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Abstract 

In this paper, we address the problems of automatically 
selecting unroll factors for perfectly nested loops, and gener- 
ating compact code for the selected unroll factors. Compared 
to past work, the contributions of our work include a) a more 
detailed cost model that includes ILP and I-cache consid- 
erations, b) a new code generation algorithm for unrolling 
nested loops that generates more compact code (with fewer 
remainder loops) than the unroll-and-jam transformation, 
and c) a new algorithm for efficiently enumerating feasible 
unroll vectors. 

Our experimental results con.firm the wide applicability 
of our approach by showing a 2.2× speedup on matrix multi- 
ply, and an average 1.08× speedup on seven of the SPEC95fp 
benchmarks (with a 1.2× speedup for two benchmarks). 
These speedups are significant because the baseline compiler 
used for comparison is the IBM XL Fortran product como 
prier which generates high quality code with unrolling and 
software pipelining of innermost loops enabled. Larger per- 
formsnce improvements due to unrolling of nested loops can 
be expected on processors that have larger numbers of regis- 
ters and larger degrees of instruction-level parallelism than 
the processor used for our measurements (PowerPC 604). 

1 Introduct|on 

Loop unrolling [2] is a well known program transformation 
that has been used in optimizing compilers for over three 
decades. In addition to its use in compilers, many software 
libraries for matrix computations contain loops that have 
been hand-unrolled for improved performance [11]. The 
original motiwtion for loop unrolling was to reduce the 
(amortized) increment-and-test overhead for loop iterations. 
For modern processors, the primary benefits of loop un- 
rolling include increased instruction-level parallelism (ILP), 
improved register locality ("register tiling"), and improved 
memory hierarchy locality [13, 3, 8]. Loop unrolling is also 
essential for effective exploitation of some newer hardware 
features e.g., for uncovering opportunities for generating 
dual-load/dual-store instructions [1], and for amortizing the 
overhead of a single prefetch instruction across multiple load 
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or store instructions [16, 4]. 
However, it has been observed that loop unrolling can 

also have a negative effect on a program's performance when 
it is not used judiciously. For example, excessive unrolling 
can lead to run-time performance degradation due to extra 
register spills when the working set ('~egister pressure") of 
the unrolled loop body exceeds the number of available regis- 
ters [7]. Another concern is with the code size of the unrolled 
loop, which can overflow a small first-level instruction-cache 
if loop unrolling is performed too aggressively [10]. Apart 
from creating a large unrolled loop body, additional loops 
have to be introduced to correctly handle cases where the 
unroll factor does not evenly divide the number of iterations. 
These remainder loops substantially increase the compile- 
time for the transformed code and the size of the final object 
code, even though only a small fraction of  the program's 
execution time is spent in these remainder loops. 

Most industry-strength compilers (including the optim/z- 
ing back-end of the XL Fortran compiler, which is the base- 
line for our performance measurements) perform software 
pipelining and limited unrolling of innermost loops. How- 
ever, zmrolling of perfectly nested loops (as in the unroll-and- 
jam transformation [2, 5]) is performed less frequently (and 
with greater caution) because of its potential for increased 
overhead due to increases in run-time, compile-time or code 
size. 

In this paper, we address the problems of automatically 
selecting unroll factors for a set of perfectly nested loops, 
and generating compact code for the selected unroll fac- 
tors as as to make it a practical transformation for use by 
industry-strength compilers. Compared to past work, the 
contributions of our work include a) a more detailed cost 
model that includes ILP and I-cache considerations, b) a 
new code generation algorithm for unrolling nested loops 
that generates more compact code (with fewer remainder 
loops) than the unroll-and-jam transformation, and c) a new 
algorithm for efficiently enumerating feasible unroll vectors. 

The problem of automatically selecting unroll factors 
for nested loops has been addressed in past work by Cart 
and Kennedy [7] and more recently by Carr and Guan [6]. 
For loop kernels, their results are impressive and make a 
convincing case for leaving the task of selecting unroll factors 
to the compiler rather than the programmer. However, 
their results for full applications are less convincing ~ no 
results were reported for applications in [6], and for the 10 
applications considered in [7] from the SPEC92, Perfect and 
RiCEPS benchmark suites, the average speedup obtained 
was 1.04× on an RS/6000 model 540. 

The algorithm used in [7] was based on the use of input 
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dependences [17], whereas the approach in [6] was based 
on using the reuse model from [25] and its associated lin- 
ear algebra ]ramecaor~. Our solution (which was developed 
independently 1 of these past approaches) has a different 
technical foundation based on using cost models that  are 
both more detailed and more efficient to compute than the 
cost models used in previous work. Our current performance 
results on a PowerPC 604 processor show an average 1.08x 
speedup on seven of the SPEC95fp benchmarks (with a 
1.2× speedup for two benchmarks). The only benchmark 
common to [7] and to our results is the SPEC benchmark, 
tomcatv. For tomcatv, the speedup due to unroll-and-jam 
(and scalar replacement) reported in [7] was only 1.01×, 
whereas the speedup for tomcatv obtained using our ap- 
proach was 1.23×. 

The rest of the paper is organized as follows. Section 2 
describes our approach to automatic selection of unroll fac- 
tors for a set of perfectly nested loops. Section 3 describes 
how we generate code for a specified unroll vector; this 
algorithm generates code that is more compact than the 
code generated by the unroll-and-jam transformation. Sec- 
tion 4 contains our experimental results. Section 5 discusses 
related work, and Section 6 contains our conclusions. Ap- 
pendix A contains an example to illustrate the compactness 
of the code generation obtained by our approach, compared 
to that of the unroll-and-jam transformation. 

2 Automatic Selection of Unroll Factors 

This section describes our approach to automatic selection 
of unroll factors for a set of perfectly nested loops. Sec- 
tion 2.1 reviews the unroll-and-jam transformation. Sec- 
tion 2.2 formalizes selection of unroll factors for multiple 
perfectly nested loops as an optimization problem. Sec- 
tion 2.3 introduces our cost function for estimating the cost 
of an unrolled loop nest for a given vector of unroll factors, 
and capacity cost functions to model register set and I- 
cache constraints. Section 2.4 outlines our algorithm for 
efficiently enumerating feasible unroll vectors and selecting 
a feasible unroll vector that has lowest cost. Section 2.5 uses 
a matrix multiply computation as an example to illustrate 
our approach for automatically selecting unroll factors. 

