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Abstract
Trusted execution environments (TEEs) provide an envi-

ronment for running workloads in the cloud without having to
trust cloud service providers, by offering additional hardware-
assisted security guarantees. However, main memory encryp-
tion as a key mechanism to protect against system-level at-
tackers trying to read the TEE’s content and physical, off-chip
attackers, is insufficient. The recent Cipherleaks attacks infer
secret data from TEE-protected implementations by analyzing
ciphertext patterns exhibited due to deterministic memory en-
cryption. The underlying vulnerability, dubbed the ciphertext
side-channel, is neither protected by state-of-the-art counter-
measures like constant-time code nor by hardware fixes.

Thus, in this paper, we present a software-based, drop-in
solution that can harden existing binaries such that they can
be safely executed under TEEs vulnerable to ciphertext side-
channels, without requiring recompilation. We combine taint
tracking with both static and dynamic binary instrumentation
to find sensitive memory locations, and mitigate the leakage
by masking secret data before it gets written to memory. This
way, although the memory encryption remains determinis-
tic, we destroy any secret-dependent patterns in encrypted
memory. We show that our proof-of-concept implementation
protects various constant-time implementations against ci-
phertext side-channels with reasonable overhead.

1 Introduction

The current trend for data processing and provisioning of
infrastructure heads towards cloud computing, with many co-
located clients sharing the same physical hardware instead
of working in isolated self-hosted environments. To protect
different clients from each other, as well as the hypervisor
from the clients, virtual machines (VMs) are used to provide
isolation. However, especially when processing sensitive data,
users may also want isolation from the hypervisor for data
privacy or regulative reasons. This kind of isolation can be

∗These authors contributed equally to this work.

provided by trusted execution environments (TEEs), which
model the hypervisor as an untrusted party. To achieve this
kind of isolation, TEEs use a combination of additional access
rights and cryptography to prevent the hypervisor, or more
general, any privileged attacker, from reading the content of
the TEE or interfering with its execution state.

Nevertheless, sharing the same hardware leads to traces
in shared resources like caches which in turn provides an at-
tack surface for timing or microarchitectural side-channels [6,
10, 28, 34, 40]. A widely used countermeasure against these
side-channels is constant-time code that is data oblivious, i.e.,
does not access memory or decide for branch targets based
on secrets [1, 52]. To support developers, there are various
mostly automated constant-time analysis tools that observe
different properties of software traces for finding microarchi-
tectural or timing leakage that could lead to exploitable side-
channels [1, 17, 49–52]. As these tools advance the constant-
time properties of code, leakages get smaller and harder to
find, though recent research has shown that even very small
leakages are exploitable, especially when the strong attacker
model of TEEs is considered [5, 36, 47].

The recent Cipherleaks paper [33] and its follow-up [31]
introduced a new attack vector on code running in TEEs,
dubbed the ciphertext side-channel. The core idea is that
some TEEs use deterministic memory encryption, resulting
in a one-to-one mapping between plaintexts and ciphertexts
for a given memory block. As a result, the attacker can cor-
relate changes in the ciphertext to the processed data. For
example, the secret decision bit of a constant-time swap op-
eration can be leaked by observing whether the ciphertext of
the corresponding memory location changes, showing that
state-of-the-art constant-time code is not secure under this
attacker model. Thus, this attack vector demands for new
analysis methods and countermeasures.

In this work, we introduce an analysis technique to miti-
gate ciphertext side-channel leakages in constant-time code. A
naive approach hardening every memory write access would
result in a very high performance overhead. Thus, our tech-
nique uses secret-tracking to pinpoint critical memory ac-
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cesses, that are then safeguarded by randomizing observable
write patterns such that the resulting binary does not leak in-
formation through the ciphertext side-channel. By combining
static and dynamic approaches, we design a solution that cov-
ers all program components and works without recompilation.

1.1 Our Contribution
We present the CIPHERFIX framework, the first general-
purpose drop-in mitigation for ciphertext side-channel-based
leakages. This includes the following contributions:

• We propose an analysis technique based on dynamic taint
analysis to find all secret-containing memory locations in
constant-time binaries that are potentially vulnerable to
the ciphertext side-channel.

• We employ dynamic binary analysis to locate stack vari-
ables and enable context-aware tracking of heap alloca-
tions, in order to support robust static instrumentation.

• We develop a mitigation technique, based on static binary
instrumentation, that hardens the software binary across
library boundaries without requiring recompilation and
that provides three different security levels.

• We evaluate our proof-of-concept implementation of CI-
PHERFIX regarding performance and security on various
primitives from four widely-used cryptographic libraries
and discuss the effects of different mitigation approaches.

Our source code is available at https://github.com/
UzL-ITS/Cipherfix.

Outline. After providing background in Section 2, we give
an overview over the design of CIPHERFIX in Section 3. In
Section 4, we present our dynamic analysis, which we use
to build the static mitigation as described in Section 5. We
evaluate the performance and security of our mitigation in
Section 6. Finally, in Section 7, we discuss design decisions
of CIPHERFIX and point out angles for future work.

2 Background

2.1 Secure Encrypted Virtualization
AMD Secure Encrypted Virtualization (SEV) is a trusted
execution environment (TEE) that is designed as a drop-in
solution to protect whole virtual machines. It encrypts the
RAM content of the VM with an encryption key inacces-
sible to the hypervisor [26]. The latest iteration, SEV Se-
cure Nested Paging (SEV-SNP) [2], prevents the hypervisor
from remapping or modifying VM memory, thwarting attacks
like [12,20,32,37,53]. For the memory encryption, SEV uses
AES-128 in the XOR-Encrypt-XOR (XEX) [45] mode of
operation, where a tweak value is XOR-ed before and after

encryption. SEV derives the tweak values from the physi-
cal address of a 16-byte memory block and a random seed
generated at boot time.

2.2 Ciphertext Side-Channel
The ciphertext side-channel was first introduced in [33] and
later generalized to arbitrary memory regions and implemen-
tations in [31]. Both papers extract cryptographic keys from
state-of-the-art constant-time cryptographic implementations
running in SEV-SNP VMs. While the attack vector in [33]
has been fixed on a firmware level [3], the attacks from [31]
remain unaddressed. The core idea is exploiting the deter-
ministic encryption at a fixed memory location, to leak infor-
mation by precisely observing changes in the ciphertext and
correlating them with the (known) executed code.

The authors of [31] introduce two attack variants: The col-
lision and the dictionary attack. Both attacks exploit repeated
write operations to the same memory address. The collision
attack extracts information from observing the same cipher-
text over multiple writes. One common example is the cswap
pattern (Figure 1): A variable is always written, but depending
on a secret decision bit the old or the new value is selected.
While in the former case the deterministic ciphertext remains
unchanged, in the latter case a new value is written, producing
a different ciphertext. Thus, by observing the ciphertext of
the memory location before and after the cswap, the attacker
can immediately infer the secret decision bit. In the dictionary
attack, the attacker does not only rely on collisions, but maps
ciphertexts to (partially) known plaintexts. As the dictionary
attack relies on repeating ciphertexts as well, mitigating the
collision attack also mitigates the dictionary attack.

While the attacks above target values explicitly written to
memory by the application, they can also be used to extract
register values. For this, the authors of [31] exploit that the
operating system running in the SEV-protected VM stores the
user space register values upon context switches on the stack.
This mechanism allows an attacker to extract secrets residing
in registers by forcing context switches and observing the
ciphertexts. However, the authors also describe how to fix this
issue, by randomizing the stack layout.

2.3 Binary Instrumentation
Binary instrumentation allows modifying compiled programs
without access to the source code. This is commonly used to
insert new code that gathers information.

Dynamic binary instrumentation (DBI) gives the oppor-
tunity to include the architectural state by executing the anal-
ysis routines while the program is running. There are nu-
merous DBI frameworks, e.g., Valgrind [39], Intel Pin [35],
DynamoRIO [9] or DynInst [11]. The Intel Pin framework
compiles and inserts analysis instructions at runtime through
an x86 just-in-time (JIT) compiler. The code is processed
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cswap(p, q, b): 
  c = ~(b - 1);   // b = 0 -> c = 00...00
  t = c & (p ^ q);
  p ^= t;
  q ^= t;

(a) Constant-time swap of p and q, depending on bit b.

Ciphertext of p

b before cswap after cswap

0 e4c80f2a e4c80f2a

1 e4c80f2a aa2f2a61

(b) Ciphertext of p, before and after calling cswap.

Figure 1: cswap and resulting ciphertexts for the encrypted
RAM accessible by the attacker. 1a shows the procedure of
a constant-time swap. Depending on the value of a secret
decision bit b, the values p and q are swapped (b= 1), or left
as-is (b= 0). 1b shows the effect on the resulting ciphertext:
If the ciphertext did not change, the attacker can infer that
b= 0; if the ciphertext changed, the attacker learns that b= 1.

in units called basic blocks, which are defined as instruction
sequences that have a single entry and exit point. Through a
number of callbacks, a so-called Pintool specifies the analy-
sis code to be inserted during JIT compilation. The original
instructions and the analysis code are combined such that the
instrumentation is transparent to the analyzed program.

