
EECS 583 Research
Paper Presentation

Hustin Cao, Aylin Gunal, Shinka Mori

https://bpb-us-e1.wpmucdn.com/you.stonybrook.edu/dist/6/1671/files/2022/07/Towards-Neural-Architecture-Aware-Exploration-Of-Compiler-Opti
mizations-in-a-Deep-Learning-Graph-Compiler.pdf

Published in ACM, 2022

https://bpb-us-e1.wpmucdn.com/you.stonybrook.edu/dist/6/1671/files/2022/07/Towards-Neural-Architecture-Aware-Exploration-Of-Compiler-Optimizations-in-a-Deep-Learning-Graph-Compiler.pdf
https://bpb-us-e1.wpmucdn.com/you.stonybrook.edu/dist/6/1671/files/2022/07/Towards-Neural-Architecture-Aware-Exploration-Of-Compiler-Optimizations-in-a-Deep-Learning-Graph-Compiler.pdf

Background

● Development of graph-based deep learning compilers leads to massive
search space for optimizations targeting computation graphs generated
from Deep Neural Network code

○ Depending on what optimizations are applied, the intermediate
representation (IR) differs significantly, affecting overall performance

● Prior work has investigated use of machine learning to narrow down the
search space for (1) pass selection; (2) pass ordering

● Authors propose (manual) categorization of passes as relevant to
different neural network architectures
○ Experiments in TVM with pre-existing TVM passes

Computation Graph Optimization

● Computation graph is a type of
IR; popular software to create
them include TensorFlow,
Pytorch, MXNet
○ Idea is to model dependencies

between operations

https://cs230.stanford.edu/section/5/

Sample TensorFlow computation graph
representation of a neural network

https://cs230.stanford.edu/section/5/

Methodology – Neural Network
Architectures

Analyze architectural differences in deep neural networks to employ different
optimization passes. Researchers chose four different architectures.

1. ResNet - (ResNet50, 50-layer deep CNN)
a. Task: Image classification // Dataset: ImageNet

2. MobileNet (MobileNetV2, 53-layer deep CNN)
a. Task: Image classification // Dataset: COCO

3. SSD (SSD-ResNet50, Single Shot CNN)
a. Task: Object detection // Dataset: CIFAR-10

4. BERT (bi-directional encoder transformer)
a. Task: Question-Answering task // Dataset: SQuAD 2.0

Methodology – Compiler Optimization
Analysis

From observations, the researchers found that two or more optimization levels can
produce the exact same IR and an optimization level may contain a set of passes
that does not affect the IR.

Therefore, only consider passes that would will affect the IR of the target NN.

1. Baseline Passes (just setting OPT_LEVEL=3)
2. ResNet Class
3. MobileNet Class
4. SSD Class
5. BERT Class
6. Additional Passes (Certain passes are dependent on user's (programmer's)

intent on the code)

Pass Categorization

● Passes are categorized based on whether or not
they are directly relevant to a particular Deep
NN architecture

○ Decided based on number of network
layers, types of tensor operations, and their
order

● Core idea: prune the search space by removing
passes that are irrelevant to the given
architecture

Pass selection and ordering for SSD_ResNet50 in PyTorch

BL = baseline, AS-x = architecture-informed, PO-x = random selection from search space

Key

BL AlterOpLayout, CanonicalizeCast, CanonicalizeOps, ConvertLayout, DefuseOps, EliminateCommonSubexpr

AS-0 AlterOpLayout, FuseOps, SimplifyExpr, FoldConstant, DeadCodeElimination, MergeComposite, FastMath, RemoveUnusedFunctions

AS-1 SimplifyExpr, FuseOps, AlterOpLayout, MergeComposite, FastMath, DeadCodeElimination, FoldConstant, RemoveUnusedFunctions

PO-0 AlterOpLayout, CombineParallelConv2D, DefuseOps, DynamicToStatic, CanonicalizeOps, CanonicalizeCast

PO-1 CanonicalizeCast, AlterOpLayout, DefuseOps, CombineParallelConv2D, PartitionGraph, FakeQuantizationToInteger

PO-2 ToMixedPrecision, CombineParallelConv2D, EliminateCommonSubexpr, SimplifyFCTranspose, CanonicalizeOps, DefuseOps,
ToGraphNormalForm, ToGraphNormalForm

PO-3 CombineParallelDense, FakeQuantizationToInteger, AlterOpLayout, CombineParallelConv2D, ToGraphNormalForm, CanonicalizeOps

Experimental Set-Up

● Compile using passes available on TVM
○ TVM = Tensor Virtual Machine, a compiler stack for deep-learning

models
● Evaluate on two GPUs (GeForce RTX 2080 and A100)

Results

● Metrics used for evaluation
○ Throughput
○ Latency
○ Compile Time
○ Power
○ Memory used
○ Temperature

● Evaluated the performance for the seven sets of passes
● Create computation graphs in TensorFlow, PyTorch, and MXNet

Results – Throughput and Latency

● For ResNet50 in TensorFlow and PyTorch,
there was an improvement in throughput

● Throughput for MobileNet and SSD-ResNet
did not see much improvement

○ MobileNet does not contain many relevant
passes

● Neutral architecture-aware selection of
optimization reduced the latency for
ResNet50 in TensorFlow and Pytorch as well
as for Mob ileNet and SSD_Resnet

● Pruning the optimization passes’ search space ands selecting lesser, more relevant passes than
optimization level 3 improves the compile time significantly

● Architecture-aware selection of passes was very effective for reducing compile-time
○ Nearly halved the compile time or Mobilenet and SSD_ResNet
○ BERT saw a 92% reduction in compile time

● Good implications for JIT compilation

Results – Compile Time

Tl;dr – Paper Contributions and Technique
Novelty

● Generally improves throughput compared to the base optimization
● Technique of offline mapping passes to different neural networks

significantly reduces the search space and therefore reduces the
compile time

● Can target evaluation metrics for improvements
○ Ex: improve throughput vs. memory usage

● Improvements for memory utilization

Tl;dr – Paper Limitations

● Need to manually classify optimization passes to neural network
architectures
○ Manual work grows as more optimization passes or neural

network architectures are developed
● Authors experiment with only 4 different neural network architectures
● Authors are unclear on some areas on their paper

○ The process of identifying relevant classes for each pass
○ Some results of different software/computation graph generation

combinations were likely omitted without a note on why
■ Some pass selections and their ordering are also omitted