The program model assumed in our work is as follows. A 
loop is a candidate for unrolling if it is a counted loop with 
no premature exits e.g., Fortran DO loops, or special cases 
of for loops in C and Java. Unllke some prior work on loop 
unrolling, we allow the lower bound, upper bound, and step 
expressions to have arbitrary (positive or negative) integer 
values that may be unknown at compile-time. We also 
permit general (structured or unstructured) acyclic control 
flow within a single iteration of the loop nest. 

2.1 Unroll-and-Jam 

Consider a perfect nest of two loops, ii and £2, as shown in 
Figure 1, and assume we wish to unroll only the outer loop 
by a factor of R. The first step in Figure 1 shows the result 
of a mechanical unrolling of the outer il loop by an unroll 
factor of R. (For convenience, we use the standard Fortran 
lower-bound, upper-bound, step triple notation to describe 
loops that have non-unit step values.) 

However, the output of the first step in Figure I is not in 
a useful form for enabling code optimization because of the 

ZTh¢ origins of our work lie in the ASTI optimizer built during 
1991-1993 for adding high level transformations to the XL Fortran 
product compilers [20]. 

STEP I: Unroll the outer il loop 
.----.--. . . . . . . . . . . . . . . . . . . . . . . . . . .  

! I|PtrrL00P rEST 
DO il ffi lol,hil 

DO i2 = io2,hi2 
BODY(il,i2) 

EID DO 
EID DO 

Unroll outer 
. . . . . . . . . . . . . .  > 

loop R times 

! b~ROLLED LOOP 
DO il = lol,hil-(R-1),R 

DO i2 = io2,h12 
BODY(il,i2) 

EID DO 
• . • 

DO i2 = Io2,hi2 
BODY(il+R-i,i2) 

EID DO 
EID DO 

! RENAIIDERL00P 
DO il = il,hi,1 

DO i2 = lo2,hi2 
BODY(il,i2) 

KID DO 
EID DO 

STEP 2: Fuse/jam multiple copies of inner i2 loop 

L~ROLLED LOOP ! UIROLLED LOOP 
DO il = lol,hil-(R-l),R ! (AFTER FUSI0|) 

DO i2 : Io2,hi2 DO il : lol,hil-(R-l),R 
BODY(il,i2) DO i2 = Io2,hi2 

END DO Fuse i2 loops BODY(il,i2) 
• . • . . . . . . . . . . . . . . .  > 

DO i2 = io2,hi2 BODY(il+R-I,i2) 
BODY(iI+R-I,i2) E~D DO 

E|D DO E|D DO 
E|D DO 

! RENAI|DER LOOP ! REI~tI|DER LOOP (UJCHA|GED) 

Figure I: Unrolling of outer loop in a nest of two counted 
loops (Unroll-and-Jam) 

multiple copies of the inner £2 loop present after unrolling 
the i l  loop. The performance benefits due to unrolling are 
realized when the multiple copies of the i2 loop are fused 
together as shown in step 2 of Figure 1 (the remainder loop 
is unaffected by this loop fusion step). As described in Sec- 
tion 3, this two-step unroll-and-jam sequence is performed 
as a single transformation in our framework. 

Unlike unrolling a single loop, unrolling of multiple loops 
is not always legal. The first unroll step can always be 
performed, but  data dependences may prevent the second 
fusion ("jam") step from being performed. Complex (non- 
linear) loop bounds may also make it illegal to perform a 
loop unrolling transformation. In a classical unroll-and-jam 
transformation, it is the responsibRity of the fusion step to 
recognize when an illegal unrolling transformation is being 
at tempted on a loop nest. However, the legality condition 
for unrolling multiple loops is equivalent to that of tiling [26] 
i.e., given a set of/¢ perfectly nested loops i l , . . . , i k ,  it is 
legal to unroll outer loop ~j if it is legal to permute loop 
ij to the innermost position. In fact, unrolling of multiple 
loops can be viewed as dividing the iteration space into small 
tiles. However, the iterations in an unrolled "tile" execute 
copies of the loop body that have been expanded (unrolled) 
in place, rather than executing inner control loops as in tiling 
for cache locality. 

The transformation in Figure 1 demonstrates how un- 
rolling can be performed on a doubly nested loop with unroll 
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vector (R, 1) i.e•, an unroll factor of R for the outer  loop 
and an unroll factor of 1 (no unrolling) for the inner loop. 
However, the framework presented in this paper  can be used 
to generate code for any unrolling transformation specified 
by an arbi t rary  unroll vector for a set of perfectly nested 
loops. 

2.2 Problem Statement 

Consider a set of k perfectly nested loops with index vari- 
ables, Q , . . . ,  i~. The perfect loop nest may have been writ- 
ten by a programmer or obtained as a result of compiler 
transformations such as loop distribution [26, 20]. An un- 
rolling transformation can be specified by an unroll vector, 
(ffF1, UF2 . . . .  ), which identifies an unroll factor, U F j ,  for 
each loop j .  

Figure 2 outlines the structure of the unrolled loop nest 
that  would be obtained from a given unroll vector. (For 
simplicity, remainder loops are not shown in this code struc- 
ture.) Note that  the unrolled loop body contains UF1 × 
UF2 × . . .  copies of the input loop body; each copy of B O D Y  
is instant iated for a different tuple of index value taken from 
the Cartesian product,  

{ i ~ , . . . , i ~  + UF1 - 1} x . . .  x { i k , . . . , i k  + UFk - i}. 
The optimization problem that  we are interested in solv- 

ing is to find an  unroll vector, ( U F ? ~ , . . . ,  U F ? ' ) ,  such tha t  

1. Each unroll factor, UFF~ t is an integer in the range, 

1 . . .  U F ~  ~x, where U F "~'~ = (U F ~ = ,  . . . , U F ~  "= ) is 
the m a x i m u m  unroll vector for the loop nest, 

2. The unroll vector.identifies a legal unrolling transfor- 
mation, 

3. The amortized number of register spills per original 
i terat ion in the unrolled body does not exceed the 
number  of register spills in the original loop body, 

4. The unrolled loop body fits in the ins truct ion cache, 
and 

5. The est imated cost of the unroll configuration is min- 
imized. (If multiple lmroll vectors have the same es- 
t imated cost, then choose a vector with the smallest 
total  unroll factor, U F1 × . . .  U Fk as the solution.) 

Conditions 1 and 2 are requirements imposed on a le- 
gel unrolling transformation. To enforce Condition 2, we 
identify non-innermost loops that  cannot be permuted to  the 
innermost position in the input loop nest due to dependence 
constraints or constraints on loop bounds [22]. For each 
such loop, i, we set U F ~  ' ~  = 1 to ensure that  loop i is not 
unrolled. For other loops, j ,  we set U F ~  ~ = maximum 
number of iterations for loop j ,  using an est imated value 
when the number is unknown. 