Static binary instrumentation (SBI) results in a modi-
fied standalone binary that is obtained by the use of rewriting
or redirecting techniques. The execution of an instrumented
binary does not depend on an instrumentation framework,
which means that the main overhead comes from the inserted
analysis code [4]. However, static instrumentation struggles
with analyzing indirect branches, shared libraries and dynam-
ically generated code [29, 35]. There are different approaches
for adding analysis code to the binary at specific instrumen-
tation points and then redirecting the control flow, such that
both analysis and original application code are executed in the
right order. To avoid breaking references, the instrumented
code can be put into a separate .instrument section. An
instrumentation point then redirects execution to this section,
either through software breakpoints via the int3 [38] instruc-
tion and a custom signal handler, or through direct jumps via
so-called trampolines [11, 23, 24]. It is possible to combine
multiple approaches to minimize their shortcomings, e.g., by
inserting 5-byte jumps where possible, and falling back to
2-byte jumps or int3 when not enough space is available. An
example of trampoline-based instrumentation is illustrated in
Figure 8 in the appendix. Recent binary rewriting approaches
further optimize the instrumentation through using available
metadata for lifting [54] or symbolization of references [19].

2.4 Dynamic Taint Analysis
Dynamic taint analysis (DTA) tracks the flow of selected in-
formation through a program during code execution. The data
to be tracked is marked as a taint source, and its propagation
is defined through a taint policy. The policy also determines
the taint sinks that can be reached by the data. All instructions
that process secret data are considered for the taint propaga-
tion. Data flow tracking can be done in various granularities,
whereby byte-level tracking is the most commonly used. For
each memory location and register, there is shadow memory
containing the taint label information, so the performance
overhead is directly connected to the granularity. If too much
data is marked as tainted, this is called overtainting; tainting
too little data is referred to as undertainting [4, 27, 46].

A widely-used x86 taint analysis tool providing fast taint
propagation based on Intel Pin is libdft [27]. In order to
also support 64-bit binaries, libdft has been extended for
VUzzer64 [44] and the AngoraFuzzer [14]. The data flow-
based byte-level taint propagation in libdft64 is implemented
through handwritten rules for every instruction class.

3 CIPHERFIX Design

We first give an overview of the generic design of our cipher-
text side-channel countermeasure.

3.1 Attacker Model
We assume an attacker that tries to extract secret information
from a TEE, that is protected with a deterministic block-based
memory encryption with address-dependent tweaks. The at-
tacker knows the exact binary which is executed by the victim,
but cannot access secret data that is stored within the TEE.
They have root access to the machine running the TEE and
are able to read the entire encrypted memory, but cannot de-
crypt or modify it. Furthermore, the attacker can make use of
a controlled channel that allows them to track and interrupt
the code running inside the victim’s TEE. This means that
they can reconstruct the entire control flow of the targeted ap-
plication and annotate it with snapshots of the corresponding
ciphertexts in memory. One instance of such a scenario is a
malicious hypervisor attacking a VM that is protected with
AMD SEV-SNP. Finally, we assume that potential operat-
ing systems running alongside the targeted application inside
the TEE do properly protect register values from ciphertext
side-channels attacks, as discussed in Section 2.2.

3.2 Countermeasure Requirements
Our overall goal is to produce a hardened binary which does
not contain leaking memory writes. The countermeasure
should not only protect the targeted program itself, but all its
dependencies as well, as leakage may span multiple libraries



(e.g., a crypto library calls memcpy in libc), and library de-
velopers are unlikely to widely adopt ciphertext side-channel
countermeasures themselves. Finally, we target application
developers who build code on top of third-party libraries and
who do not have the necessary insight to manually fix leak-
ages in those libraries. Thus, a drop-in solution with little
manual interaction is desirable here.

There are two major approaches to this: One could either
create a compiler extension that rewrites vulnerable memory
accesses at compile time, or modify existing binaries through
SBI. A pure compiler-based solution needs to recompile all
dependencies, which is complex and requires manual inter-
vention. A combination of DBI and SBI can work directly
with the compiled binaries and, given sufficient coverage, ac-
curately identify and harden vulnerable memory writes. For
these reasons, CIPHERFIX aims for a binary instrumentation-
based solution. The trade-off between binary vs. source-based
approaches is further discussed in Section 7.1.

3.3 Protecting Memory Writes
In order to protect an existing binary from being attacked
through a ciphertext side-channel, the content-based patterns
of write accesses to memory have to be obscured. In [31],
the authors propose various approaches for randomizing ob-
served ciphertexts: First, by limiting reuse of memory loca-
tions through using a new address for each memory write;
second, by interleaving data with random nonces; and third,
by applying a random mask when writing data. The first
approach uses the fact that different memory addresses get
different tweak values in the memory encryption, but has a
high overhead when applied outside of well-defined condi-
tions. The second approach requires extensive changes to data
structures, which has many pitfalls and needs to be done by
the compiler. Due to lower overhead and higher practicability,
we thus opt for the last approach, i.e., we add a random mask
whenever an instruction writes secret data to main memory.
We further discuss the different approaches in Section 7.3.

The masking of data takes place before memory writes
and after memory reads. To store the masks belonging to a
particular memory chunk (e.g., a C++ object), we allocate a
mask buffer of the same size, so there is a one-to-one mapping
of data bytes to mask bytes. When writing data, we generate
and store a new mask, XOR it with the plaintext, and store the
masked plaintext; when reading, we read the mask and then
decode the masked plaintext. Note that we need to ensure that
at no point non-encoded secret data is written to memory, so
all decoding must be done in secure locations like registers.

3.4 Tracking Data Secrecy at Runtime
While masking all memory writes provides good protection,
it comes with a high overhead. In fact, only a fraction of all
memory writes relate to secret information: As we assume

11 22 33 44 59 f1 c0 49

public secret

data
00mask

secrecy ff00 00 00 ff ff00 ff

00 1c 6d 48 d3 f3 0d

plaintext 4411 22 33 11 2244 33

(a) CIPHERFIX-BASE

11 22 33 44 59 f1 c0 49

public secret

data
00mask 00 00 00 48 d3 f3 0d

plaintext 4411 22 33 11 2244 33

(b) CIPHERFIX-FAST

Figure 2: CIPHERFIX-BASE stores the secrecy information in
a separate buffer, and uses it to decide whether a given mask
byte should be applied or not. This allows to safely have non-
zero mask bytes behind public data, as they are ignored if the
corresponding secrecy bytes are zero. In contrast, CIPHERFIX-
FAST stores this information directly in the mask buffer, i.e.,
a mask byte is zero iff the corresponding data is public.

that the implementation is constant-time, there is no secret-
dependent control flow, so, for example, return addresses
pushed onto the stack by function calls can be safely written
in clear text. The same is true for the data structures used by
the heap memory allocator to keep track of memory chunks.
Finally, there may be a point where data is no longer consid-
ered secret, e.g., when sending a signature over the network.
We thus aim to find and protect those instructions that actually
deal with secret data. However, this is non-trivial, as there
may be instructions that access both public and secret data,
depending on the context (e.g., from memcpy).

Thus, we need a way to detect at runtime whether a given
memory address should be considered secret, i.e., whether the
data at that address is masked, and whether we should apply a
new mask when writing to said address. We propose two ap-
proaches for storing this secrecy information (Figure 2): In the
first approach, which we denote CIPHERFIX-BASE, we allo-
cate another buffer of the same size as the mask buffer, called
the secrecy buffer. In the second approach, CIPHERFIX-FAST,
we encode this information directly into the mask buffer.

3.4.1 Storing secrecy information separately

In CIPHERFIX-BASE we allocate a buffer that holds the se-
crecy information for each memory location. If a byte is pub-
lic, the corresponding secrecy byte is 0x00; if a byte is secret,
the secrecy byte is 0xff. The secrecy buffer is initialized
on allocation, and may be updated during the lifetime of the
object. This construction allows us to read and update data
without branching, as we can combine the secrecy value S
with the mask M via a bitwise AND (⊗), before applying it to
the data via a bitwise XOR (⊕): When reading, we compute
P = P̂⊕ (M⊗S), so we only decode the stored (potentially
masked) plaintext P̂ if the address is considered secret. For
writing, we always generate and store a new mask, and then
compute P̂ = P⊕ (M⊗ S) for plaintext P. As we make no
assumptions about the mask, this generally functions as a



one-time pad: The mask M is fully random and independent
from the plaintext P, thus P̂ is independent from P as well.

3.4.2 Storing secrecy as zero masks

By separating mask and secrecy information, CIPHERFIX-
BASE can generate uniform masks, yielding a one-time pad
encoding. However, this comes at a cost: First, we get high
memory overhead by allocating the mask and secrecy buffers.
Second, each read is replaced by three reads, namely to the
data, mask and secrecy buffers. To reduce this overhead, we
make an observation: If the data is public, ANDing the mask
and the secrecy value yields zero; if the data is secret, we
use the mask value directly. Thus, for CIPHERFIX-FAST, we
merge the secrecy information and the mask into the mask
buffer, by setting the mask to zero when the data is public,
and to a random non-zero value otherwise.

For writes, we check whether the old mask is zero before
generating a new one, saving a memory write in some cases;
for reads, we directly XOR the mask value, saving a memory
read compared to CIPHERFIX-BASE. Thus, in addition to the
reduced memory overhead, we get a performance improve-
ment due to fewer memory accesses. We discuss the security
implications of this in Section 6.3.

