
Optimized Unrolling
of Nested Loops

Ian Iong Lam, Jiayao Su, Tony Tang

Group 2 EECS 583 - Project Presentation

MOTIVATION

01

area + problem + why is it important to solve this problem 
 
 

Group 2 EECS 583 - Project Presentation

increased instruction-level
parallelism 

Loop Unrolling Benefits

Reduce amortized
increment-and-test overhead 

improved register locality  improved I-cache performance 

OVERHEAD PARALLELISM

REGISTER MEMORY

Optimized Unrolling of Nested Loops

Able to unroll nested loops 

includes ILP and
I-cache consideration 

New code generation algo to
generate more compact
loops 

Efficiently find feasible
unroll vectors 

Nested Loops

Compact LoopsCost Model

Unroll Vectors

TECHNIQUE

02

Nested loops unrolling algorithm explanation 

Group 2 EECS 583 - Project Presentation

Unroll Nested Loops Technique

1. Unroll perfectly nested loops
from outermost to innermost 

2. Allow high-order optimizations
such as LICM 

1. Unroll vectors search  
2. New cost model calculation 

Unroll Vector Selection Code Generation

Unroll Vector

(UF1, UF2, UF3, … UFk) 

Unroll factor for loop 1 

There are k perfectly nested loops where loop 1 is the outermost loop 

UFi is an integer in range [1, UFi
max]  

where UFi
max is the number of iterations for loop i 

Unroll Vector Search
Find Feasible Vectors 

Input: cur loop idx i, cur unroll vector UVcur 
Output: feasible unroll vectors UVs 
 
Find Algo find(i, UVcur): 
For n = 1 to UFi

max 

1. Update current vector UVcur with n at idx i 
2. Break if UVcur exceeds capacity constraint 
3. if i = 1, add UVcur to UVs (1 vector found) 
4. else find(i-1, UVcur) 

 
 

1. The amortized #register spills in
the unrolled loop body does not
exceed the original #register spills 

 
2. Size of unrolled loop body fits in

the I-cache 
 

Capacity Constraint 

Cost Function for Unroll Vector
Optimization
uv = (UF1, …, UFk) = current unroll vector  
LS(uv) = EST. # cycles spend on Load and Store instr in unrolled loop body 
CP(uv) = EST. critical path length (in cycles) of unrolled loop body 
TCj(uv) = EST. total cycles on a class j of functional unit required by unrolled loop body 
NFj = # functional unit of class j avail in the hardware 
F(uv) = Cost function 

Optimize Unroll Vector
Input: Feasible unroll vectors candidate pool UVs 
Output: UVopt = (UF1

opt, …, UFk
opt), and optimized unroll vector for input nested loops 

 
Optimize Algo opt(UVs): 
Initialize UVopt = (1, …, 1) 
For uv in UV 
1. if F(uv) < F(UVopt) or (F(uv) < F(UVopt) and (uv1 x … x uvk) < (UVk

opt x … x UVk
opt)) 

2. then UVopt = uv 

Code Generation
Code Generation Algorithm: 
For each nested loop i: 
1. Make copies of the inner loop body according to the unroll factor UFi 
2. Adjust header information such as lower bound, upper bound, and increments 
3. Construct remainder loops 

for(j=0; j < 10; j+=4) { 
Sum += a[i] * b[j]; 
Sum += a[i] * b[j+1]; 
Sum += a[i] * b[j+2]; 
Sum += a[i] * b[j+3]; 

} 
 
for(j=8; j < 10; j++) { 

Sum += a[i] * b[j]; 
} 

 
for (i=0; i < 10; i++) { 
 for(j=0; j < 10; j++) { 

Sum += a[i] * b[j]; 
 } 
} 

Code Generation Example

Inner loop: 
for(j=0; j < 10; j++) { 

Sum += a[i] * b[j]; 
}  remainder loop 

unroll inner loop: 

Inner Unrolled Body for idx i 

Outer Loop 

Inner Loop 

unroll with
unroll factor = 4 

Unroll Vector = (3, 4) 

Inner Unrolled Body for idx i 
for(j=0; j < 10; j+=4) { 

Sum += a[i] * b[j]; 
Sum += a[i] * b[j+1]; 
Sum += a[i] * b[j+2]; 
Sum += a[i] * b[j+3]; 

} 
 
for(j=8; j < 10; j++) { 

Sum += a[i] * b[j]; 
}

Code Generation Example

for (i=0; i < 10; i++) { 
 for(j=0; j < 10; j++) { 
 Sum += a[i] * b[j]; 
 } 
} 

for (i=0; i < 10; i++) { 
 Inner Unrolled Body for idx i 
} 
 

for (i=0; i < 10; i+=3) { 
 Inner Unrolled Body for idx i 
 Inner Unrolled Body for idx i + 1 
 Inner Unrolled Body for idx i + 2 
} 
 
for (i=9; i < 10; i++) { 
 Inner Unrolled Body for idx i 
} 
 

Original Nested Loop 

Unroll Inner Loop 

Unroll Outer Loop 

Unroll Vector = (3, 4) 

RESULTS

03

Algorithm’s application and improvements in benchmarks 

Group 2 EECS 583 - Project Presentation

Benchmark & Hardware
SPEC95fp 
- developed by the Standard Performance Evaluation Corporation (SPEC) to measure

the floating-point performance of computer systems 
 
 
IBM XL Fortran product compiler 
 
 
133MHz PowerPC 604 processor 

Results

● OPT-UNROLL: algorithm reported in this paper 
● Max: 1.2x; Average: 1.08x 
● Never slower than NO-UNROLL 

Benchmark  NO-UNROLL  (2,2,2)  (3,3,3）  (4,4,4)  (5,5,5)  OPT-UNROLL 

101.tomcatv  1.00  1.11  1.05  1.02  0.96  1.23 

102.swim  1.00  1.04  0.86  0.75  0.73  1.20 

103.su2cor  1.00  1.03  1.06  1.02  1.03  1.03 

104.hydro2d  1.00  1.06  1.06  1.04  1.08  1.06 

107.mgrid  1.00  1.05  0.99  0.96  0.72  1.00 

125.turb3d  1.00  0.98  0.94  0.83  0.89  1.00 

145.fpppp  1.00  0.99  0.97  1.01  0.80  1.02 

Average Speedup  1.00  1.04  0.99  0.95  0.89  1.08 

Speedups (relative to NO-UNROLL) for different unroll configurations 

Conclusion

● Able to unroll perfectly nested loops 
● Automatically optimize unroll vector  
● Neve slower than original program 
● Runtime reduction should work better

on hardware with more registers and
larger degrees of parallelism  

● May not work for all nested loops  
● Significantly increase code size 

 

Pros Cons

THANKS!

Group 2 EECS 583 - Project Presentation

CREDITS: This presentation template was created by Slidesgo, and
includes icons by Flaticon, and infographics & images by Freepik  

THANKS!

Please keep this slide for attribution 

SLIDESGO.COM MARKETING CONFERENCE

Do you have any questions? 
iinicole@umich.edu 

sujiayao@umich.edu 
tonytang@umich.edu 

https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