Conditions 3 and 4 are capacity constraints. Condition 3 
ensures that  loop unrolling does not cause extra  register 
spills, and Condition 4 ensures that  loop unrolling will (most 
likely) not lead to extra  I-cache misses. Our experience 
is that  Condition 3 is usually more tightly binding than 
Condition 4 i.e., eusttring no increase in register spills is 
usually sufficient to ensure that  there is no increase in I- 
cache misses. 

In general, enforcing Condition 3 requires detailed knowl- 
edge of the register allocation algorithm used by the back- 
end. For simplicity, our current solution to modeling Con- 
clition 3 is to ensure that  the maximum numbers of fLxed- 
point and floating-pointing values in the unrolled loop that  

! IIPUT LOOP 
DO i l  = l o l , h i l  

DO i2  = l o 2 , h i 2  

B O D ¥ ( i l , i 2 , . . . )  

EID DO 
EID DO 

- - .>  

! UIROLLED LOOP 
DO i l  = l o l , h i l - ( b T l - 1 ) , U F 1  

DO i2  ffi l o2 ,h i2 - (UF2-1) ,bT2  

• ° . 

B O D Y ( i l + b T I - I , i 2 , . . . )  
B O D ¥ ( i l , i 2 + i , . . . )  

• • . 

. ;  ;o" 
EID DO 

! RENAIIDER LOOPS 

Figure 2: General unrolling of multiple nested loops 

may  be simultaneously live are bounded by the numbers of 
available fixed-point and floating-point registers respectively 
(see Section 2.3). This max computat ion is conservatively 
large - -  it assumes that  two values may be simultaneously 
live ff there exists some legal instruction reordering for which 
they would be simultaneously live (even if the values are 
not simultaneously live in the original instruction order- 
ing). While this approximation may unnecessarily limit the 
amount of unrolling permit ted,  it  ensures that  any software 
pipelining or instruction scheduling performed by the back- 
end will not  introduce additional spills. 

Condition 5 is the objective f u n c t i o n  to be minimized. 

2.3 Cost Function 

In tl~s section, we define an objective function F ( U F z , . . . ,  UF~) 
that  evaluates the cost of a given unxoll vector, (UFi  . . . .  , UFk) ,  
for a perfect nest of k loops. (A simpler version of this 
cost function was presented in [20].) Having en explicit cost 
function simplifies the unrolling optimization and makes it 
convenient to retarget  the optimization to different proces- 
sor architectures or different models of the same processor 
architecture. 

In our approach, the compiler builds the following sym- 
bolic cost func t ions  based, on the da ta  references in the loop 
nest. All functions take unroll factors as arguments and re- 
turn est imated values for the unrolled loop body that  would 
be generated by a UF1 × . . .  × UFk  unroll transformation of 
the input loop nest: 

• I R ( U F 1 , . . . ,  UFk)  = number of distinct Integer Reg- 
ister (fixed-point) values in unrolled loop body. 

• F R ( U F 1 , . . . ,  UFk)  - - n u m b e r  of distinct Floating-point 
Register values in unrolled loop body. I R  and F R  are 
computed by using the approach in [12, 20] for esti- 
mating the number of dist inct  an 'ay elements accessed 
in a loop nest. This approach avoids the expense 
of computing input  dependences or of using a linear 
algebra framework to perform the estimation. 

• L S ( U F i , . . . ,  UFk)  = est imated number  of cycles spent 
on Load and Store instructions in unrolled loop body. 

• C P ( U F 1  . . . . .  UFk)  -- est imated Critical Pa th  length 
of unrolled loop body (in cycles). Assume zero cost for 
load/store instructions when estimating C P ,  because 
they are already accotmted for in L S .  (As in [19], 
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average frequency values are used to estimate critical 
path lengths in the presence of conditional branches.) 

• TCi(UFi ..... UFk) = estimated Total Cycles on class 
j of functional units required by unrolled loop body. 
Assume zero cost for load/store instructions when es- 
timating TCj, because they are already accounted for 
in LS. Let iVF i be the number of functional units of 
class j available in the machine. 

The symbolic cost functions are represented as expres- 
sion trees in the compiler with internal nodes that represent 
sum, product, reciprocal, rnin~ max operators. A leaf of an 
expression tree can be an unroll factor, UF~, or a constant. 
This representation makes it convenient to evaluate a sym- 
bolic cost function for a given unroll vector. 

The IR and FR cost functions are used to enforce regis- 
ter capacity constraints. In addition, an estimated code size 
for a single iteration is used to enforce the I-cache constraint. 

The remalr~i~g cost functions contribute to the the objec- 
tive function to be rn~nlmized, which is a cost per iteration 
defined as follows: 

load/store term 
*% 

F(UF, , . . . ,  UF~) "LS(UF,, . . . ,  UFk)" 
= UFi x ... x UFk + 

max [CP(UF1, . . . ,UFk) ,maxi  ( {  Tc'(trF~NFj ..... ~r~) "/"~ l j / j  

UF~ x . . .  x UFk 

ILP term 

The objective function is defined to be the sum of the load~store 
term, LS(UF1 . . . .  , UFk) and the ILP term, which is a max 
function that  provides an estimation of the parallel execu- 
tion t ime of the unrolled loop body. Both terms are divided 
by the product  of unroll factors, UF1 x ...  x UFk so as to 
obtain a cost function that is an amortized cost per original 
iteration of the input loop nest, thus making it possible to 
directly compare costs for different unroll vectors. 

A key design principle behind this cost function is that 
i ts  terms should be efficient to evaluate for different unroll 
vectors without actually having to perform the unrolling 
transformation for each candidate unroll vector. Tha t  is the 
main motivation for separat ing the load/s tore  term (LS) 
from the ILP term in the max function. (Otherwise, we 
would have to use different CP and T C  functions for differ- 
ent unroll vectors.) 

It is instructive to compare the above ILP term with the 
recurrence.constrained and resource-constrained m~nimuxn 
initiation intervals (RecMII and ResMII) that are used as 
lower bounds in modulo scheduling [18, 21]. In fact, a 
computation similar to RecMII is used to obtain the CP 
value for a given unroll vector, and a computation similar to 
ResMII is used to obtain the TCj values for a given unroll 
vector. The key difference is that software pipelining and 
modulo scheduling are only concerned with analyzing mul- 
tiple iterations of the innermost loop, whereas the above ILP 
term is used for analyzing the combined effect of unrolling 
multiple loops in a perfect nest. The notion of initiation 
interval does not apply to non-innermost loops, which is why 
we use the CP term instead. An interesting direction for 
future work would be to combine both approaches by using 
the above ILP cost model for non-innermost loops, and the 
initiation interval cost model for the innermost loop. 

