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ABSTRACT
Deep Neural Networks (DNN) form the basis for many existing
and emerging applications. Many DL compilers analyze the compu-
tation graphs and apply various optimizations at different stages.
These high-level optimizations are applied using compiler passes
before feeding the resultant computation graph for low-level and
hardware-specific optimizations. With advancements in DNN ar-
chitectures and backend hardware, the search space of compiler
optimizations has grown manifolds. Also, the inclusion of passes
without the knowledge of the computation graph leads to increased
execution time with a slight influence on the intermediate represen-
tation. This paper presents preliminary results 1) summarizing the
relevance of pass selection and ordering in a DL compiler, 2) neural
architecture-aware selection of optimization passes, and 3) pruning
search space for the phase selection problem in a DL compiler. We
use TVM as a compiler to demonstrate the experimental results on
Nvidia A100 and GeForce RTX 2080 GPUs, establishing the rele-
vance of neural architecture-aware selection of optimization passes
for DNNs DL compilers.

Experimental evaluation with sevenmodels categorized into four
architecturally different classes demonstrated performance gains
for most neural networks. For ResNets, the average throughput
increased by 24% and 32% for TensorFlow and PyTorch frameworks,
respectively. Additionally, we observed an average 15% decrease
in the compilation time for ResNets, 45% for MobileNet, and 54%
for SSD-based models without impacting the throughput. BERT
models showed a dramatic improvement with a 92% reduction in
the compile time.

CCS CONCEPTS
• Software and its engineering → Compilers; • General and
reference → Performance.
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1 INTRODUCTION
The burgeoning applications of deep neural networks (DNN) are
ubiquitous across multiple artificial intelligence domains, including
industry and scientific disciplines. The deep neural architecture
has evolved manifolds from simple neural networks to convoluted
ones, followed by recurrent ones to massively large models such
as Megatron-Turing Natural Language Generation (MT-NLG). Ad-
vancements in hardware such as GPU and TPU and DL frameworks
like TensorFlow and PyTorch offer optimized kernels support facil-
itating DL innovations.

The researchers soon identified that the DNN execution differs
from the execution of standard computer programs. The network
architecture allows extracting parallelism and applying various
high-level compiler optimizations specific to tensor operations and
particular backend hardware support to these tensor operations.
The selection of these compiler optimizations is known as pass
selection. The pass selection problem has been researched over
decades for traditional computer programs [16, 23–27]. Many of
the DL compilers like XLA [34], TVM [5], Glow [33], and Ten-
sorRT [31] apply a predefined set of high-level optimization passes
on a given input computation graph oblivion to the neural archi-
tecture. The optimization search space has exponentially expanded
with the increase in custom optimization passes and the evolution
of neural network architectures. This explosion in the search space
limits the use of static rule-based optimization level selection or
the application of machine learning techniques to select the best
passes.

In this work, we study diverse DNNs and present the effect of
neural architecture-aware selection of passes and execution or-
der resulting in efficient lower-level code generation. We evalu-
ate the experimental results on execution time, throughput, GPU
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utilization, memory, and energy consumption metrics. The main
contributions of this paper are summarized as follows:

• This work underscores the relevance of neural architecture-
aware selection of passes in a DL compiler.

• It evaluates the proposed method against standard optimiza-
tion level and randomized selection of passes.

• Lastly, we demonstrate how the proposed approach can
prune the search space for optimizations selection substanti-
ated with critical metrics.

The remainder of the paper is organized as follows: Section
2 gives the requisite background to understand the problem and
presents the related work in this area. Section 3 describes the pro-
posed methodology used in the study. Sections 4 and 5 discuss
experimentation and results, respectively. Section 6 provides a con-
clusion and potential future steps.

2 LITERATURE REVIEW
Pass selection and phase-ordering problems for the compiler writers
are decades old but pertinent. With the development of graph-based
deep learning compilers, there are manifold possibilities of mul-
tilayered optimizations targeting computation graphs generated
from an input framework like TensorFlow or PyTorch. After op-
timizations are applied, the resultant intermediate representation
(IR) differs significantly affecting the overall performance. Since
optimization passes depend on various factors, including the code
block, backend architecture characteristics, and the compiler itself,
the search space is enormous, making the selection of passes and
ordering an NP-hard problem.

