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Existing Ring Architecture Problem
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Trusted Execution Environment (TEE)

X/

% Assume the OS is compromised.

/7

% Provide isolation from the hypervisor.
> Access Rights
> Cryptography

Untrusted System

Trusted Execution
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Issues with TEEs

« Shared Hardware = Shared Resources

% Exploitable Side Channels
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Ciphertext Side Channels



Deterministic Encryption

% Fixing at One Memory Cell

* kl = read_key_bit(@)
lkZ = read_key_bit(1)

% ldentical Plaintexts — Ciphertexts Location A
a=kl

cryptographic .
program a=k2
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[1] CIPHERH: Automated Detection of Ciphertext Side-channel Vulnerabilities in Cryptographic Implementations



CT: Ciphertext

Dictionary and Collision Attacks PT: Plaintext

% Dictionary Attacks w— &
swap(p, 4, :
> All Possible CTs Observed c=~(b-1); //b=0->c=00...00

. t=c & (p " q);
> CT-PT Relations Inferred o iy
q "=t
R .
* COHISIOn AttaCkS (a) Constant-time swap of p and q, depending on bit b.
> Before/After a Memory Write
. . Ciphertext of

> |dentical vs. Different CTs : F
b before cswap after cswap
0 e4c80f2a e4c80f2a
1 e4c80f2a aa2f2a61

(b) Ciphertext of p, before and after calling cswap.
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https://arxiv.org/abs/2210.13124

CipherH vs. Cipherfix



Patching Ciphertext Side-Channels

% At the Software Level
> AMD SEV cannot afford hardware patches.

% In Constant-Time Crypto Software
> Different Secrets — lIdentical Control Flows + Memory Cells Accessed

% CipherH for Side-Channel Detection
> USENIX Security 2023

% Cipherfix for Side-Channel Mitigation
> USENIX Security 2023
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Approaches

Paper CipherH Cipherfix

Stage 1 Dynamic Taint Analysis, |Dynamic Taint Analysis,
Instrumented at the Instrumented at the
LLVM-IR Level Binary Level

Outputs | Tainted Functions Tainted Memory Accesses

(Instructions + Addresses)

Stage 2 | Intra-procedural Masking the Tainted
Symbolic Execution + ... | Memory Writes

Outputs | Vulnerable Instructions Protected Software Binary
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Authors

% CipherH Authors

> = CipherLeaks Authors
> =74 Authors of the S&P’22 Follow-up

s Cipherfix Authors
> =74 Authors of the S&P’22 Follow-up

X/

% Advantages

> Knowing Ciphertext Side Channels Better

> More Familiar with Implementations: e.g., CipherH

> Expensive & Uncommon AMD EPYC Processors, with Root Privileges



CipherH

Automated Detection of Ciphertext Side-channel
Vulnerabilities in Cryptographic Implementations
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Safe Cases
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Path Constraint
ki, k, Ky, ky € K, Wi(ki) = Wa(ky) AWy (k) # Wa(ky)
k1, kp, ,l,kfg € K,Wy (k1) = Wa(kp) /\Wl(ka) = Wz(klz) ANC

% Unsafe Case: two different executions following the same path

> |n one execution, the two memory writes give identical ciphertexts.
> In the other, the two memory writes give different ciphertexts.

% Some program may not cover all two memory accesses
% C = Conjunction of All Branch Conditions: from program entry to

the second memory write.
> If C contains only public symbols, two executions mentioned above follow the same path.
> |If C contains secret symbols, secret symbol k is renamed and constraint solver will search for

secrets used by two executions.
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Evaluation/Weakness

Implementation Algorithm Opt Intraprocedural Symbolic Execution Interprocedural Symbolic Execution Function
* | (Vulnerable/Analyzed) Functions | Vulnerable Program Points | (Vulnerable/Analyzed) Functions | Vulnerable Program Points | (Tainted/Covered)
WolfSSL 5.3.0 ECDSA -02 3/53 6 12 12 53/92
WolfSSL 5.3.0 RSA -02 3/30 14 3/5 30 30/78
OpenSSL 3.0.2 ECDSA -03 4/68 6 4/11 29 68/1061
OpenSSL 3.0.2 RSA -03 9/142 53 11/38 55 142/1296
MbedTLS 3.1.0 ECDH -02 2/37 2 2/5 5 37/87
MbedTLS 3.1.0 RSA -02 2/39 2 4/7 22 39/83
Total 23/369 83 25/68 153 369/ 2697

% Inter-procedural — False Positives in Some Cases
> 142 findings are true positives out of 153 findings (142/153)
> They had 9 false positives (9/153)

% Manual Checking - For intra-procedural, we use automated process, but for
inter-procedural, the developers have to check manually

% Would be problematic if no prior experience or if the library is too big
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Cipherfix

Mitigating Ciphertext Side-Channel
Attacks in Software
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How do we encrypt memory randomly?

CF-Base public secret
data|ll 22 33 44 59 f1 c0 49
mask |00 00 1c 6d 48 d3 £3 0d

secrecy |00 00 00 00 £f ff ff ff
plaintext |11 22 11::22 44
AES

FAST 2.4x

BASE 3.9x

ENHANCED 3.1

[2] Cipherfix: Mitigating Ciphertext Side-Channel Attacks in Software

CF-Fast public secret

X =]

data|ll 22 33 44 59 f1 cO 49
mask |00 00 00 00 48 d3 £3 0d

plaintext |11 22 33 44 11 22 33 44

CF-Enhanced reduces collisions
by guaranteeing that all data
and masks are at least length-w".

Smaller memory accesses will be
modified to access surrounding bytes. 20


https://arxiv.org/abs/2210.13124

Cipherfix process

Dynamic Analysis \

Static variable detection
Find memory allocations
Find memory accesses

A Similar Stage to CipherH

(

Mitigation

Vulnerable
Binary [

e (o)

Structure Analysis \

Basic block detection
Track register usage
Track flag usage

[2] Cipherfix: Mitigating Ciphertext Side-Channel Attacks in Software

« Static instrumentation
» Mask memory accesses

J/

Hardened
Binary

|
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https://arxiv.org/abs/2210.13124

Pros

Apply a random mask to
each memory write.

Binary-Level
Implementation

> Static + Dynamic

> Compilation Not Required

Cons

Assumption: The control flow
does not depend on secrets.

Large Runtime Overhead

CF-Fast/Base is not as secure

as CF-Enhanced.
> Mask Collision
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Readings Questions/Feedback?

% CipherLeaks [USENIX Security 2021]
> Ciphertext (CT) Side Channels Found

% A Systematic Look at Ciphertext Side Channels on AMD SEV-SNP
> Follow-up of CipherLeaks [I[EEE S&P 2022]

% [1] CipherH [USENIX Security 2023]
> Automated CT Side-Channel Detection

% [2] Cipherfix [USENIX Security 2023]
> Automated CT Side-Channel Mitigation
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