Note that summing up the contributions of the load/store 
term and the ILP term goes beyond the "balancing" ap- 
proach proposed in [6]. Specifically, there are cases in which 

I n p u t s :  

1. Set of k perfectly nested loops with maximum unroll 
vector, U.F ~ =  = ( U F ~ = , . . . ,  UF~'=), as defined in 
Section 2.2. 

2. F(UF, .... , UFFk), objective cost function for loop nest 
defined in Section 2.3. 

Output: UfoP t = (UF~Z,..., UF~), an optimized unroll 
vector for input loop nest. 

Algorithm: 

I. /* Call function EnumerateFeasibleVectors 0 in 
Figure 4, with unit vector 1 = (i,..., 1) as input. */ 
UV := EnumerateFeasibleVectors (k, [)  

2. Initialize U f ~ *  :=  f 

3. for  e ach  unroll vector ~ 6 UV d o  

i f  F (~ )  < f ( U f ~  ~) o r  F (~)  = F(UF,~ 't) 

a n d  (ul × . . .  × uk) < (UF~  ~ ×. . .  x U F ~  ~) 

t h e n  /*  Bet ter  unroll vector found * / U f , ~ t  :=  

e n d  i f  

e n d  fo r  

4. re turn U f ~  

Figure 3: Algorithm for selecting an optimized unroll vector 

it  might be beneficial to reduce only one of the two terms 
even if doing so causes an imbalance between the terms. 

Finally, we briefly discuss the effect of control flow within 
a loop iteration on cost estimation: For the register capacity 
terms, IR and FR, we use the worst-case largest number 
of registers that might be needed for executing a single 
iteration. For the load/store and ILP terms, we instead do 
an average-case estimation of the individual cost functions. 

2.4 Algorithm for Selection of Unroll Factors 

Our algorithm for selecting an optimized unroll vector is 
driven by the cost ftmctions introduced in Section 2.3. The 
basic idea is to enumerate a set of feasible and profitable 
unroll vectors, compute the objective function for each one, 
and select the one with smallest objective ftmction as the 
optimized unroll vector (UF~*,..., UF~'t). 

For feasibility, we have to ensure that an unroll vector 
(UFI .... , UFFk) is legal and also that it satisfies the following 
capacity constraints 2 : 

I R ( U F ,  . . . .  , UF~) 
Fa(UFi . . . .  , U F k )  

UF1 x . . .  x UFk 

<~ ~ available fixed-point regs 

< # available floating-point regs 

(size of instruction cache) 

-< (code size of one iteration) 

An important observation used to prune the search space 
for feasible unroll vectors is that these capacity constraints 
are monotonic i.e., if unroll vector (ul .... , uk) is infeasible 
because it violates a capacity constraint, then all unroll 

~We assume two register classes (fixed and float) in this descrip- 
tion, but the approach can be easily adapted to a different number of 
register classes. 

156 



f u n c t i o n  EnumerateFeasibleVectors(i, U F  ¢~'~) 
r e t u r n s  UV 

I n p u t s :  

I. Index of current loop, i. 

2. Current unroll vector, Uf:~L with unroll factors 
specified for loops in the range i+1.., k. Unroll factors 
U F ~ ' , . . . ,  U F~ ¢~" are assumed to = 1. 

O u t p u t :  A set of feasible unroll vectors, UV, containing 
"expansions" of U F  ¢~'~. Each vector ,7 6 UV satisfies 
Conditions 1--4 in Section 2.2, and also has the same unroll 
factors as U F  ¢~'r in positions i ÷ 1.. .  k i.e., only unroll 
factors in positions 1 . . .  i are enumerated in the expansion. 

A l g o r i t h m :  

1. Initialize UV :=  empty set of unroll vectors 

2. fo r  n :=  1 to  UF~ ' ~  do  
/* The UFy ~= bound enforces Conditions 1 and 2 in 
Section 2.2 */ 

(a) Update unroll factor for loop i, UF~ ~" :=  n 

(b) i f  U F  ~ r  exceeds a capacity constraint (Condi- 
tion 3 or Condition 4 in Section 2.2) 
t h e n  break/* exit for-loop */ 

(c) /* Pruning step - -  exit loop if no improvement 
is observed in the objective function by unrolling 
loop i */ 
i f n  > 1 and  F(U1 yet') >_ F(UF ~ )  
t h e n  break 

(d) i f  i = 1 t h e n / *  i is the outermost loop */ 

i. /* Insert UF ¢~ into UV */ 
uv := uv u {uf ¢~-} 

(e) else 

i. /*  Recursive call */ 
UV' := 
EnumerateFeasibleVectors(i - 1, UF c~) 

ii. /* Append UV' to UV */ 
UV:=UV U UV' 

end if  

end  for  

3. return UV 

end  f u n c t i o n  

Figure 4: Function EnumerateFeasibleVectors 0 

vectors (v, . . . . .  ok) such that  u{ < v1 . . . . .  uk < vk must 
also be infeasible. 

Figure 3 outlines the high-level structure of the algorithm 
for selecting an optimized unroll vector. Step 1 calls function 
EnumerateFeasibleVectors 0 to Obtain a set of feasible unroll 
vectors, UV. Step 3 selects U i ~ t ,  the unroll vector from 
UV that  has thesmallest cost per iteration as the optimized 
unroll vector for the input loop nest. 

Figure 4 outlines the structure of function Enumerate- 
FeasibleVectors 0 .  The algorithm enumerates unroll vectors 
by moving from the innermost loop to the outermost loop 
of the nest. Step 2 enumerates the possible unroll factors, 
1 . . .  U F ~  ~ ,  for input loop i, and combines each value with 
the input unroll vector, UF " ~  (Step 2a). The for-loop in 
Step 2 is exited the first time an unroll factor is encountered 
for loop i that causes a capacity constraint to be exceeded 
(Step 2b). Step 2c implements a pruning heuristic ~ the for- 
loop is exited if increasing the unroll factor for loop i from 1 
to 2 shows no improvement in the objective function. If i is 
the outermost loop, the current unroll vector is inserted into 
the output set (Step 2di).  Otherwise, function Enumerate- 
FeasibleVectors 0 is invoked recursively to enumerate unroll 
factors for enclosing loops i, i - 1 , . . . ,  1. The resulting set, 
UV', is then merged with the output set, UV (Steps 2e.i 
and 2eli). 