In work performed by Haneda et al. [13], the authors propose
a statistical technique to reduce the search space for the compiler
passes. They evaluated SPECint95 benchmark suite [6] execution
on a GCC compiler, validating the heuristics. Similarly, Kulkarni
et al. [20] suggest a careful and aggressive pruning of the search
space without any information loss. It analyzes the probabilities of
various phase interactions, such as inter-phase enabling/disabling
relationships and inter-phase independence. Furthermore, research
groups [17] have also investigated methodologies involving manu-
ally partitioning the optimization phases into independent groups
to develop a new multi-stage search algorithm. On average, the
performed iterative technique could achieve an 89% reduced search
space.

Besides the statistical and iterative heuristics, researchers have
also designed machine learning-based heuristics [2, 18] to get to the
bottom of efficient execution order. In another work[3], the authors
employ clustering-based predictive modeling using dynamic fea-
tures to attack the problem. They evaluate the results on the Ctuning
CBench suite [11] against other earlier discussed heuristics meth-
ods. Additionally, a research group implemented a reinforcement
learning (RL) based LLVM-derived framework, Autophase [15], to
deal with the phase-ordering problem for High-Level Synthesis
(HLS) programs.

The effect of phase ordering on energy and power consumption
is also investigated for the LLVM based compilers [12, 28]. The ex-
periments exhibit a weak correlation between energy consumption
and performance, albeit the authors could significantly decrease
the energy consumption and execution time in specific scenarios.

Almost every work discussed so far targets LLVM-based com-
pilers. Currently, DL compilers employ predefined flags, -O2, -O3,
etc. In this work, we show that the search space can be pruned
at a higher level, reducing efforts to auto-tune if we make neural-
architecture aware selection of passes resulting in reduced execu-
tion time and improved throughput. Additionally, it is more relevant
to have a compiler-agnostic heuristic involving domain knowledge
from neural architecture instead of conventional -Ox optimization
levels.

3 METHODOLOGY
We started by analyzing the architectural differences in the deep
neural networks. Further, we explored various compiler passes
available in TVM and their impact on a given neural architecture.
Subsequently, we applied them to the deep learning workloads,
improving the throughput, latency, and overall performance.

3.1 Neural Architecture Analysis
We considered four different classes of neural networks - ResNet [14],
MobileNet [35], Bidirectional Encoder Representations from Trans-
formers (BERT) [10], and Single Shot MultiBox Detector-based
(SSD) [22] architectures, as summarized in Table 3. We focused on
image classification, object detection, and natural language process-
ing (NLP) task corresponding to Question Answering. Moreover,
we assessed the computation graph in TensorFlow, PyTorch, and
MXNet to generalize the applicability of our methodology. The
precision mode used is FP32 as quantization is not well supported
for different networks in TVM. We evaluted a trained network
on the same and different dataset to validate the proposition for
correctness.

3.1.1 ResNet50: The ResNet is a 50-layer deep convolutional neu-
ral network (CNN). To address the accuracy saturation and further
degradation problem with increasing depth, it uses a deep residual
learning framework. The baseline plain network consists of con-
volutional layers with a global average pooling layer and a fully
connected (FC) layer with a softmax activation function in the end.
It passes through phases performing the convolution with stride 2,
batch normalization, and ReLU activation followed by the multipli-
cation with the weight matrix. The zeros are padded, matching the
dimension when there is an increase in the dimension. We have
summarized ResNet50 architecture in Table 1.

Table 1: ResNet50 Architecture Summary [14]

Layer_Type Output_Size Building_Blocks
conv1_* 112𝑋112 7𝑋7, 64, stride 2

conv2_* 56𝑋56 3𝑋3 max pool, stride 2
[1𝑋1, 64, 3𝑋3, 64, 1𝑋1, 256] 𝑋 3

conv3_* 28𝑋28 [1𝑋1, 128, 3𝑋3, 128, 1𝑋1, 512] 𝑋 4
conv4_* 14𝑋14 [1𝑋1, 256, 3𝑋3, 256, 1𝑋1, 1024] 𝑋 6
conv5_* 7𝑋7 [1𝑋1, 512, 3𝑋3, 512, 1𝑋1, 2048] 𝑋 3

- 1𝑋1 average pool, 1000-d FC, softmax

3.1.2 MobileNetV2: MobilNetV2 is derived from an inverted resid-
ual structure where the residual connections are between the bottle-
neck layers. The basic building block is bottleneck depth-separable
convolutions consisting of residuals. As shown in Table 2, it consists
of fully connected layers with 32 filters and 19 residual layers. It
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further employs ReLU6 as the activation function, and the kernel
size is 3x3.