3.4.3 Reducing risk of mask collision

While CIPHERFIX can be used with secret data of any size,
the width of the masks influences the robustness against at-
tackers that observe ciphertexts over longer periods of time.
For example, for a w = 8 bit wide mask, a mask collision
can be expected in as few as

√
2w = 16 writes. To address

this issue, we propose CIPHERFIX-ENHANCED, which, as an
extension of CIPHERFIX-BASE, converts writes with a size
w below a certain threshold to a bigger size w′ that is con-
sidered safe: Instead of updating w bits, we generate a new
mask of size w′ bits and update w′ data bits at once. This
is possible due to architectures like x86 supporting multiple
write sizes from 1 byte to 8 bytes (and even more with vector
instructions). We thus read and decode the existing masked
plaintext P̂′ around the given address, merge it with the new
plaintext P and then re-encode it. A write access protected
with CIPHERFIX-ENHANCED is illustrated in Figure 3.

3.5 Toolchain

The CIPHERFIX framework is a drop-in solution that analyzes
existing binaries with DTA to identify vulnerable code and
then statically instruments the binaries to mitigate the detected
leakages. CIPHERFIX consists of two distinct steps (Figure 4).
In the analysis step, a taint analysis tool detects instructions
and memory locations like stack frames and heap objects, that
touch secret data. In parallel, a structure analysis tool extracts
information about basic blocks and register/flag usage per

11 22 33 44 59 f1 c0 49data
00mask

secrecy ff00 00 00 ff ff00 ff

00 1c 6d 48 d3 f3 0d

11 22 33 44 e0 41 6a 58

00

ff00 00 00 ff ff00 ff

00 1c 6d f1 63 3f 1c

plaintext 4411 22 33 11 2244 33 4411 22 33 11 2244 55

Figure 3: Extended write in CIPHERFIX-ENHANCED. In-
stead of updating only w = 8 data and mask bits at offset
6, CIPHERFIX-ENHANCED extends the write to w′ = 32 bits,
by also updating the mask of the surrounding three bytes,
reducing the probability of a mask collision.

Dynamic Analysis
Static variable detection
Find memory allocations
Find memory accesses

Structure Analysis
Basic block detection
Track register usage
Track flag usage 

Vulnerable
Binary 

Mitigation

Static instrumentation
Mask memory accesses 

Hardened
Binary 

Figure 4: Structure of the CIPHERFIX framework. The vul-
nerable binary is dynamically analyzed and then hardened
through static instrumentation.

instruction to aid the static mitigation. Finally, the mitigation
step uses the analysis results to statically instrument the vul-
nerable binaries, inserting masking code for secret memory
accesses and installing infrastructure for initializing newly
allocated memory. In the following sections, we discuss the
respective steps in more detail.

4 Leakage Localization and Preprocessing

In order to protect read/write operations, we first need to iden-
tify all vulnerable memory locations and the instructions ac-
cessing them. Our static mitigation relies on some additional
structural information, i.e., the offsets of basic blocks and live-
ness of registers and flags. In the following, we describe our
leakage localization technique and the other analysis steps.

4.1 Dynamic Secret Tracking
With the help of DBI and DTA, we can collect information
that is only available at runtime. As constant-time code does
not include secret-dependent control-flow, DTA covers all
paths of the implementation. For the cases of non-constant
control flow in public paths, we use multiple iterations of
the program with different inputs. We further discuss this in
Section 7.2. If an exact analysis is not possible, we stay on the
safe side and avoid undertaining so that in combination with
full path coverage we reliably identify all secret accesses.

Our proof-of-concept implementation is based on libdft64
data flow tracking. When combined with a Boolean taint, we



found that byte-level tainting of memory is fast enough to ana-
lyze complex cryptographic libraries while maintaining a high
accuracy. While that leads to some overtainting (i.e., some
memory locations get protected unnecessarily), we avoid un-
dertainting. We also extended libdft64 by adding support for
many SSE/AVX vector instructions, which are heavily used
in optimized cryptographic code. All in all, we added 4,355
lines of code (LoC) to libdft64 for new instruction support
and 2,269 LoC for our tracking logic.

4.1.1 Taint policy

We offer several venues for specifying taint sources, depend-
ing on the use case: First, if the main application itself can
be easily recompiled (e.g., a custom network program linked
against OpenSSL), the developer can call a special classify
function, which takes a memory address and a size parameter.
The taint analysis Pintool tracks this function and introduces
taint for the corresponding memory when observing a call.
In addition, we support fully automated assigning of taint
sources without recompilation: Many cryptographic imple-
mentations read their private keys from the file system, so by
intercepting the open and read system calls we can detect
accesses to such files and taint the incoming data.

Our policy does not introduce taint sinks in the classical
way; instead, those consist of all traced memory accesses and
information that is needed for the static countermeasure. How-
ever, we offer a declassify function that explicitly marks
data as no longer secret, i.e., all associated taint is deleted. In
addition, functions that transmit data over insecure channels
(e.g., network functions) remove taint as well. Thereby, we
ensure that data that is meant to be publicly available does
not get damaged by remaining secrecy features.

4.1.2 Tracking secret-related instructions

In order to protect memory accesses in our mitigation, we
need to identify all instructions that read or write secret data
at some point of the execution. The analysis distinguishes be-
tween three different cases: For instructions that only process
public data there is no need to apply any ciphertext side-
channel protection, whereas for instructions that only process
private data the content written to memory always gets ran-
domized. Finally, there are instructions that only occasionally
access secrets and thus need to be able to distinguish between
public and secret memory. As the latter may come with a
certain performance overhead, the information about secrecy
of accessed memory should be included in the taint analysis
result used for the static mitigation.

4.2 Identifying Memory Locations

As the taint analysis itself tracks secrets only through “raw”
memory addresses, it misses a lot of context: For example,

there is no distinguishing between heap and stack memory,
and which function a given accessed stack frame belongs to.
However, for a static mitigation, we need certain information
about each object in memory, like where it is allocated and
which offsets need to be protected. There are various kinds of
memory locations, i.e., static variables in the binary itself and
dynamically allocated heap blocks and stack frames, so we
need to distinguish between those cases.

4.2.1 Finding static variables

During the execution of cryptographic code, some instruc-
tions access data that lies within the memory region of the
mapped binary, i.e., static initialized or uninitialized variables.
Since we cannot access source-code level information about
the program, we develop a method to locate these variables
and determine their size, as we aim to only protect those that
contain secret information. These fine-grained memory ob-
jects keep their secrecy status during the whole execution
(i.e., if a variable contains secrets at some point, it is secret
from the beginning until the end of a program run). For the
static variable detection, we implemented a small Pintool with
338 LoC that collects traces of memory accesses in the data
segments, matches these accesses to contiguous blocks in the
binary’s memory region and then produces an output file that
can be parsed by the main taint tracking Pintool.

4.2.2 Heap allocations

Heap allocations are tracked through explicit (de)allocations,
e.g., the malloc, realloc, calloc and free standard li-
brary functions. Similar to the static variables, the secrecy
status of a heap object is kept for its entire lifetime. However,
the heap layout may be different for each execution, so we
cannot rely on fixed addresses to identify a heap object. Gen-
erating a flat list of heap allocations and retrieving the secrecy
information using a counter variable is not useful either, as
this restricts the hardened binary to a single control flow path.
Instead, we use the call stacks of the heap allocations: Apart
from rare cases where allocations are done in a loop, the call
stack of each allocation is unique and thus suitable for iden-
tifying it both during analysis and at runtime. The call stack
of an allocation is determined by keeping track of all calls
and returns during analysis and emitting the current call stack
whenever an allocation function is observed (Figure 5).

As for heap objects the application itself has full control
over their layout and the stored data types may vary depending
on context, we cannot safely make assumptions about relative
offsets within a heap object. Thus, we opted for marking the
entire object as secret whenever a part of it gets tainted. While
this overapproximation may lead to a slightly higher overhead
due to protecting more instructions than strictly necessary,
it reduces complexity and makes the static mitigation more
robust. We also found that in practice the impact is limited, as



call <multiply>11e1:

call <malloc>140b:

1432:

call <sign>1007:

call <malloc>

secret

call <multiply>1211:

call <malloc>140b: public

secret

Call Tree Allocation Call Stacks

1007 140b11e1

1007 140b1211

1007 1432

Figure 5: Call tree and resulting call stacks for three heap
allocations. The call stack is accompanied with secrecy infor-
mation, i.e., whether a secret block was allocated. The offsets
of call instructions that lead to at least one secret allocation
are marked bold and red; the offsets of instructions that only
lead to public allocations are marked green. This information
is directly reused in the instrumentation (see Section 5.2.2).

generally the size of a heap object correlates with the amount
of (private) data stored in it (e.g., big integer objects).

4.2.3 Tracking stack frames

The stack memory area is characterized by rather liberal
(de)allocation and access strategies, which makes separating
individual stack frames difficult and thus complicates tracking
the exact offsets and lifetimes of secret variables. An easy
solution would be marking the entire stack as secret and pro-
tecting all instructions that ever access stack memory, but this
would introduce a lot of unnecessary overhead, since the stack
is mostly used for temporarily storing registers and small lo-
cal variables that often do not contain secret data. Instead,
in order to avoid overtainting and the aforementioned perfor-
mance penalty, we developed a generic stack frame tracking
strategy that allows to keep track of secret data throughout the
program execution by means of stack frame offsets. Contrary
to the heap, the stack usually conforms to fixed patterns built
by the compiler, so we can assume that relative offsets within
a function’s stack frame are valid over multiple executions.

