastMath, RemoveUnusedFunctions

AS-1 SimplifyExpr, FuseOps, AlterOpLayout, MergeComposite, FastMath, DeadCodeElimination, FoldConstant, RemoveUnusedFunctions

PO-0 AlterOpLayout, CombineParallelConv2D, DefuseOps, DynamicToStatic, CanonicalizeOps, CanonicalizeCast

PO-1 CanonicalizeCast, AlterOpLayout, DefuseOps, CombineParallelConv2D, PartitionGraph, FakeQuantizationTolnteger

PO-2 ToMixedPrecision, CombineParallelConv2D, EliminateCommonSubexpr, SimplifyFCTranspose, CanonicalizeOps, DefuseOps,
ToGraphNormalForm, ToGraphNormalForm

PO-3 CombineParallelDense, FakeQuantizationTolnteger, AlterOpLayout, CombineParallelConv2D, ToGraphNormalForm, CanonicalizeOps

Experimental Set-Up

e Compile using passes available on TVM
o TVM = Tensor Virtual Machine, a compiler stack for deep-learning
models

e FEvaluate on two GPUs (GeForce RTX 2080 and A100)

Results

e Metrics used for evaluation
Throughput

Latency

Compile Time

Power

Memory used

o Temperature

e FEvaluated the performance for the seven sets of passes
e Create computation graphs in TensorFlow, PyTorch, and MXNet

O O O O O

Results - Throughput and Latency

5.1 Experiments on GeForce RTX 2080

For ResNet50 in TensorFlow and PyTorch,
there was an improvement in throughput
Throughput for MobileNet and SSD-ResNet

did not see much improvement
o MobileNet does not contain many relevant
passes
Neutral architecture-aware selection of
optimization reduced the latency for
ResNet50 in TensorFlow and Pytorch as well
as for Mob ileNet and SSD_Resnet

Relative Performance

Relative Performance

wm

o
o N

PO-0 = PO-1 £P0O-2 2 PO-3 Batch Size 1

ResNet50 TF ResNet50 PT MobileNetV2 PT SSD_ResNet50 PT

(a) Variation of "Throughput" with Pass Selection

N BL # AS-0 = AS-1 PO-0 = PO-1 = PO-2 % PO-3 Base Size 1
& 2
S i s 5% .. 3
\

ResNet50 TF ResNet50 PT MobileNetV2 PT SSD_ResNet50 PT

(b) Variation of "Latency" with Pass Selection

Results - Compile Time

Pruning the optimization passes’ search space ands selecting lesser, more relevant passes than
optimization level 3 improves the compile time significantly
Architecture-aware selection of passes was very effective for reducing compile-time
o Nearly halved the compile time or Mobilenet and SSD_ResNet
o BERT saw a 92% reduction in compile time
Good implications for JIT compilation

L i As-0 B Asa PO-0 = po-1 = po22 Ziro3 Batch Size 1
400

350

300

250

Compile Time (sec)

200 \ R §
150 <
100 \ \
\ N
50 N N
0 = P, it p: A - ::' § = 2 & . P h g a=a"
ResNet50 TF ResNet50 PT MobileNetV2 PT SSD_ResNet50 PT SSD_Resnet50 MXNet SSD_MobileNet MXNet BERT PT

Figure 3: Compile-Time Reduction on A100 GPU

Tl;dr - Paper Contributions and Technique
Novelty

e Generally improves throughput compared to the base optimization

e Technique of offline mapping passes to different neural networks
significantly reduces the search space and therefore reduces the
compile time

e Can target evaluation metrics for improvements
o Ex:improve throughput vs. memory usage
e |Improvements for memory utilization

Tl;dr - Paper Limitations

Need to manually classify optimization passes to neural network
architectures
o Manual work grows as more optimization passes or neural
network architectures are developed
Authors experiment with only 4 different neural network architectures
Authors are unclear on some areas on their paper
o The process of identifying relevant classes for each pass
o Some results of different software/computation graph generation
combinations were likely omitted without a note on why
m Some pass selections and their ordering are also omitted