Table 2: MobileNetV2 Architecture Summary [35]

Input Operator Expansion
Factor (t)

#Output
Channels

(c)

Repetition
times (n)

Stride (s)

2242𝑋3 conv2d - 32 1 2
1122𝑋32 bottleneck 1 16 1 1
1122𝑋16 bottleneck 6 24 2 2
562𝑋24 bottleneck 6 32 3 2
282𝑋32 bottleneck 6 64 4 2
142𝑋64 bottleneck 6 96 3 1
142𝑋96 bottleneck 6 160 3 2
72𝑋160 bottleneck 6 320 1 1
72𝑋320 conv2d 1𝑋1 - 1280 1 1
72𝑋1280 avgpool 7𝑋7 - - 1 -
1𝑋1𝑋1280 conv2d 1𝑋1 - k - -

3.1.3 SSD_ResNet50: The Single Shot (SS) in SSD refers to the
object localization and classification tasks performed in a single
forward pass of the network. The SSD network is based on a feed-
forward convolutional network consisting of feature maps extrac-
tion and object detection using a convolution filter. Its uniqueness
is that the final fully connected layers in the original ResNet are
replaced by the SSD head, as shown in Figure 1. The SSD head
utilizes the spatial information extracted by the ResNet to decide
the bounding boxes and predict classes.

Figure 1: Architecture of a Convolutional Network with SSD
Layers

3.1.4 BERT: BERT is essentially a multi-layer bidirectional Trans-
former encoder based on the attention mechanism [36]. The trans-
former architecture employs self-attention on the encoder side and
attention on the decoder end. It consists of parallel FC layers and
transpose operations. Further scaling is performed before passing
through the softmax layer to output probabilities. We have used
BERTBASE extended model in this work. It has 12 layers in the en-
coder stack, 768 feedforward hidden units, and 12 attention heads.

Table 3: Models’ Specifications

Model Train_Dataset Test_Dataset Framework DL Task
ResNet50 ImageNet ImageNet, CIFAR10 TensorFlow, PyTorch Image Classification
MobileNetV2 ImageNet ImageNet, CIFAR10 PyTorch Image Classification
SSD_ResNet50 COCO COCO PyTorch, MXNet Object Detection
BERTbase_cased_squadV2 SQuAD_V2 SQuAD_V2 PyTorch Question Answering

3.2 Compiler Optimizations Analysis
In DL compilers, the passes are categorized into optimization levels
(OPT_LEVEL), -Ox, identical to the conventional compilers. We em-
ployed the domain knowledge from the neural architecture analysis
to classify the optimization passes. While writing this paper, we
listed passes and their functionality available in TVM. The neural

network layers, tensor operations, and their order dictated the cate-
gorization of passes. It is observed that certain passes are applicable
only when a particular feature is supported by a compiler and is
available in a neural network. For example, FoldExplicitPadding
is relevant to a network with explicit padding. Using such a pass
for a network like BERT will only increase the search space of
the optimizations. We compiled the models under different pass
combinations and examined the IR to validate this.

We studied the passes executed as part of OPT_LEVEL=3 to es-
tablish the baseline results. Our observations supported the fol-
lowing two suppositions. Firstly, two or more optimization levels
can produce precisely the same IR. For example, OPT_LEVEL=2 and
OPT_LEVEL=3 generated the same IR for ResNet50. Secondly, an
optimization level may contain a set of passes that do not affect
the IR. For example, as part of OPT_LEVEL=2, DynamicToStatic
converts dynamic operations to the static, if possible. But all the
employed networks have static operations alone.

Based on the above characterization, we selected passes relevant
to the experimented neural networks as summarized in Table 4
from all the available passes in TVM. We have classified them into
the following broader categories:

• Baseline Passes (BL): These are the passes enabled as part
of OPT_LEVEL=3. We have used them as our baseline exper-
imentation.