2.5 Example 
As an illustration, Figure 5 compares the execution times 
of a 500 x 500 double-precision dense matrix multiply com- 
putation for different unroll factors. After tiling for cache 
locality, the inner tile of the matrix multiply kernd consists 
of three nested loops as follows: 

do i l  = i l _ lo ,  i l_h i  
do i2 = i2_io, i2_hi 

do i3 = i3_1o, i3_hi 
a(i2,il) = a(i2,il) + b(i2,i3) * c(i3,il) 

end do 
end do 

end do 

Therefore, an tmroll vector for the inner tile is specified by a 
(UF1, UF2, UFs) triple of unroll factors. The lexicographic 
ordering of unroll factors in the triple corresponds to the 
ordering of the loops- from outermost to innermost. 

Figure 5 shows the execution time obtained for the ma- 
trix multiply kernel for different choices of unroll factors. 
To simplify the discussion in this section, we only consider 
two choices for each unroll factor value, UF~ = 1 or UFi = 4, 
which leads to the eight possible values for the (UF1, UF2, UFs) 
triple enumerated along the horizontal axis. (Measurements 
of a larger set of unroll factors are presented in Figure 7 in 
Section 4.) The (1,1,1) triple corresponds to the original 
loop nest because an unroll factor of one is an identity 
transformation. Other than unrolling of nested loops, all 
other optimization options are the same for the different 
unroll vectors shown in Figure 5. 

For this example, we see that  the performance obtained 
by unrolling nested loops varied significantly for different 
unroll vectors. The worst performance was obtained for 
(UF1, UF2, UFs) = (1,1, 4), which was slightly worse than 
that of the (1, 1, 1) identity case. The best performance was 
obtained for (UF1, UF~, UF~) = (4, 4,1), which delivered a 
2.2× speedup. 

We now describe how our approach can identify the (4, 4, 1) 
unroll vector as the best candidate by using the cost funco 
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tions and algorithm outlined in Sections 2.3 and 2.4. Note 
that  a (4, 4,1) unroll vector is not likely to be obtained by 
commonly-used heuristics such as "unroll only the innermost 
loop" or "give all loops the same unroll factor". 

Let (ul,  u2, us) be a candidate unroll vector for the ma- 
trix multiply example. The most binding capacity con- 
strains for this example is the number of  floating-point regis- 
ters, which is estimated by the compiler as F R ( u l ,  u2, us) = 
u2ul -6 (u2us-/-usul ). This estimation follows directly from 
the presence of array references a (£,  j ), b ( i ,  k) ,  and c (k,  j ) 
(see [12, 20] for details). The u2tt~ term represents distinct 
unrolled copies of the loop-invariant references to array a, 
and the (u~us + usu~) term represents the number of reg- 
isters required to hold distinct values of arrays b and o. 
Assuming that there are 30 registers available for used in the 
unrolled body, we need to ensure that FR(ul,u~,ttt) _< 30 
to satisfy the capacity constraints. 

To estimate the objective function, F(u~, u=, us), the 
compiler builds the f~.lowing symbolic cost functions; we 
only show TC for the FPU (floating point unit), since the 
FPU is the critical resource for this example : 

LS(m,u2,us) = u2us+usul 
CP(m,u2,us) = 2us 

T C F p u ( u i , u 2 , u s )  = 2ulu2us 

NFFPu = 1 

F(u1,u2,us) = LS(ul,u2,us) + 
Ul  X U2 X US 

max [CP(ul, u;, us), rc~pt t (~,  .~= ,.~.) ] NFppu J 
~1 X U 2 X 1.43 

(.~ + ~s~ ) ÷ (2~u~) 
F(u l ,  u2, u~) = 

~1 X ~2 X U3 

1 1 
F(m,u2,us) = --+--+2 

Ul  U2 

Since T C F p u ( u l ,  u2, u s ) / N F r p ~  > C P ( u , ,  u~, us), the ILP 
term for this example is resource bound rather than critical- 
path bound. However, if there were additional floating-point 
available (i.e., if IVF~pu > 1) then the ILP term may have 
been critical-path bound for some unroll vectors. 

The algorithm selects values of u,, u2, us so as to mini- 
mize F(  u , ,  u2, us)  = 1/ u, + 1 / u 2 + 2  subject to the constraint 
that  F R ( u l , u 2 , u s )  = u2ul + u2ut + usul  is < 3 0 .  Note 
that the objective function for this example, F(u,, u~, us), 
decreases when either ul or u2 is increased, but remains 
unchanged when us is increased. Hence, the search space for 
optimal unroll vectors is significantly reduced by restricting 
us = 1 (see Step 2c in Figure 4). Figure 6 illustrates 
how the algorithm for selection of unroll factors (outlined 
in Section 2.4) partitions the space of unroll vectors into 
feasible and infeasible regions for different values of ul and 
u~, assuming a maximum unroll factor of 20 iterations in 
each dimension (a limit that may arise from the tile size 
used for cache tiling). All unroll vectors in the feasible 
region satisfy FR < 30. In the worst case s, our algorithm 
will visit all 44 unroll vectors in the feasible region and the 
10 unroll vectors along the infeasible boundar,j, but this is 
considerably less work than visiting all 20×20 = 400 possible 
values for (ul, u~, I) or all 20 × 20 × 20 = 8000 possible values 
for (u~, ==, us). 

~In general, the cost functions are more complicated than in this 
example (e.g., due to ILP and dual-load/store considerations), thus 
making it it intractable to directly obtain an optimal solution without 
enurnerating all feasible vectors. 
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There  are two opt imal  solutions to this const ra ined opti- 
mizat ion problem,  (u~,u~,u~)  = (4, 5,1) and  (u~,u~,u~)  = 
(5, 4, 1), b o t h  of  which use a to ta l  of  F R  = 29 floating-point  
registers in the unrol led loop body. Increasing u~ to 5 makes 
FR equal  35, which exceeds the  limit.  Of  the  eight unron 
vectors measured  in Figure  5, our  cost functions show tha t  
(4, 4, 1) should indeed be the  best  choice. (It  is closest to 
the optimal (4, 5, 1) and (5, 4, I) solutions.) 

3 Generat ion of  Transformed Code 

In this section, we outline how our compiler generates code 
for a specified unroll  vector, (UFi .... , UFk). The algorithm 
processes loops by moving from the outermost loop to the 
innermost loop of the nest. Let ~ be the current loop with 
unroll factor UF~. First, the current unrolled loop body is 
expanded by the specified unroll factor UF~. Second, the 
loop header for the current loop is adjusted so that if the 
loop's iteration count, COUNT~, is known to be less than 
or equal to the unroll factor, UFi, then the loop is totally 
unrolled by simply replacing the loop header by an assign- 
ment of the index variable to the lower-bound expression; 
otherwise, the loop header is adjusted so that the unrolled 
loop's i te ra t ion  count  equals LCOUNTJUF~J. Third,  a 
remainder  loop nest  is generated,  if  needed. T h e  body  of 
the remainder  loop nest  is a single copy of  the input  loop 
body. The  remainder  loop is not  c rea ted  if i t  is de termined 
at compile time that the loop length CO UNT~ is a multiple 
of the mxroll factor UF~. 