Our proof-of-concept implementation does not rely on
source code or function symbols, but works with any standard-
conforming binary. The stack allocation tracking consists of
identifying function calls, mapping a call target to an actual
function for which a stack frame initialization of the static in-
strumentation is needed and determining its respective stack
frame size, and building a list of secret offsets within that
stack frame.

Most function calls are detected through call/ret-pairs;
in addition, our analysis includes a heuristic for detecting tail
calls, i.e., when a function is exited via a jmp instruction to
another function. Calls to functions in shared libraries present
another challenge, as the application invokes those through
a call to the .plt section, which may in turn jump into the
dynamic runtime linker to resolve the actual function call
target. In order to find the function in the shared library and

not its stub code in the caller’s .plt section, we need to follow
the resolution process in the dynamic linker until we reach
the actual call target. This is done through a state machine
that keeps track of the current linking state and generates a
mapping of .plt offsets to the corresponding functions.

After detecting a function, we proceed with determining
its stack frame size. This is achieved through several means:
First, there may be explicit stack frame allocations through
instructions like push/pop and sub/add, which directly mod-
ify the stack pointer. In addition, the x86-64 ABI permits
functions to freely use a small chunk above the stack pointer
(which usually marks the end of a stack frame), the so-called
red zone. We handle this by updating the stack frame size
whenever we observe an access outside a known stack frame.

4.3 Binary Structure Analysis
Contrary to DBI, where the executed code is recorded and
instrumented at runtime, SBI must apply all changes in an of-
fline manner, without being able to handle unexpected states.
Our proof-of-concept SBI-based mitigation needs further in-
formation besides the DTA results, namely the precise bounds
of all basic blocks and, for each instruction, the usage of regis-
ters and status flags. The latter is necessary since the masking
operations need scratch registers to store intermediate results,
and inadvertently clobber the status flags. While this infor-
mation can be collected through static liveness analysis or
heuristics [19, 54], we decided to employ dynamic analysis
here as well, as we already have the necessary code coverage
from the DTA. This approach marks only registers and flags
that are indeed used, avoiding unnecessary saves/restores and
thus reducing the runtime overhead. We created a special-
ized Pintool with 599 LoC that collects the aforementioned
information and passes it to the SBI tool.

5 Static Mitigation

With the information from the dynamic analysis we can now
statically instrument the affected binaries, hardening them
against ciphertext side-channel attacks. We identify consec-
utive basic block chains (functions), which are then copied
and instrumented at a new section in the binary. The original
code locations are replaced by a number of jumps to their in-
strumented counterparts, following an optimized trampoline-
approach described in Section 2.3. We then modify all vul-
nerable memory accesses to apply masks, such that each of
these memory writes is randomized. The resulting hardened
binaries are self-contained, i.e., they can be executed without
an external instrumentation framework.

5.1 Masking Memory Accesses
After copying all affected basic blocks to a separate section,
we can replace the vulnerable memory accesses by hardened



mov rcx, qword [rbp-0x20]00: ; read encoded (?) data

mov rax, qword [rbp-0x3ffff020]04: ; read mask

and rax, qword [rbp-0x2ffff020]0b: ; AND secrecy value

xor rcx, rax12: ; decode (?) data

shr rcx, 815: ; do actual computation

rdrand rax19: ; generate random mask

jnc 191d: ; retry on failure

mov qword [rbp-0x3ffff020], rax23: ; store new mask

and rax, qword [rbp-0x2ffff020]2a: ; AND secrecy value

xor rcx, rax31: ; encode (?) data

mov qword [rbp-0x20], rcx34: ; store encoded (?) data

Figure 6: Assembly code generated by CIPHERFIX-BASE
for the instruction shr qword [rbp−0x20], 8, that accesses
both public and secret memory. As an in-place shift, it has
to first read and decode the left operand, compute the shift,
and then encode and store the result. The instrumentation
tool identified rax and rcx as scratch registers, which did not
need to be preserved.

instruction sequences. As described in Section 3.4, we mit-
igate the ciphertext side-channel by adding a random mask
to each memory write to a secret location. Some instructions
have read and write accesses (e.g., arithmetic with a memory
operand acting both as source and destination), so they may
need decoding and encoding (Figure 6). String operations
like rep movsq are replaced by an explicit loop that decodes
each word of the source data and re-encodes it for the desti-
nation, as not the entire copied memory block may be secret.
Our proof-of-concept implementation supports protection of
common arithmetic and move instructions, and a number of
vector instructions that occur in cryptographic code.

Each memory block is accompanied by a mask buffer and a
secrecy buffer, which have a constant distance dM resp. dS to
the memory block’s address. Using a constant distance saves
expensive look-ups for finding the appropriate buffers, reduc-
ing the total overhead of the mitigation. For our test setup, we
found that dM = 0x3ffff000 and dS = 0x2ffff000 work
well. These provide sufficient memory space while still fitting
into the signed 32-bit memory displacement immediate which
is supported by x86-64, and avoid penalties like aliasing when
two addresses share too many low bits.

5.1.1 Updating the masks

Apart from initializing the mask and/or secrecy buffers during
setup (see Section 5.2), we need to update the mask values
before every write operation. To ensure that masks do not
have repeating or easily exploitable patterns, we sample them
from a pseudorandom number generator (PRNG). As we
want to keep the overhead low, any such PRNG should have
a small code footprint and require as few registers as possi-
ble, which rules out most classic software-based PRNGs. A
natural choice on x86-64 is the rdrand instruction, which
fills a single general purpose register with random bytes. The

instruction offers cryptographically secure randomness. How-
ever, its security guarantees also lead to a noticeable slow-
down when the instruction is used extensively.

To work around this, we devised two additional PRNGs
for mask generation. The first one, named AES, makes use of
the AES-NI vaesenc instruction to repeatedly apply the first
round of AES to an initially random 16-byte state with a ran-
dom 16-byte round key. The second PRNG is XorShift128+, a
widely-used and fast full-period generator [48], for which we
created a vectorized implementation. In both cases, the new
mask is extracted from the state. For best performance, the
AES PRNG needs two vector registers and the XorShift128+
PRNG needs three. We found that usually enough such regis-
ters are available, and, if not, the overhead for the additional
save/restore is still smaller than calling rdrand. We discuss
the properties of the different PRNGs in Section 6.3.1.

5.1.2 Scratch registers and flags

For some operations, we need additional scratch register space
for storing intermediate results. Since we are restricted to
working with an existing binary, we cannot exclude registers
from being allocated by the compiler and thus have to look
for registers which hold stale values, or save those values in a
secure location. We use the results from the structure analysis
in Section 4.3 to identify suitable registers. To save general
purpose registers, we prefer using SSE vector registers via
the vmovq and vpinsrq instructions, as those are fast and
immune to ciphertext side-channels. In the rare case where
no vector register is available, we store the scratch register’s
original value in memory. To avoid the expensive masking
when writing a secret value to memory, we prioritize registers
that the taint tracking did identify as not holding secret data.

Similar to the registers, our instrumentation may overwrite
status flags through the encoding/decoding instructions. To
save and restore single flags, we use the setcc instruction
family, while for multiple flags we rely on the lahf instruc-
tion, which copies the entire flag state into the ah register.

5.2 Managing Mask and Secrecy Buffers

The instrumented instructions assume that there is a mask
buffer and a secrecy buffer with a constant distance to the
accessed memory address. Thus, for each memory block that
is accessed by such an instruction, we need to allocate a mask
buffer at the corresponding address and initialize it with ran-
dom data, if it contains secret data. This comes with a few
challenges: First, there are several ways of allocating memory,
namely the stack, the heap and static fixed-size arrays in the
binary itself. Then, not all memory blocks in these regions
are considered secret, so their masks and secrecy values need
to be initialized context-aware. In the following, we discuss
strategies for handling the various memory regions.



5.2.1 Stack

The stack is allocated by the operating system at application
start and is used for storing return addresses, register values
and small local variables. The taint analysis produces stack
frame information for each function, which contains the size
of the stack frame and the relative offsets where secret data
is stored. Accordingly, we insert a small code gadget at the
beginning of each function, that prepares its stack frame by
generating a random mask or setting the secrecy value for the
respective offsets. The mask and secrecy buffers for the stack
are allocated on startup; the constant buffer distances work
well for the stack, as it usually resides within a well-known
memory range and does not grow beyond a few megabytes.

5.2.2 Heap

For most Linux applications, the heap is a contiguous memory
region that is managed by the standard library’s allocator. The
heap starts at a random base address, and is resized via the
brk system call. The user then typically allocates memory by
calling malloc or realloc, which ensure that enough heap
memory is available and return an appropriate memory range.

