
Detection & Mitigation of
Ciphertext Side-Channels in

Trusted Execution Environments
Viraj Lunani, Vedant Iyer, Wei-Lun Huang,

Taeyoon Kim, and Aayush Singh

1



❖ [Background] Trusted Execution Environments

❖ [Background] Ciphertext Side Channels

❖ [Comparison] CipherH vs. Cipherfix

❖ [CipherH] Automated Detection of Ciphertext Side-channel 
Vulnerabilities in Cryptographic Implementations

❖ [Cipherfix] Mitigating Ciphertext Side-Channel Attacks in Software

2

Outline



Trusted Execution
Environments (TEE)

3



Ring 0
(OS)

Ring 3

Existing Ring Architecture Problem

4



Existing Ring Architecture Problem

Ring 0
(OS)

Ring 3

5



❖ Assume the OS is compromised.

❖ Provide isolation from the hypervisor.
➢ Access Rights
➢ Cryptography

Trusted Execution Environment (TEE)

6



❖ Shared Hardware = Shared Resources

❖ Exploitable Side Channels

Side-Channel
Attack Overview

7

Issues with TEEs



Ciphertext Side Channels

8



Deterministic Encryption

9

❖ Fixing at One Memory Cell

❖ Identical Plaintexts → Ciphertexts Location

[1] CIPHERH: Automated Detection of Ciphertext Side-channel Vulnerabilities in Cryptographic Implementations



Dictionary and Collision Attacks
❖ Dictionary Attacks

➢ All Possible CTs Observed
➢ CT-PT Relations Inferred

❖ Collision Attacks
➢ Before/After a Memory Write
➢ Identical vs. Different CTs

10
[2] Cipherfix: Mitigating Ciphertext Side-Channel Attacks in Software

CT: Ciphertext

PT: Plaintext

https://arxiv.org/abs/2210.13124


CipherH vs. Cipherfix

11



❖ At the Software Level
➢ AMD SEV cannot afford hardware patches.

❖ In Constant-Time Crypto Software
➢ Different Secrets → Identical Control Flows + Memory Cells Accessed

❖ CipherH for Side-Channel Detection
➢ USENIX Security 2023

❖ Cipherfix for Side-Channel Mitigation
➢ USENIX Security 2023

12

Patching Ciphertext Side-Channels



Paper CipherH Cipherfix

Stage 1 Dynamic Taint Analysis, 
Instrumented at the
LLVM-IR Level

Dynamic Taint Analysis, 
Instrumented at the
Binary Level 

Outputs Tainted Functions Tainted Memory Accesses 
(Instructions + Addresses)

Stage 2 Intra-procedural 
Symbolic Execution + …

Masking the Tainted
Memory Writes

Outputs Vulnerable Instructions Protected Software Binary

Approaches

13



❖ CipherH Authors
➢ ≈ CipherLeaks Authors
➢ ≈ ½ Authors of the S&P’22 Follow-up

❖ Cipherfix Authors
➢ ≈ ½ Authors of the S&P’22 Follow-up

❖ Advantages
➢ Knowing Ciphertext Side Channels Better
➢ More Familiar with Implementations: e.g., CipherH
➢ Expensive & Uncommon AMD EPYC Processors, with Root Privileges

14

Authors



CipherH

15

Automated Detection of Ciphertext Side-channel 
Vulnerabilities in Cryptographic Implementations



[1] CIPHERH: Automated Detection of Ciphertext Side-channel Vulnerabilities 
in Cryptographic Implementations 16

Safe Cases



❖ Unsafe Case: two different executions following the same path
➢ In one execution, the two memory writes give identical ciphertexts.
➢ In the other, the two memory writes give different ciphertexts.

❖ Some program may not cover all two memory accesses
❖ C = Conjunction of All Branch Conditions: from program entry to 

the second memory write.
➢ If C contains only public symbols, two executions mentioned above follow the same path. 
➢ If C contains secret symbols, secret symbol k is renamed and constraint solver will search for 

secrets used by two executions.
17

Path Constraint

[1] CIPHERH: Automated Detection of Ciphertext Side-channel Vulnerabilities in Cryptographic Implementations



❖ Inter-procedural → False Positives in Some Cases
➢ 142 findings are true positives out of 153 findings (142/153)
➢ They had 9 false positives (9/153)

❖ Manual Checking - For intra-procedural, we use automated process, but for 
inter-procedural, the developers have to check manually

❖ Would be problematic if no prior experience or if the library is too big
18

Evaluation/Weakness

[1] CIPHERH: Automated Detection of Ciphertext Side-channel Vulnerabilities in Cryptographic Implementations



19

Cipherfix

Mitigating Ciphertext Side-Channel
Attacks in Software



CF-Enhanced reduces collisions
by guaranteeing that all data
and masks are at least length-w’.

Smaller memory accesses will be
modified to access surrounding bytes. 20

[2] Cipherfix: Mitigating Ciphertext Side-Channel Attacks in Software

How do we encrypt memory randomly?

CF-FastCF-Base

https://arxiv.org/abs/2210.13124


A Similar Stage to CipherH

21

Cipherfix process

[2] Cipherfix: Mitigating Ciphertext Side-Channel Attacks in Software

https://arxiv.org/abs/2210.13124


Pros

❖ Assumption: The control flow 
does not depend on secrets.

❖ Large Runtime Overhead

❖ CF-Fast/Base is not as secure 
as CF-Enhanced.
➢ Mask Collision

❖ Apply a random mask to 
each memory write.

❖ Binary-Level 
Implementation
➢ Static + Dynamic
➢ Compilation Not Required

22

Cons



❖ CipherLeaks [USENIX Security 2021]
➢ Ciphertext (CT) Side Channels Found

❖ A Systematic Look at Ciphertext Side Channels on AMD SEV-SNP
➢ Follow-up of CipherLeaks [IEEE S&P 2022]

❖ [1] CipherH [USENIX Security 2023]
➢ Automated CT Side-Channel Detection

❖ [2] Cipherfix [USENIX Security 2023]
➢ Automated CT Side-Channel Mitigation

23

Readings Questions/Feedback?