In general, our algorithm produces UFi x ... UFk copies 
of the code from the original loop body in the unrolled loop. 
In addition, the number of remainder loops produced by our 
algorithm is 

(UF~ ×...UF~-~) +... + (UF~) + 1, 

where j is the largest loop index with a non-identity unroll 
factor Le., with UFj > I. Each remainder loop contains a 
single copy of the code from the original loop body. In con- 
trast, the unroll-and-jam transformation produces (UFi --k 
r o o d ( l ,  U F~ ) ) x . . . ( U Fk "b r o o d ( l ,  U F k  ) ) copies of  the code 
from the  original loop body ~. 

Appendix  A contains  an example  to highlight the differ- 
ence be tween  our code generat ion and the code generat ion 
obtained by the ururoll-and-jam approach. For  this example,  
our algorithm genera ted  21 remainder  loops as opposed to 61 
remainder loops generated by the unroll-and-jam approach. 
For the sake of completeness, a complete description of our 
algorithm for generating compact code when unrolling mul- 
tiple nested loops is provided in Figure 10. 

4 Exper imenta l  Results 

In this section, we present  exper imenta l  results to evaluate 
our approach for opt imized unrolling of nes ted  10ops. The  
algori thm outl ined in Section 2.4 has been  implemented  in 
the IBM XL For t ran  p roduc t  compiler.  This  loop unrolling 
phase is per formed as a ¢'high-order" t r a n s f o m a t i o n  [20] so 
tha t  back-end opt imizat ions  can exploit  the code optimiza- 
tion oppor tuni t ies  c rea ted  by loop unrolling. (One notable  

%nod(1,¢) is a function that is = 0 if z = 1 and is = I otherwise 
(assuming that z > 0). 
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User execution times (in seconds) for different unroll configurations: 

IBenchmark H NO-eNROLL I(2, 2, 2)[(3, 3, 3) I(4, 4,4)(5,5,5)I 
lOl . tomcatv  1317.0 1 1 8 4 . 6  1256.8 1287.8 i375 .3  ; 1073.2 
102.swim 2202.6 2127.4 2556.2 2928.7 3030.1 1836.4 
103.su2cor 795.0 769.1 751.8 776.4 770.9 775.0 
104.hydro2d 1581.3 1486.3 1496.7 1522.8 1469.8 1491.3 
107.mgrid 1014.8 964.4 1024.5 1060.2 1407.1 1015.6 
125.turb3d 1006.9 1028.1 1071.3 1207.9 1128.7 1007.3 

1181.1 1189.2 1216.5 1173.9 1469.8 

OPT-UNROLL 

1159.6 

S p e e d u p s  ( r e l a t i v e  t o  NO-UNROLL) for  d i f f e r e n t  u n r o l l  c o n f i g u r a t i o n s :  

Benchmark II ~ o - u N R o ~ L  I (2, 2, 2) I (3, 3, 3) I 
1.00 
1.00 

I.II 
1.04 

1.05 
0.86 

101.tomcatv 
102 .swim +. 

103.su2cor 1.00 1.03 1.06 
1.00 1.06 1.06 

0.99 

(4, 4, 4) I (5, 5, 5) ] OPT-UNROLL t 

104.hydro2d 
107.mgrid 
125.turb3d 
145.f10ppp 

I[') 
0.75 
1.02 
1.04 
0.96 

0.96 
0.73 

1.23 
1.20 

1.03 1.03 
1.08 1.06 

I , t  1.00 I[~ 0.72 1.00 
1.00 0.98 0.94 0.83 0.89 1.00 
1.00 0.99 0.97 1.01 0.80 1.02 

0.89 0.95 1.04 1.08 I 0.99 Average Speedup H 1.00 

Figure 9: Execution times and speedups of SPEC95fp benchmarks on a 133MHz PowerPC 604 for dif/erent unroll 
configurations 

limitation in the implementation of high-order transforma- 
tions in the XL Fortran compiler is that scalar replacement 
is only performed before uprolling; there may be opportuni- 
ties for additional improvements when scalar replacement is 
performed after unrolling, since not all scalar replacement 
opportunities are caught by the back-end.) All run-time 
performance measurements were made on a 133MHz Pow- 
erPC 604 processor. 

First, we present some detailed performance measure- 
ments for the matrix multiply example discussed in Sec- 
tion 2.5. Figure 7 shows the user execution times measured 
for 100 different unroll vectors of the form (ui,,~2,1) for 
1 _< t~l, ,~2 _< 10. (Recall that ,~I and ,J2 are the unxoll factors 
for the the outer and middle loops respectively.) We set the 
unroll factor for the innermost loop to us = 1 for all the 100 
data points because the cost function analysis in Section 2.5 
revealed that unrolling the innermost loop would not deliver 
any performance benefit. (This was confirmed by the results 
in Figure 5 as well.) The unron vector (4, 5,1) that was 
identified in Section 2.5 as the optimal solution for this 
example indeed delivered the best performance in Figure 7. 
Since register locality is the most significant performance 
issue for loop unrolling in this example, Figure 8 shows the 
average number of loads and stores per original iteration for 
these 100 iterations. The average drops from 2.1 for the 
original loop identified by unroll vector (1, 1, 1) to 0.55 for 
unroll vector (4, 5, 1) represents a nearly 4× reduction in the 
number of load/store instructions executed. These averages 
were obtained by using the hardware performance monitor 
to measuring the total number of load/store instructions 
executed and then dividing that number by the number 
of times the inner loop is executed (500 × 500 × 500 -~ 
1.25x10S). 

Figure 9 summarizes the execution times obtained on 
seven SPEC95fp benchmark programs [9] for the following 
unroll configurations: 

• NO-UI~nROLL - -  full -O optimization with unrolling sup- 
pressed (except for the 2 × unrolling performed by soft- 
ware pipelining in the back-end). 

• (2, 2, 2) - -  full -O optimization with all loops in an 
innermost perfect loop nest assigned an unroll factor 
of two. (There was no innermost perfect loop nest 
encountered with > 3 loops in these benchmarks.)  

• (3, 3, 3) - -  full - 0  optimization with all loops in an 
innermost perfect loop nest assigned an unroll factor 
of three. 