To guarantee that there are mask and secrecy buffers back-
ing the entire heap region, we instrument the brk system
call and (de)allocate corresponding memory each time the
heap grows or shrinks. The buffers are initially set to zero.
We also replace the malloc and realloc calls by custom
code, which ensures that the corresponding mask and secrecy
buffers are correctly initialized depending on whether the al-
located memory should contain secret data or not. To identify
the particular heap allocation, we resort to tracking its call
stack, as explained in Section 4.2.2. We achieve this through
an allocation tracker, which is an integer residing at a fixed
memory address, and which is updated on each call instruc-
tion that is part of a call stack that leads to a heap allocation.
Before each call, we left-shift the tracker variable, and add
1 if the call is part of a call stack that leads to allocation of a
secret heap memory object. With our allocation tracker, we
can reliably handle heap allocations even if we encounter
non-constant control flow or when a function is reused in a
different context. An example is illustrated in Figure 7.

Contrary to malloc, the realloc function allows resizing
or reallocating an existing heap memory object, while keeping
its contents. As the new object may have a different secrecy
setting than the old one, we have to ensure that the data is
correctly decoded, copied and encoded. However, realloc
itself is not aware of the masks and secrecy information, so
to avoid losing information, our realloc handler copies the
old data, mask and secrecy buffers to a separate memory
location, runs realloc, and then restores the contents at the
new location with the appropriate encoding.

If the instrumented program allocates lots of memory, the
constant distance to the mask and secrecy buffers may be
insufficient, as the heap could at some point overlap with

Allocation Tracker
0...0001

0...0011

0...0111

0...0010

0...0101

0...0011

Call Tree

call <multiply>11e1:

call <malloc>140b:

1432:

call <sign>1007:

call <malloc>

secret

call <multiply>1211:

call <malloc>140b: public

secret

Figure 7: Allocation tracking for the example from Fig-
ure 5. Each time a call instruction is executed, the allocation
tracker is shifted to the left, and 1 is added when this particular
call is part of a call tree leading to an allocation of a secret
heap object. On return, the tracker is shifted back to the right.
The malloc/realloc handler code then checks whether the
allocation tracker has the value 2n−1, i.e., whether it is all
ones starting with the least significant bit. In this case, the
new heap object is considered secret; else, it is public.

its mask buffers. In this case, one could replace the affected
malloc calls by a custom allocator, that is injected into the
instrumentation and operates outside the usual heap area. Note
that this still limits the maximum memory object size to the
distance between a memory address and its buffers, i.e., at
most two gigabytes, if the instrumentation should do without
another scratch register for computing larger offsets.

5.2.3 Static arrays

Finally, the binary may have a number of static global vari-
ables, which reside in its data sections. We embed the infor-
mation about static memory objects containing secret data
in the instrumented binary. On startup, an initialization rou-
tine walks through this list and allocates and initializes the
respective mask and secrecy buffers.

5.3 Implementation
We created a proof-of-concept implementation of our mitiga-
tion in C#, which takes the dynamic analysis results and the
target program and produces statically instrumented binaries.
The instrumentation tool has 7,346 LoC, which includes a
specifically developed library for patching ELF64 files.

5.3.1 Instruction instrumentation

The instrumentation tool loads and parses the outputs from the
taint tracking and the structure analysis tools, and decodes the
target ELF files. Then, for each individual binary, the instru-
mentation is applied: First, we look for contiguous basic block
chains and identify appropriate code locations for inserting
jumps to instrumentation code. Next, we replace each mem-
ory accessing instruction marked by the DTA by a masked
version. After handling all basic blocks, we obtain a list of



unmodified and instrumented instructions, grouped by their
respective basic blocks. In a final step, we re-assemble those
instructions and write them into a newly allocated ELF sec-
tion, while patching the basic blocks in the old .text section
to jump to the instrumentation code.

5.3.2 Initialization

After the instruction-level instrumentation is done, we need to
install infrastructure for handling the int3 signals and some
initialization code that allocates mask and secrecy buffers. For
this, we created an instrumentation header, which consists
of 966 lines of assembly code interleaved with some static
constants which are later replaced by the instrumentation tool.
The instrumentation header hooks into the constructor of
each binary, which is executed by the dynamic linker when
a binary is loaded into memory. This way, we ensure that
our initialization runs before all other application code. The
initializer of the main program sets up the signal handler, and
determines the stack size and base address. Then, it allocates
mask and secrecy buffers for the stack. The initializers of the
main program and of all dynamic libraries iterate through the
list of secret static variables deposited by the instrumentation
tool, and allocate and initialize mask and secrecy buffers.

6 Evaluation

We now evaluate the performance and security of the different
CIPHERFIX variants. We analyze whether there is remaining
leakage with regard to collision attacks, and discuss trade-offs
between security and performance.

6.1 Experimental Setup
We evaluate our proof-of-concept implementation of CIPHER-
FIX against a number of typical algorithms which are used
in widespread protocols like TLS or SSH. To observe varia-
tions caused by different implementations of the same prim-
itive, we spread our analysis over several common libraries,
that are OpenSSL 3.0.2, WolfSSL 5.3.0, mbedTLS 3.3.0 and
libsodium 1.0.18. As primitives which were shown to be
vulnerable to ciphertext side-channel attacks [31], we picked
EdDSA (Ed25519) and ECDSA (secp256r1), and verified that
these are still vulnerable in the given implementations. [33]
demonstrated an attack against the RSA signature scheme,
which we included as well. We also added ECDH (X25519) as
a primitive that is widely used in cryptographic protocols and
likely to be vulnerable as well. As additional benchmarks, we
included the symmetric primitives AES-GCM and ChaCha20-
Poly1305, the hash function SHA-512, and finally the Base64
decoding function as a non-cryptographic algorithm, that is
nevertheless often present in cryptographic applications.

The analysis, instrumentation and all measurements were
performed on an AMD EPYC 7763 CPU with Zen3 mi-

croarchitecture, which supports SEV-SNP. All libraries were
compiled with GCC 9.4.0 on Ubuntu 20.04.4 LTS. MbedTLS
was linked statically, while the other libraries were linked as
shared libraries.

6.2 Performance
To get the information necessary for the mitigation, we ran
the dynamic analysis as described in Section 4. We found
that we achieve sufficient coverage by executing each target
10 times with random inputs in a loop, except for WolfSSL
RSA, which required 20 due to high control flow variation
introduced by blinding. In all cases, the time required for dy-
namic analysis was less than 5 minutes, with around 80% of
the time taken by the register tracking in the structure anal-
ysis, and most of the remaining time by the taint tracking.
The most expensive target, mbedTLS ECDH, required track-
ing 170,532,009 executed instructions (5,167 unique). While
the register tracking could be scrapped in favor of a faster but
potentially less precise static liveness analysis (as done by
several binary rewriting tools), note that these steps are exe-
cuted offline and only need to be done once to protect a binary,
so we deem an analysis time of a few minutes acceptable.

6.2.1 Runtime overhead

To measure the runtime overhead of the different CIPHERFIX
variants, we executed each target with 1,000 random inputs,
averaged the measured execution times, and computed the
relative overhead compared to the original implementation.
An overview of the resulting overall slowdowns of the differ-
ent CIPHERFIX variants is given in Table 2. As expected,
CIPHERFIX-FAST has the lowest overhead, CIPHERFIX-
ENHANCED has the highest, and CIPHERFIX-BASE lies in
between. The slowdown of CIPHERFIX-BASE compared
to CIPHERFIX-FAST is caused by the additional read for
each protected memory access; in most cases, CIPHERFIX-
ENHANCED performs quite similar to CIPHERFIX-BASE, ex-
cept for the symmetric primitives and utility functions which
have a vastly higher number of 1-byte writes.

Moreover, generating masks with rdrand introduces a
much higher overhead than with one of the other PRNGs.
This is caused by the continuous reseeding of the underly-
ing shared hardware PRNG, in combination with rdrand

not being designed for sampling random numbers at a high
frequency. The smallest overhead is achieved with the AES

PRNG, as it consists of a single vaesenc instruction and
only needs two vector registers. A detailed overview over all
runtime overhead measurements is given in Table 1.

6.2.2 Code properties contributing to overhead

We identified several major factors that determine the over-
head when hardening a particular implementation with CI-
PHERFIX. First of all, code that heavily relies on memory



Table 1: Runtime overhead of instrumented binaries. For each CIPHERFIX variant and PRNG, we measured the execution time in
milliseconds (ms) of 1,000 executions of each primitive and the corresponding overhead factor to the original implementation.
The target AES refers to AES-GCM, the target CC20 to ChaCha20-Poly1305. The last row shows the geometric mean of the
respective overheads for each CIPHERFIX variant.