• ResNet Class (RN): These passes are relevant to ResNet
neural architecture.

• MobileNet Class (MN): These passes are explored as part
of the MobileNet neural network.

• SSD Class (SSD): This class refers to the passes relevant to
the SSD network.

• BERT Class (BR): These passes align with the BERT archi-
tecture.

• Additional Passes (AD): There are certain passes, like
ToMixedPrecision that are dependent on the users’ intent.
It can be employed across networks.

This classification is intended to increase with the addition of
more passes. A particular pass can belong to more than one class.
While executing SSD_ResNet, we can combine RN and SSD classes
to form the search space. This technique could reduce the search
space for the compiler optimizations selection, diminishing the
overhead.

4 EXPERIMENTAL SETUP
We evaluate our proposed methodology on GPUs with different
architectures. We decided to consider different compute backends
based on the previous results presented by Verma et al. [37].

4.1 Hardware Specifications
The experiments are performed on two Nvidia GPUs, GeForce RTX
2080 and A100. GeForce RTX 2080 provides dedicated ray-tracing
and CUDA cores. A100 is based on the bests from Volta and Turing
architectures. It offers a larger and faster L1 cache and shared
memory units. Further, more on-chip memory, including a 40 MB
L2 cache, improves the computing performance. Lastly, the CUDA
graphs improves efficiency by launching many kernels in a single
operation.
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Table 4: Categorization of Passes
Pass Description Category

AlterOpLayout
Used for computing convolution in cus-
tom layouts or other general weight pre-
transformation.

BL; RN; MN; SSD; BR

AnnotateSpans Annotate a program with span information AD

BatchingOps Batching parallel operators into one for
Conv2D, Dense and BatchMatmul BR

CanonicalizeCast Canonicalize cast expressions to make opera-
tor fusion more efficient. BL; RN

CanonicalizeOps Canonicalize special operators to basic opera-
tors BL

CombineParallelConv2D Combine multiple conv2d operators into one RN
CombineParallelDense Combine multiple dense operators into one RN
ConvertLayout Alternate the layouts of operators BL

DeadCodeElimination Remove expressions that do not have any us-
age RN; MN; SSD

DefuseOps Inverse operation of fusion pass. BL

DynamicToStatic Convert dynamic operations to static if possi-
ble AD

EliminateCommonSubexpr Eliminate common subexpressions BL; RN; MN

FakeQuantizationToInteger Takes fake quantized graphs and convert them
to actual integer operations AD

FastMath Convert expensive non linear functions to
their fast but approximate counterparts MN; BR; SSD

FirstOrderGradient
Transform all global functions in the module
to return the original result and the gradients
of the inputs.

MN

FoldConstant Fold the constant expressions in a Relay pro-
gram RN; MN; SSD

FoldExplicitPadding Find explict padding before an operator that
supports implicit padding and fuses them. RN; SSD

ForwardFoldScaleAxis Fold the scaling of axis into weights of
conv2d/dense BR

FuseOps Fuse operators in an expression to a larger
operator RN; MN; SSD; BR

MergeComposite Merge multiple operators into a single com-
posite relay function RN; MN; SSD

PartitionGraph Partition a Relay program into regions that
can be executed on different backends AD

RemoveUnusedFunctions Remove unused global relay functions in a
relay module SSD

SimplifyExpr Simplify the Relay expression, including merg-
ing consecutive reshapes. RN; MN; SSD

SimplifyFCTranspose Simplify the transpose operation on a dense
layer MN; BR

SimplifyInference Simplify the data-flow graph for inference
phase. RN; MN; SSD

ToANormalForm Turn Graph Normal Form expression into A
Normal Form Expression AD

ToGraphNormalForm Turn a normal form into graph normal form. RN; MN
ToMixedPrecision Automatic mixed precision rewriter AD

*BL: baseline optimization passes having OPT_LEVEL=3; RN: ResNet Class; MN: MobileNet Class;
SSD: SSD_ResNet Class; BR: BERT Class; AD: Additional optimizations

The tensor core enabled A100 has Thermal Design Power (TDP)
of 400 W, whereas CUDA core enabled GeForce 2080 has a TDP of
250 W. The A100’s memory bus width is almost 15x of the GeForce.
Also, the memory bandwidth of A100 exceeds GeForce by 2.5x. It
enables A100 for faster data access and faster data processing.