• (4, 4, 4) - -  full -O optimization with all loops in an 
hmermost perfect loop nest assigned an unroll factor 
of four. 

• (5, 5, 5) -- full -O optimization with all loops in an 
innermost perfect loop nest assigned an unroll factor 
of five. 

• OPT-UNROLL -- full -0 optimization with unrolling 
performed using the algori thm repor ted  in this paper. 

The figure also shows the speedups obtained relative to NO- 
UNROLL. The average speedup of 1.08x delivered by OPT- 
UNROLL outperformed tha t  of the other unron configura- 
tions measured. The maximum speedup delivered by OPT- 
UNROLL on a SPEC95fp benchmark was 1.2x, observed for 
two of the benchmarks (101.tomcatv and 102.swim). It is 
also important to note that, imli]ce al] the other unrolling 
configurations, OPT-UNROLL never delivered a performance 
degradation. 

Thus, the results in this section demonstrate the effec- 
tiveness of the approach presented in this paper for opti- 
mized unrolling of nested loops. We believe that larger per- 
formanceimprovements due to unrolling of nested loops can 
be expected on processors that have larger numbers of regis- 
ters and larger degrees of instruction-level parallelism than 
the processor used for our measurements (a PowerPC 604). 
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I n p u t s :  

1. LOOP[l],..., LOOP[k], a perfect nest of k loops, numbered from outermost to innermost. The index variable, lower 
bound, upper bound, and increment for LOOP[j] are denoted by il, lbj, ubj, and incj respectively. 

2. UF~] > 1, an unroll factor for each LOOP[j]. 

3. COUNT~], constant value or symbolic expression for number of iterations executed by LOOP[j], where UF[j] is 
assumed to be less than or equal to COUNT[j] if COUNTy] is a constant. 

O u t p u t :  Updated intermediate representation of the unrolled loops to reflect the loop unrolling transformation specified by 
u~ol l  factors U f [ 1 ] , . . . ,  UF[k]. 

A l g o r i t h m :  

1. Initialize nez~Parent :=  parent of LOOP[l] in intermediate representation .. 

2. Detach subtree rooted at LOOP[l] from nextParent 
/* This subtree is used as the source for generating copies of the original loop body */ 

3. Initialize unrolledBody :=  copy of body of innermost loop, LOOP[k] 

4. for  j := l t o  k do  

(a) currentParent :=  neztParent 
(b) /* Expand unrolledBody by factor UF[j]  for index ij */  

Initialize newUnrolledBody := copy of unrolledBody 
fo r  u :=  1 t o  UF[j] do  

i. Initialize oneCopy :=  copy of unrolledBody 
ii. Replace all occurrences of loop index variable "ij" in oneCopyby "ij + incj*u" 

iii. Append oneCopy to end of newUnrolledBody 
e n d  for  
Delete old unrolledBody, and initialize unrolledBody := newUnrolledBody 

(c) J* Adjust header for unroned loop j */ 
Construct remainder expression erj = rood(COUNT[j], U F[j]) 
i f (  COUNT[j] is constant and COUNT[j] = UF[j] ) t h e n  
/* Loop j is to be completely unrolled */ 
Construct the statement, "ij = lbj", call it neztParent, and make it the first (leftmost) child of currentParent 
else 
Make a copy of the LOOP[j] statement, call it neztParent, change it to "do ij = lbi, ubj - erj*incj, UF[j]*incj", 
and make it a child of currentParent 
end  if  

(d) ]* Generate remainder loop sub-nest, if necessary */ 
i f  (erj ! = 0 ) t h e n  
Set treeCopy :=  copy of subtree rooted at LOOP[j] 
Change the outermost statement in treeCopy to "do ij = ub~ - (erj-1)*incj, ubj, incj" 
Make treeCopy a child of currentParent 
e n d  if  

5. Make unrolledBody a child of nextParent, and delete original subtree rooted at LOOP[l] (the original loop nest) 

Figure 10: Code generation algorithm 
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5 Related Work 

As mentioned earlier, the loop unrolling and the unroll- 
and-jam transformations have been in use for over three 
decades [2]. However, little attention has been paid until 
recently to the problem of automatically selecting unroll 
factors to obtain the best performance from loop unrolling. 
For example, Wolf and Lain presented experimental results 
for register tiling in conjunction with cache tiling [25] using 
the SUIF compiler, but the register tiling in that work was 
implemented by hand. 

The most closely related work to this paper is that of 
Carr and Kennedy [7] and by Carr and Guan [6]. Some of 
the key differences between our approach and the approaches 
in [7, 6] have already been discussed in Section 1. Another 
difference that is worth mentioning is that the objective 
function in [7, 6] is to balance floating-point and memory- 
access instructions, whereas the objective function in our 
approach is to reduce execution time. These two objective 
functions are not necessarily equivalent. For example, 
the best results for the matrix multiply example discussed 
in this paper were obtained when the average number of 
loads is driven down to 0.5 loads per original iteration (see 
figures 7 and 8), even though each iteration has two floating- 
point operations. It is unclear from the descriptions in [7, 6] 
how a similar configuration would be obtained with their 
goal of balancing memory instructions and floating-point 
instructions. 

Most of the other related work applies only to unrolling 
innermost loops rather than nested loops. Several indus- 
try compilers (including the baseline XL Fortran compiler 
used to obtain our experimental results) perform unrolling 
of (both counted and non-counted) innermost loops. The 
problem of combining loop unrolling with software pipelin- 
ing has also received a lot of attention. Weiss and Smith [24] 
studied unrolling of a single innermost loop and compared 
it with software pipelining. Their conclusion was that loop 
unrolling can deliver greater speedup than software pipelin- 
ing, but requires more hardware (more registers and a larger 
instruction buffer) to do so. Jones and .Allan [14] suggested 
that loop unrolling be performed before software pipelining 
to effectively obtain a non-integer initiation interval. In their 
work, the unroll factor is determined by the desired initia- 
tion interval rather than by specific register and/or ILP cost 
considerations. Su et al [23] proposed the URPR algorithm 
(unroll, pipeline, reroll) as a way of combining loop unrolling 
and instruction scheduling. Lavery and Hwu [15] evaluated 
the benefits of unrolling loops prior to modulo scheduling. 
In our approach, unrolling of nested loops is performed prior 
to software pipeliuing in the XL Fortran back end. 