Target orig
CF-FAST CF-BASE CF-ENHANCED

AES XS+ rdrand AES XS+ rdrand AES XS+ rdrand

lib
so

di
um

EdDSA time 29 159 166 1,159 189 248 1,133 214 245 1,134
factor - 5.5x 5.7x 40.0x 6.5x 8.6x 39.1x 7.4x 8.4x 39.1x

SHA512 time 9 14 20 196 21 22 194 22 25 194
factor - 1.6x 2.2x 21.8x 2.3x 2.4x 21.6x 2.4x 2.8x 21.6x

m
be

dT
LS AES time 104 297 377 2,849 364 371 2,576 1,204 1,213 2,683

factor - 2.9x 3.6x 27.4x 3.5x 3.6x 24.8x 11.6x 11.7x 25.8x

Base64 time 10 12 13 58 16 16 45 28 30 46
factor - 1.2x 1.3x 5.8x 1.6x 1.6x 4.5x 2.8x 3.0x 4.6x

CC20 time 144 324 332 2,945 542 570 2,952 1,785 1,721 3,059
factor - 2.3x 2.3x 20.5x 3.8x 4.0x 20.5x 12.4x 12.0x 21.2x

ECDH time 1,855 3,674 3,778 8,559 9,425 9,440 14,419 9,926 10,208 14,827
factor - 2.0x 2.0x 4.6x 5.1x 5.1x 7.8x 5.4x 5.5x 8.0x

ECDSA time 472 3,367 3,558 8,920 3,912 3,929 8,297 4,265 4,301 8,374
factor - 7.1x 7.5x 18.9x 8.3x 8.3x 17.6x 9.0x 9.1x 17.7x

RSA time 896 3,276 3,777 28,886 5,436 5,339 27,148 5,527 5,663 27,208
factor - 3.7x 4.2x 32.2x 6.1x 6.0x 30.3x 6.2x 6.3x 30.4x

O
pe

nS
S

L ECDH time 172 541 550 2,408 664 657 2,323 708 807 2,369
factor - 3.1x 3.2x 14.0x 3.9x 3.8x 13.5x 4.1x 4.7x 13.8x

ECDSA time 516 939 1,121 7,181 1,795 1,855 9,980 2,051 1,973 10,072
factor - 1.8x 2.2x 13.9x 3.5x 3.6x 19.3x 4.0x 3.8x 19.2x

W
ol

fS
S

L AES time 147 268 269 793 400 403 880 397 402 879
factor - 1.8x 1.8x 5.4x 2.7x 2.7x 6.0x 2.7x 2.7x 6.0x

CC20 time 167 428 432 2,787 596 630 2,802 1,157 1,242 2,874
factor - 2.6x 2.6x 16.7x 3.6x 3.8x 16.8x 6.9x 7.4x 17.2x

ECDH time 146 258 437 4,217 544 565 4,070 541 558 4,070
factor - 1.8x 3.0x 28.9x 3.7x 3.9x 27.9x 3.7x 3.8x 27.9x

ECDSA time 1,092 1,704 1,954 15,765 3,945 3,834 18,631 3,883 3,897 19,654
factor - 1.6x 1.8x 14.4x 3.6x 3.5x 17.1x 3.6x 3.6x 17.1x

EdDSA time 60 124 156 1,897 279 265 1,759 280 290 1,761
factor - 2.1x 2.6x 31.6x 4.7x 4.4x 29.3x 4.7x 4.8x 29.4x

RSA time 133 248 334 2,901 588 605 2,863 602 651 2,870
factor - 1.9x 2.5x 21.8x 4.4x 4.5x 21.5x 4.5x 4.9x 21.6x

average factor - 2.4x 2.7x 16.8x 3.9x 4.0x 17.3x 5.1x 5.3x 17.5x



Table 2: Performance measurements for the different CIPHER-
FIX variants and PRNGs. Each entry shows the geometric
mean of the runtime overhead over all targets compared to
the original, uninstrumented binary.

AES XS+ rdrand

FAST 2.4x 2.7x 16.8x
BASE 3.9x 4.0x 17.3x
ENHANCED 5.1x 5.3x 17.5x

accesses for dealing with secret information is clearly more
susceptible to overhead introduced by instrumentation than
code that performs most computations in registers. This be-
comes apparent when comparing the RSA implementations
of mbedTLS and WolfSSL: Though for WolfSSL a higher per-
centage of the memory accesses is instrumented (78% writes
vs. 65%), mbedTLS has an order of magnitude more memory
operations than WolfSSL and thus gets a higher overhead.
Similarly, some instructions are more expensive than others
in terms of ciphertext side-channel hardening: For example,
arithmetic directly applied to memory operands requires a
full decoding and re-encoding cycle (cf. Figure 6), which is
slow due to direct data dependencies between the steps. We
observed this for mbedTLS ECDSA, which gets a much higher
overhead (7.1x vs. 1.6x) than the comparable implementation
in WolfSSL, mostly due to expensive adds in a hot code path.

Finally, the overhead is influenced by the general structure
of the instrumented code, and the optimization capabilities
of the binary rewriting framework. A framework operating
at basic block level could perform better than our proof-of-
concept implementation, which instruments each instruction
in isolation to ease leakage analysis and debugging. For ex-
ample, scratch registers may not need to be restored between
usages, and instructions could be reordered to avoid saving
status flags. This is particularly relevant as the compiler tends
to interleave arithmetic instructions that have direct status flag
dependencies with memory accesses (e.g., add-mov-adc).

A detailed overview over the observed memory accesses is
given in Table 3 in Appendix B.

6.3 Security
In the following, we illustrate reasons for remaining colli-
sions after applying the different variations of CIPHERFIX
and evaluate its practical security.

6.3.1 Leakage sources

As we assume full path coverage of the implementation (see
Section 7.2) and our taint tracking does not undertaint, all
vulnerable instructions are identified and protected. Thus,
the only remaining source of leakage are collisions of the
masks or the masked plaintexts: With CIPHERFIX-BASE,

the secrecy information is stored in a separate buffer. If the
mask M is fully random and independent from the plain-
text P, the masked plaintext P̂ becomes independent from P
as well. However, the attacker can access both ciphertexts
CP̂ = Encpt(P̂) and CM = Encmask(M), so they are able to de-
tect whether P̂ or M appear repeatedly. If the data memory
block is rarely changed and the number of protected bits is
sufficiently low, a mask collision is possible and may leak
information about the plaintext. A similar issue can occur
with CIPHERFIX-FAST, which stores the secrecy information
directly in the mask buffer by setting the mask to zero for
public values. We can assume that the attacker knows the
ciphertext C0 = Encpt(0) of an unmasked zeroed data block,
as memory usually is zero initialized. If they observe C0
again after a write of P with mask M 6= 0, they can use that
C0 = Encpt(P⊕M) and thus P = M to infer that P 6= 0. These
leakages through masks or masked plaintexts are mostly rele-
vant for 1-byte writes to variables in memory blocks with little
other activity. With CIPHERFIX-ENHANCED, we enforce a
minimum width of masked data, which further reduces the
probability of mask collisions and other non-unique writes at
the cost of a slightly higher overhead.

Another factor is the quality of the PRNG used for
mask generation, for which we identified two primary cri-
teria. First, the pseudorandomness should not correlate with
the plaintexts: For example, simply incrementing the masks
may lead to many collisions of the masked plaintexts in al-
gorithms that use linear arithmetic. Second, deterministic
PRNGs should have a sufficient cycle length, to keep an at-
tacker from reliably triggering the same mask at the same
address during the application’s runtime. Rdrand offers the
fastest available solution for cryptographically secure pseu-
dorandomness. However, given the subsequent memory en-
cryption, the used PRNG does not necessarily need to be
cryptographic, as long as it satisfies the above criteria and
thus does not tend to generate repeating masks or masked
plaintexts. XorShift128+ has a cycle length of 2128−1 and
passes all BigCrush tests of the TestU01 suite [30], though it
has some weaknesses [22]. Our custom one-round AES PRNG
passes all BigCrush tests and seems to perform well in prac-
tice, but does not have a guaranteed cycle length. We leave
this analysis to future work.

6.3.2 Observed collisions

To analyze potentially remaining ciphertext collisions, we
extended the taint tracking to export a full trace of all memory
writes alongside corresponding secrecy information. We then
created a Pintool that generates a trace of all memory writes
for an instrumented binary. As each original memory access
may be replaced by multiple memory accesses during instru-
mentation, we inserted special marker instructions that denote
the beginning and end of a particular instrumented memory
access sequence. With this information, we align the traces



using a custom evaluation tool, and proceed with checking
whether there are repeated writes of the same secret value to
the same address. As the dictionary attack builds upon the
collision attack, finding no collisions implies security against
all known ciphertext side-channel attack primitives. We found
that using the same amount of test cases for our evaluation
as for the initial taint tracking was sufficient, as due to the
size and complexity of the evaluated targets systematic issues
already appear during the first few executions.

We were able to confirm the suspected remaining leakages
with our evaluation. For example, there are several thousand
collisions for CIPHERFIX-BASE and CIPHERFIX-FAST with
the mbedTLS AES-GCM target, which encrypts 16 KiB of
plaintext using AES-NI and has 812,120 1-byte writes, which
is 66% of its total writes. The observed collisions both in-
cluded repeating masks and cases where applying a new mask
to a new plaintext led to the same result. All colliding 1-byte
writes were related to sequential writing into an array, e.g.,
when data is copied or buffers are cleared between differ-
ent processing steps. The corresponding collisions had high
temporal locality and the respective 16-byte blocks only ap-
peared exactly two times, so while there is some leakage, its
exploitability is limited. With CIPHERFIX-ENHANCED, all
collisions disappeared. All observed collisions in the analyzed
targets were for 1-byte writes, which suggests that restrict-
ing CIPHERFIX-ENHANCED to 1-byte writes (and possibly
2-byte writes) is sufficient. We encountered almost no 2-byte
writes in our experiments. We further discuss the security
impact of the collisions in CIPHERFIX-FAST in Section 6.4.

We did not see any relevant difference between the particu-
lar PRNGs: The number of collisions is roughly equal, and
there was no 32-bit mask collision even for the targets with
the highest number of instrumented writes. This suggests that
they are all generally suited for generating masks for the eval-
uated primitives within the given constraints. Nevertheless,
the decision for a particular PRNG should not be made easily,
as is discussed in the next section.