4.2 Software Specifications
We carried out the experiments with TensorFlow v2.4.0, Torch
v1.7.0, Torchvision v0.8.1, Pytorch-transformer v1.2.0, and MxNet
v1.8.0 with Python v3.6.9 and TVM v0.8.dev0. To maintain the
consistency of the CUDA and CuDNN versions, we utilized CUDA
v11.0 and CuDNN version v8.0 for both A100 and GeForce GPUs.

To profile the executions at a system level, we used NVIDIA
Nsight Systems version 2021.3.2.4-027534f [30], and for the kernel
level profiling, we used NVIDIA Nsight Compute Command-Line
Profiler Version 2021.2.2.0 (build 30282580) [29].

4.3 Dataset
In this section, we summarize the dataset’s statistical information
used to evaluate the proposed methodology.

4.3.1 ImageNet: The ImageNet dataset [9] is a collection of human-
annotated images. It offers variations of the same object, including
camera angles and lighting conditions. ImageNet has more than 14
million images organized into over 21,000 subcategories averaging
around 500 images per subcategory and 21 high-level categories.
There are 1000 synonym sets and 1.2 million images with Scale-
Invariant Feature Transform (SIFT) features.

4.3.2 Common Objects in Context (COCO): COCO [21] is a large-
scale object detection, segmentation, and captioning dataset. It
consists of everyday scenes comprising common objects in their
natural context. There are 165,482 train, 81,208 validation, and
81,434 test images encompassing 91 categories. The major portion
of the dataset is non-iconic images, as they are better at generalizing.

4.3.3 CIFAR-10: CIFAR-10 [19] is a labeled subset of the 80 million
tiny images dataset. It consists of 60000 32x32 color images in 10
classes, with 6000 images per class. There are 50000 training images
and 10000 test images. The dataset is separated into five training
and one test batch. The test batch contains 1000 randomly-selected
images from each class.

4.3.4 Stanford Question Answering Dataset (SQuAD2.0): SQuAD
[32] is a reading comprehension dataset comprising questions posed
by participants on a set of Wikipedia articles. It consists of 100,000
answerable questions and over 50,000 unanswerable questions. The
questions are structurally indistinguishable.

5 RESULTS
We executed each neural network for 100 warm-up runs and 1000
runs to gather the stats to avoid noise. Also, we considered only
three standard deviations of the collected data from the mean and
excluded any outliers. We selected the following metrics to assess
the performance of our proposition.

• Throughput: the volume of inferences within a given pe-
riod, usually measured in inferences per second.

• Latency: the execution time to perform inference on one
image, expressed in milliseconds (ms).

• Compile Time: the time required to generate the optimized
computation graph to be deployed; expressed in seconds
(sec).

• Power: refers to the power drawn by the GPU to perform
one inference. It is expressed in Watt (W),

• Memory Used: refers to the total memory allocated by
active contexts (MiB).

• Temperature: refers to the core GPU temperature (°C).
The following notations are used to represent different selections
and ordering of passes.

• BL: selection of passes having OPT_LEVEL=3.
• AS-0 and AS-1: architecture-aware selection of passes for
a given class; v0, v1. Table 4 is referred to get the class and
varying permutations are considered to get the best result.

• PO-0, PO-1, PO-2 and PO-3: randomized selection of passes;
v0, v1, v2, v3. Class information and additional passes from
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Table 4 are considered to find the random set of passes and
then a sequence is proposed based on multiple trials.

Table 5: Pass selection and ordering for SSD_ResNet50 in
PyTorch

ID Selected Passes and Ordering

BL AlterOpLayout, CanonicalizeCast, CanonicalizeOps, ConvertLayout, DefuseOps,
EliminateCommonSubexpr

AS-0 AlterOpLayout, FuseOps, SimplifyExpr, FoldConstant, DeadCodeElimination,
MergeComposite, FastMath, RemoveUnusedFunctions

AS-1 SimplifyExpr, FuseOps, AlterOpLayout, MergeComposite, FastMath, DeadCodeEl-
imination, FoldConstant, RemoveUnusedFunctions

PO-0 AlterOpLayout, CombineParallelConv2D, DefuseOps, DynamicToStatic, Canonical-
izeOps, CanonicalizeCast