6.4 Balancing Security and Performance

Each variant and PRNG comes with its own advantages and
drawbacks. We point out some guidelines for choosing the
best composition for a given use case.

6.4.1 Properties of the implementation

To determine the most suitable variant of CIPHERFIX, one
should look at the properties of the given implementation.
For example, symmetric primitives, which showed a huge
amount of 1-byte writes in our evaluation, do not necessarily
need to be hardened against ciphertext side-channels. With
hardware extensions like AES-NI and CLMUL, we found that
leakage is mostly restricted to copying of inputs and outputs
between encryption rounds. Thus, if the same buffer is reused

for multiple blocks, the attacker may occasionally learn that a
particular plaintext block or parts of it repeat. Whether this is
tolerable depends on the specific use case.

6.4.2 Choosing a CIPHERFIX variant

While CIPHERFIX-FAST has the least performance overhead,
it has the additional risk of leaking whether the mask and
the plaintext are equal, as described in Section 6.3.1. While
we did not observe that particular scenario, we saw several
1-byte collisions in WolfSSL’s X25519 cswap implementa-
tion. This suggests that CIPHERFIX-FAST and CIPHERFIX-
BASE are dangerous even for algorithms with a very small
number of 1-byte writes. Future work may develop a further
variant that uses a merged mask/secrecy buffer but widens
small writes to 4 bytes, to get both the performance bene-
fit of CIPHERFIX-FAST and the protection of CIPHERFIX-
ENHANCED. For deciding between CIPHERFIX-BASE and
CIPHERFIX-ENHANCED, we generally recommend choosing
the latter due to the better protection of 1-byte writes. While
we observed a higher performance overhead, the difference
was almost exclusively caused by the symmetric primitives
which do a lot of 1-byte operations. Excluding the symmetric
implementations from the geometric mean yields an over-
head of 5.2x for CIPHERFIX-ENHANCED versus 4.9x for
CIPHERFIX-BASE and the XorShift128+ PRNG.

6.4.3 Choosing a PRNG

Despite the high security guarantees, the considerable perfor-
mance overhead of CIPHERFIX with rdrand suggests that
this PRNG is not suitable for use with primitives that have a
lot of vulnerable memory accesses. On the other hand, our
custom AES PRNG is very fast and did not exhibit more colli-
sions than the other PRNGs in our experiments, but is not well
examined in terms of statistical properties and cycle length.
Thus, as a compromise, we suggest using a fast PRNG that is
well-analyzed and meets the criteria outlined in Section 6.3.1,
such as XorShift128+, which only introduced a slightly higher
overhead than AES. As a workaround for an insufficient cy-
cle length or concerns that a high number of samples may
expose weaknesses, the PRNG may be periodically reseeded
with fresh entropy via instructions like rdseed, e.g., each
time before the hardened primitive is executed. Finally, a
production-level implementation of CIPHERFIX may com-
bine different PRNGs, like a fast one for hot code paths and
rdrand elsewhere.

6.4.4 Practical impact of overhead

Note that we focused our performance analysis on isolated
cryptographic primitives, which does not reflect their typical
use case. Instead, they are usually embedded into a higher-
level application like a network protocol, which limits the



practical influence of a moderate overhead in a specific com-
ponent. For example, in TLS, only the handshake is subject to
asymmetric cryptography that needs to be hardened against
ciphertext side-channel attacks. The predominant part of the
protocol’s runtime, the symmetric encryption and transmis-
sion of the payload, may not need as much costly protection.

7 Discussion

We conclude our study with a discussion of some design
decisions of CIPHERFIX, and point out possible angles for
future work which may improve accuracy and performance.

7.1 Source Code vs. Binary Instrumentation
Instead of instrumenting binaries, the implementations could
be hardened during compilation: As the compiler can freely
adapt the code layout and is not restricted during register allo-
cation, it can generate more efficient binaries. However, this
comes with some obstacles. First, a source-based approach
would need to be able to deal with handwritten assembly code,
which is abundant in highly-optimized libraries like OpenSSL
or libc. This assembly code is opaque to the compiler, but can
be handled transparently by binary instrumentation.

A second obstacle is a leakage analysis that spans multiple
libraries. At the beginning, the application developer would
need to checkout the source code of all relevant dependencies,
such that they can be recompiled with the appropriate protec-
tion. The compiler can then conduct a static data flow analysis
that identifies all program points that may come in contact
with secret data [8]. As we found during our experiments, a
particular library may call a function in another library with
secret parameters, so conducting a leakage analysis on a li-
brary in isolation is insufficient. This leaves two options: First,
the leakage analysis can choose to protect the parameters of
the entire outward facing API of a given library, such that all
incoming function calls are assumed as passing secret data.
However, this significant overapproximation is likely to neu-
tralize the performance benefit of a compiler-based solution.
Thus, as a second option, we may try to conduct the leakage
analysis over all code bases at once. This is hindered by the
fact that static analysis of a large code base like OpenSSL
or libc is already difficult, and even more so when looking
at several such code bases with different build systems and
structure. At the very least, it would require lots of manual
tuning by the application developer.

An alternative to binary rewriting that is worth exploring for
a production-level implementation of CIPHERFIX is a hybrid
approach combining dynamic analysis and compiler-based
instrumentation: First, a dynamic analysis is conducted over
all libraries as described in Section 4. However, the results
are then not used to instrument the binaries using SBI, but
are sent back to the compiler. A suitable level for this is the
intermediate representation (IR) of LLVM: The IR can be

executed through a VM, enabling dynamic analysis. At the
same time, it is abstract enough to still allow compiler opti-
mizations between inserting the masking code and generating
ELF binaries. Applying the analysis and instrumentation to IR
also avoids the practical problems of dealing with large code
bases, as those can be normally translated and linked into IR
files. However, contrary to binary rewriting, this method still
requires some effort from the library developer, and cannot
straightforwardly deal with handwritten assembly code, that
would need to be lifted to an equivalent IR representation first.
Finally, advanced binary rewriting engines that generate sym-
bolized reassemblable disassembly already offer performance
similar to the compiler.

7.2 Analysis Coverage

Independent of the approach on instrumentation, we need to
find all loads and stores that ever deal with protected data.
Missing instructions during the secrecy analysis may lead
to loading or storing invalid data, which can in turn cause
functional incorrectness or crashes of the hardened binary. In
constant-time implementations, there are no secret-dependent
branches and memory accesses. However, it is useful to sup-
port some secret-independent control flow variation, e.g., for
error handling or processing messages of varying length. As
our analysis is dynamic, we have to rely on our inputs gen-
erating sufficient coverage, that is covering every possible
execution path between classification and declassification of
secrets. The secret tracking must not underapproximate (un-
dertaint), as this may lead to missing leakages or instability
due to instructions that cannot handle masked data. Overap-
proximation (overtainting) is acceptable to speed up leakage
analysis, but may lead to unnecessary instrumentation and
thus a higher runtime overhead. We found that few random
inputs were sufficient to get the coverage needed for our anal-
ysis; however, one could also employ techniques like fuzzing
to maximize the chances of finding all relevant code paths,
especially when applying CIPHERFIX to non constant-time
code. Fuzzing and a larger test case body would only impact
the overhead of the offline analysis step.

Another approach for achieving full coverage is using a
purely static analysis, which may be conducted either on bi-
naries or as part of a pure compiler-based solution. How-
ever, even for the smaller exploitable primitives, we measured
several tens of millions of executed instructions for a single
dynamic analysis iteration, which poses a huge amount of
instructions to analyze for a static analysis. To make this
feasible, the static analysis would need to make some approx-
imations, which would in turn increase the runtime overhead
of the mitigation.



7.3 Alternatives to Masking

Our masking approach ensures that the written values are in-
dependent from the actual plaintexts. However, as mentioned
in [31], instead of randomizing the values written to the same
address, it is also possible to randomize the address itself. This
approach would need a separate memory area for secret data.
The area can, for example, be implemented as a queue with
used and free space that is updated with each write. The origi-
nal memory locations then point to the corresponding block
in the secure memory area. The resulting memory overhead
becomes a security parameter: The bigger the secure memory
area, the lower the risk of collisions. In early experiments,
we found that the instrumentation for this approach would
have significantly higher overhead due to the management
of the queue. It is better suited for narrow cases where code
that deals with a well-defined data structure is hardened man-
ually, e.g., the register save/restore during a kernel context
switch. In our setting, we do not see an advantage of using
randomized addresses instead of masking.

In a compiler-based setting, it is also possible to securely
store data by interleaving it with random nonces. For example,
each 16-byte block in AMD SEV can be split into two 8-byte
halves, where the first half receives the payload, while the
second half is treated as a nonce that is incremented on each
write. Note that this has to be done in a single step, so the
entire block may need to be buffered in a vector register, that
is then written at once. This method guarantees that there are
no collisions for 264 writes to a given block, and has a higher
locality of memory accesses, as no mask buffer is necessary.
In addition, reads are almost as fast as for unprotected data, as
no decoding is necessary. However, it has a high implementa-
tion complexity, as the compiler has to detect code that uses
pointers to iterate over arrays and adjust such loops accord-
ingly. Finally, the compiler needs to install logic for detecting
unaligned accesses that may span multiple payload blocks,
introducing a different kind of overhead. Nevertheless, inter-
leaving may be worth exploring for programming languages
that abstract away the memory layout of data structures and
do not allow raw pointers.