PO-1 CanonicalizeCast, AlterOpLayout, DefuseOps, CombineParallelConv2D, Partition-
Graph, FakeQuantizationToInteger

PO-2
ToMixedPrecision, CombineParallelConv2D, EliminateCommonSubexpr, Simpli-
fyFCTranspose, CanonicalizeOps, DefuseOps, ToGraphNormalForm, ToGraphNor-
malForm

PO-3 CombineParallelDense, FakeQuantizationToInteger, AlterOpLayout, CombinePar-
allelConv2D, ToGraphNormalForm, CanonicalizeOps

The pass dependency is handled internally. If a pass depends
on the execution of another pass, it is called internally during the
execution. In Table 5, we have presented the selected pass and
ordering for the SSD_ResNet50 neural network in PyTorch.

5.1 Experiments on GeForce RTX 2080

(a) Variation of "Throughput" with Pass Selection

(b) Variation of "Latency" with Pass Selection

Figure 2: Execution on a GeForce RTX 2080 GPU

We evaluated the performance using seven sets of passes to for-
mulate the pass selections similar to Table 5. As explained earlier,
it is based on the neural network’s categories presented in Table 4.
Where AS-x is the architecture-specific selection, PO-x is the ran-
domized selection of passes from the reduced search space. We
further permuted each PO-x version to achieve the best perfor-
mance among the selected version.

As shown in Figure 2a, the baseline throughput (frames/sec) for
ResNet50 TF, ResNet50 PT, MobileNetV2 PT, and SSD_ResNet50 PT
are 23.18, 21.35, 72.90, and 3.80, respectively. For ResNet50 imple-
mentation in TensorFlow, we achieved up to 24% improvement in
the throughput with an informed selection of passes. Similar behav-
ior was observed in the PyTorch implementation of ResNet50. Since
ResNet is primarily a convolutional layers followed by the FC layer,

we applied default passes like AlterOpLayout and FoldConstant
followed by passes specific to the tensor operations like FuseOps,
EliminateCommonSubexpr, and so on. It is observed that FuseOps
after AlterOpLayout performs better as it leads to more efficient
fusion. Hence, we were able to achieve an improvement of 32% in
terms of throughput.

On the contrary, throughput for MobileNet and SSD-ResNet did
not improve much on a non-tensor core architecture. There was a
5% improvement on average. MobileNet is a lightweight architec-
ture primarily consists of bottleneck layers containing fewer nodes
than the previous layer. Hence, this network class does not have
many relevant passes. Similarly, for the SSD_ResNet, the addition of
new SSD layers reduces the overall gain. Analogous behavior was
noticed with the latency gain. As shown in Figure 2b, the baseline
latency (ms/inference) for ResNet50 TF, ResNet50 PT, MobileNetV2
PT, and SSD_ResNet50 PT are 43.13, 46.83, 13.71, and 263.16, respec-
tively. The neural architecture-aware selection of optimizations
reduced the latency by 18%-19% in the case of ResNet50 in TF, and
up to 24% in PyTorch implementation, as shown in Figure 2b. We
achieved up to a 5% latency gain for the MobileNet and SSD_ResNet
models.

5.2 Experiments on A100
The NVIDIA A100 GPU is a tensor core supported hardware that
offers advanced support for tensor operations, mainly CUDA graphs
acceleration, as discussed before. As shown in Figure 3, pruning
the optimization passes search space and selecting lesser and more
relevant passes than -O3 OPT_LEVEL improves the compilation time
by 18% in ResNet50 TF and by 15% in the PyTorch implementation.
Unlike PyTorch, on using combinations of MergeCompilerRegions
and SimplifyInference, the compile-time in TF almost doubled
the baseline compile-time. It is due to the aggressive traversal of the
computation graph without optimizing the IR in TF. Currently, we
are investigating the detailed cause of this behavior. One possible
explanation is the difference in the implementation of operators
in TF and PyTorch, and hence the difference in the computation
graph generated in either case.