7.4 Compatibility to CFI

Along with constant-time code and ciphertext side-channel
mitigations, there are further mechanisms for ensuring secure
code execution, an important one being control flow integrity
(CFI) protection. For example, Intel and AMD provide the
so-called control flow enforcement technology (CET), that de-
tects unwanted control flow modifications through a shadow
stack and by enforcing that indirect jumps and calls point to
special endbr64 instructions. Besides inserting direct jumps
to the instrumentation section, which may be avoided by using
a more sophisticated binary rewriting framework, our cipher-
text side-channel mitigation does not modify the control flow.

Indirect branches still point to endbr64 instructions, and the
call stack is left untouched. Thus, CIPHERFIX is compatible
with CFI mechanisms like CET.

8 Related Work

Dynamic taint analysis is a software analysis technique that
is implemented in a variety of tools [15, 16, 18, 25, 27, 42].
Data flow based information tracking can support finding
vulnerabilities in source or binary code. On the one hand,
it can be used to increase the branch coverage of fuzzers
like the AngoraFuzzer [14] or VUzzer [44] by checking on
which bytes of secret inputs branching decisions are based.
On the other hand, taint analysis can help to keep sensitive
data always encrypted in memory through data protection
tools like DynPTA [41] which is a compiler-based approach.

Automated analysis of side-channels in binaries focuses
on finding non-constant-time behavior by analyzing leakages
that can be modeled in different ways. There is a number
of tools, which use DBI to observe leakages at runtime [51,
52] or detect secret-dependent accesses through symbolic
execution [17, 49, 50]. Those existing tools for finding side-
channel leakages do not cover the ciphertext side-channel
attack vector, as it is not originated from a deviation in the
behavior of memory accesses, but rather from the content of
write accesses which affects the ciphertexts. However, they
can be used to initially verify whether the code is constant-
time, as non-constant-time code is even easier to attack than
through the ciphertext side-channel.

Memory protection mechanisms implement the protec-
tion of sensitive data in memory. Data space randomization
(DSR) [7] randomizes the representation of data that is stored
in memory, with the aim of thwarting control flow hijacking
attacks. This is done by instrumenting the code so that masks
are added to or removed from variables before or after mem-
ory load and store operations. CoDaRR [43] extends DSR
with a protection against leaking the masks that are used for
DSR so that rerandomization prevents from recovering the
secrets through attacking masks. These solutions are source
code-based and thus not applicable for our tool.

Static binary instrumentation builds the basis for binary-
level analysis and protection tools with different ways to insert
additional code. The trampoline SBI approach is used by tools
like Detours [24] and PEBIL [29] which relocate functions to
newly-added .text and .data sections together with a redi-
rection to these sections through 5-byte jumps. The technique
is extended with inserting int3 when a jump instruction does
not fit in BIRD [38] and short 2-byte intermediate jumps
in DynInst [11, 23]. In our work, we implemented an opti-
mized combination of different jumps and int3 to build a
lightweight static instrumentation. For a production-level im-
plementation of CIPHERFIX, a sophisticated instrumentation
framework should be used, but for our study, a custom tool
tailored to the interaction with the dynamic analyses was



easier integrated. Another way of coping with 5-byte jumps
is instruction punning, as implemented in LiteInst [13] and
E9PATCH [21]. This technique uses address offset bytes in a
jump instruction to also encode instructions, so fewer bytes
need to be overwritten. For our mitigation implementation, we
did not employ instruction punning, as it introduces additional
complexity and memory overhead due to the jump targets be-
ing scattered over a large memory area. RetroWrite [19] uses
symbolization to generate reassemblable assembly that can
be equipped with instrumentation passes and yields an opti-
mized instrumented binary. Layout-agnostic binary rewriting
can be performed with Egalito [54] that uses metadata to lift
the program into a specialized intermediate representation.
These approaches yield more efficient binaries, but need addi-
tional support for stripped binaries and some forms of inline
assembly as used by libraries like OpenSSL, respectively.

9 Conclusion

In this work, we have presented a drop-in technique for auto-
matically protecting binaries from leaking processed secrets
through a ciphertext side-channel. Our approach comprises
finding vulnerable code parts and then protecting them by
preventing observable ciphertext changes based on secret
data. The leakage localization technique combines dynamic
binary instrumentation and dynamic taint analysis to protect
only those memory accesses that deal with secrets or secret-
derived data. The mitigation introduces randomness such that
the plaintexts written to memory change for each write, lead-
ing to corresponding unique ciphertexts. We have shown that
the highest security level of our proof-of-concept implementa-
tion can detect and mitigate all leaking memory accesses, with
a very small probability of remaining leakage. Since there
is no indication of fixes for existing or upcoming hardware,
CIPHERFIX is a suitable approach for protecting software
against the ciphertext side-channel.
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A Static Instrumentation Example

55 push rbp

48 89 e5 mov rbp, rsp

85 d2 test edx, edx

74 0e je 1a

8a 0e mov cl, byte [rsi]

88 0f mov byte [rdi], cl

48 ff c7 inc rdi

48 ff c6 inc rsi

ff ca dec edx

eb ee jmp 08

c9 leave

c3 ret

00:

01:

04:

0a:

0c:

0e:

10:

13:

16:

18:

08:

48 83 ec 18 sub rsp, 0x10

1a:

1b:

e9 xx xx xx jmp instrument+00

xx

85 d2 jmp 11

74 0e je 1a

e9 xx xx xx jmp instrument+0c

xx

e9 xx xx xx jmp instrument+08

xx

ff ca dec edx

eb ee jmp 08

c9 int3

c3 ret

00:

04:

05:

0a:

0c:

10:

11:

15:

16:

18:

08:

83 ec 18 (invalid)

1a:

1b:

55 push rbp

48 89 e5 mov rbp, rsp

85 d2 test edx, edx

74 0e je instrument+1a

8a 0e mov cl, byte [rsi]

88 0f mov byte [rdi], cl

48 ff c7 inc rdi

48 ff c6 inc rsi

ff ca dec edx

eb ee jmp instrument+08

c9 leave

c3 ret

00:

01:

04:

0a:

0c:

0e:

10:

13:

16:

18:

08:

48 83 ec 18 sub rsp, 0x10

1a:

1b:

.text: .text: .instrument:

Figure 8: A simple memcpy implementation (left), and the resulting static instrumentation (right). The basic blocks of the original
code are separated by dashed lines, control flow edges are marked with arrows. The first basic block has sufficient space for a
direct 5-byte jump to the instrumentation code. The second basic block only has 4 bytes, but the third basic block offers space for
two 5-byte jumps, so the second basic block gets a 2-byte jump to the third basic block (offset 11) and from there a 5-byte jump
to the instrumentation code. For the fourth basic block, all remaining space in the other basic blocks is already consumed, so it
has to use an int3 instruction. Execution that ends up at the beginning of any of the original basic blocks is always redirected to
their counterparts in the .instrument section.

B Evaluation Results

Table 3: Memory accesses that have to be instrumented. Writes are split by their size, whereby #n denotes the number of n-byte
writes. % instr. reads/writes shows the respective total percentage of instrumented accesses. Each target was iterated 10 times.

Target # reads
instr. reads

# writes
instrumented writes

# % #1 #2 #4 #8 #16 #32 %

libsodium

EdDSA 648,453 448,415 69 441,736 4,681 0 0 372,600 6,180 1,160 87
SHA512 200,328 82,722 41 104,000 810 0 0 58,718 4,800 784 62

mbedTLS

AES 1,887,551 1,403,255 74 1,237,457 812,120 0 42 20,715 30,256 304 70
Base64 195,458 16,020 8 128,552 23,599 0 0 5,130 0 0 22
CC20 1,737,111 1,487,956 86 1,105,221 641,280 0 250,910 217 60,140 10,068 87
ECDH 37,328,410 3,454,726 9 18,773,246 0 0 881,397 1,566,188 0 1,172,058 19
ECDSA 7,120,602 3,301,437 46 3,748,086 14,240 10 260,673 1,447,753 7,674 123,806 49
RSA 21,203,381 12,012,577 57 12,068,011 1,950 10 360,804 7,303,398 1,243 122,320 65

OpenSSL

ECDH 4,799,917 390,344 8 2,532,111 2,750 0 2,550 248,691 62 470 10
ECDSA 12,041,083 5,463,996 45 6,950,318 2,329 0 524,025 2,671,708 1,492 3,762 46

WolfSSL

AES 3,661,782 1,550,484 42 288,454 13,150 0 90,630 60,427 10,234 0 60
CC20 2,603,432 1,547,406 59 994,267 320,320 0 476,140 25,893 20,020 0 85
ECDH 2,317,955 1,753,953 76 1,916,549 1,248 0 10,752 1,409,475 20 0 74
ECDSA 19,969,154 11,606,148 58 9,519,250 721 0 543,354 5,292,431 258,140 1,584 64
EdDSA 1,213,466 694,483 57 884,122 4,711 0 11,560 568,368 40 82 66
RSA 2,350,077 1,886,260 80 1,193,204 1,351 0 106,801 753,096 20,580 46,176 78
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