The architecture-aware selection of passes was paramount to
MobileNet and SSD_ResNet. In both scenarios, we could reduce
compile-time by almost 45%-54%. As shown in Table 4 and 5, the
fewer optimization passes reduced the overhead of traversing a
vast computation graph. While we could cherry-pick passes like
MergeComposite, and FastMath, passes like DynamicToStatic and
FakeQuantizationToInteger could be excluded from the AS-x
versions. We validated our results across different frameworks.
SSD_MobileNet implementation in MXNet showed similar behav-
ior. On evaluating different classes of models, we found that the new
tensor core offers hardware optimizations that diminish the bene-
fits performed by various compiler optimization passes selected as
part of -O3 OPT_LEVEL. Since A100 comes with tensor cores and
advanced CUDA compute capabilities as described in section 4.1,
we also evaluated the computation graph without any optimization
passes in scenarios where the hardware would do most optimiza-
tions. For SSD-based models across formats, it performed on par
with baseline execution.

The most exciting results came from the BERT’s architecture-
aware selection of passes.We could achieve an almost 92% reduction
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Figure 3: Compile-Time Reduction on A100 GPU

in the compile-time without reducing the throughput. That is criti-
cal when we need to Just-in-Time (JIT) compile for the edge devices.
We found that only a few passes were relevant due to the BERT-
based model’s transformer-based architecture. Hence we narrowed
down the search space to the BR class passes ad selected passes like
SimplifyFCTranspose, FastMath, FoldExplicitPadding. BERT
employs three parallel FC layers followed by three parallel trans-
pose operations in a self-attention layer. Also, it performs scaling
and softmax that get benefited by including FastMath. Furthermore,
it uses padding extensively for the shorted inputs. Additionally,

Table 6: Selected Models with Considerable Distinctions

Compute Hardware Model Framework Pass Order
Power (W) Temperature (°C) Memory Util. (MiB)

Median Max Median Max Median Max

GeForce RTX 2080

ResNet50_V2
TensorFlow

-O3 48 50 29 32 601 650
AS best 43 46 28 32 592 638

PyTorch
-O3 47 49 33 35 456 504

AS best 46 49 29 32 433 504

SSD_ResNet50 PyTorch
-O3 90 134 31 37 1287 1458

AS best 83 133 30 34 1160 1450

MobileNet_V2 PyTorch
-O3 42 45 28 31 174 190

AS best 41 43 28 29 154 186

A100

SSD_ResNet50 MXNet
-O3 80 119 26 30 1747 1887

AS best 73 110 25 27 1723 1879

MobileNet_V2 PyTorch
-O3 59 63 23 26 1552 1650

AS best 58 63 23 25 1540 1650

BERT PyTorch
-O3 109 249 26 36 1782 2586

AS best 104 250 26 36 1680 2586

*AS best : Neural Architecture-Aware selection of passes.

we gathered hardware statistics, namely, power consumption, GPU
temperature, and memory utilization, to quantify the architecture-
aware pass selection and its effect on the earlier metrics. The se-
lected results are summarized in Table 6. On GeForce, where the
peak memory utilization remained almost identical for all the ex-
periments, a 10% decrease in the median memory utilization is
reported in the SSD_ResNet and a 5% in ResNet50 PyTorch im-
plementation. Power consumption exhibited equivalent behavior.
On A100, memory utilization was reduced by 2%-6% across all the
runs. The observations confirm that the architecture-aware selec-
tion of passes impacts memory utilization and power consumption,
an essential aspect of computation on resource-constrained edge
devices.

6 CONCLUSION AND FUTURE DIRECTIONS
Deep learning graph compilers are attaining attraction in academia
and industry. They have evidently proved successful in extracting
the parallelism from the computation graph and applying various
optimizations, improving the throughput, latency, memory, and
energy consumption. There is a need to understand the distinction
in the methodology on how the compiler optimization passes are
applied to a DL compiler, like TVM. This research focuses on con-
sidering neural architecture while deciding on the pass selection.
Further, we exhibited how the proposed approach can prune the
search space and significantly reduce compile-time. It can be sig-
nificant for applications heavily dependent on JIT compilation, like
edge computing. Also, with an increasing number of passes and
the complexity of the computation graph, it is essential to reduce
search space to facilitate static rule-based or ML technique-based
pass selection.

In the future, we plan to propose an intelligent methodology to
optimize the selection procedure on a resource-constrained edge
device, emphasizing the metrics like power consumption and device
temperature.
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