6 Conclusions 

In this paper, we formalized selection of unroll factors for 
multiple perfectly nested loops as an optimization problem. 
We introduced an objective function to estimate the savings 
that will be obtained for a given vector of unroll factors, 
and capacity cost functions to model register set and I- 
cache constraints, and we specified the legality constraints 
for tmrolling loops in a perfect nest. We outlined an al- 
gorithm for efficiently enumerating feasible unroll vectors 
(legal con.figurations that satisfy the capacity constraints) 
and selecting an unroll vector that delivers the best savings. 
We also addressed the problem of generating compact code 
for the remainder loops resulting from an unroll transfor- 
mation on nested loops, and showed how our approach can 

generate fewer remainder loops than the classical unroll-and- 
jam approach. Our experimental results on seven SPEC95fp 
benchmarks using the XL Fortran compiler validated the 
robustness of our aapproach and demonstrated its effective- 
ness for use in industry-strength compilers. We expect to see 
larger performance improvements due to unrolling of nested 
loops on processors that have larger numbers of registers 
and larger degrees of instruction-level parallelism than the 
processor used for our measurements (PowerPC 604). 

Possibilities for future work include extensions of the cost 
functions presented in this paper to handle new processor 
features such as software-controlled prefetching and multi- 
media extensions, extensions to model the cache effects of 
load/store instructions, and combining our cost model with 
the initiation inter~ral cost models used in software pipelining 
and modulo scheduling. 

Acknowledgments 

The author would like to thank Khoa Nguyen was his contri- 
bution to the algorithm for generating compact code when 
unrolling multiple nested loops, and Krish.ua Palem and 
Barbara Simous for their contributions to the algorithm 
for selection of unroll factors. The author would also like 
to thank members of the original ASTI optimizer group 
at IBM Santa Teresa Laboratory for their contributions to 
the design and initial implementation of the ASTI optimizer 
during 1991-1993, and members of the Parallel Development 
group in the IBM Toronto Laboratory for their ongoing work 
since 1994 on extending and shipping the ASTI optimizer as 
part of the IBM xL FORTRAN compiler products. 

References 

[1] Michael J. Alexander, Mark W. Barley, Bruce R.. 
Childers, Jack W. Davidson, and Sanjay Jinturkar. 
Memory bandwidth optimizations for wide-bus ma- 
chines. Proceedings of the ~fith Hawaii International 
Conference on System Sciences, Wailea, Hawaii, pages 
466-475, January 1993. 

[2] F. E. Allen and J. Cocke. A catalogue of optimizing 
transformations. In Design and Optimization of Com- 
pilers, pages 1-30. Prentice-Hall, 1972. 

[3] D. F. Bacon, S. L. Graham, and O. J. Sharp. Com- 
piler Transformations for High-Performance Comput- 
ing. A CM Computing Surveys, 26(4):345-420, Decem- 
ber 1994. 

[4] Mauricio Breternitz, Michael Lai, Vivek Sarkar, and 
Barbara Simons. Compiler Solutions for the Stale-Data 
and False-Sharing Problems. Technical report, IBM 
Santa Teresa Laboratory, April 1993. TR 03.466. 

[5] David Callahan, Steve Can-, and Ken Kennedy. Im- 
proving Register Allocation for Subscripted Variables. 
Proceedings of the ACM SIGPLAN '90 Conference on 
Programming Language Design and Implementation, 
White Plains, New York, pages 53-65, June 1990. 

[6] S. Can" and Y. Guan. Unroll-and-Jam Using Uniformly 
Generated Sets. Proceedings of MICRO-30, pages 349- 
357, December 1997. 

[7] Steve Carr and Ken Kennedy. Improving the ratio 
of memory operations to floating-point operations in 
loops. ACM TOPLAS, 16(4), November 1994. 

162 



[8] Steve Cart and Ken Kennedy. Scalar Replacement in 
the Presence of Conditional Control Flow. Software-- 
Practice and Experience, (I):51-77, January 1994. 

[9] The Standard 
Performance Evaluation Corporation. SPEC CPU95 
Benchmarks. http://open.specbench.org/osg/cpu95/, 
1997. 

[10] Jack W. Davidson and Sanjay Jinturkar. Aggressive 
Loop Unrolling in a Retargetable, Optimizing Corn- 
prier. In Compiler construction. Proceedings of the 
6th international conference. Held Apr. $~-$6, 1996 in 
Linkoping, Sweden., volume 1060 of Lecture Notes in 
Computer Science. Springer-Verlag, New York, 1996. 

[11] J. J. Dongarra and A. R. Hinds. Unrolling Loops in 
Fortran. Software - Practice and Exper/ence, 9(3):219- 
226, March 1979. 

[12] Jeanne Ferrante, Vivek Sarkar, and Wendy Thrash. On 
Estimating and Enhan~-xg Cache Effectiveness. Lecture 
Notes in Computer Science, (589):328-343, 1991. Pro- 
ceedings of the Fourth International Workshop on Lan- 
guages and Compilers for Parallel Computing, Santa 
Clara, California, USA, August 1991. Edited by U. 
Banerjee, D. Gelernter, A. Nicolau, D. Padua. 

[13] J. A. Fisher, J. It. Ellis, J. C. Ruttenberg, and 
A. Nicolau. Parallel Processing: A Smart Compiler and 
a Dumb Machine. Proceedings of the A CM Symposium 
on Compiler Construction, pages 37 - 47, June 1984. 

[14] Iteese B. Jones and Vicki H. Allan. Software pipellning: 
an evaluation of enhanced pipelining. Proceedings of the 
~ t h  annual international symposium on Microarchitec- 
ture, pages 82-92, December 1990. 

[15] Daniel M.Lavery and Wen-Mei W.Hwu. Unrolling- 
based optimizations for modulo scheduling. Proceedings 
of MICRO-S8, pages 327-337, December 1995. 

[16] T. C. Mowry. Tolerating Latency Through So ,  ware- 
Controlled Data Prefetching. Phi) thesis, Stanford 
University, March 1994. 

[17] Allan K. Porterfield. Software Methods for Improve- 
ment of Cache Performance on Supercomputer Appli- 
cations. PhD thesis, Rice University, May 1989. Rice 
COMP TR89-93. 

[18] B. Ramakrishna Rau. Iterative modulo scheduling: an 
algorithm for software pipelining loops. Proceedings of 
the 27th annual international symposium on Microar- 
chitecture, San Jose, CA USA, pages 63-74, November 
1994. 

[19] Vivek Sarkar. Automatic Partitioning of a Program 
Dependence Graph into Parallel Tasks. IBM Journal 
o] Research and Development, 35(5/6), 1991. 

[20] Vivek Sarkar. Automatic Selection of High Order 
Transformations in the IBM XL Fortran Compilers. 
IBM Journal of Research and Development, 41(3), May 
1997. 

[21] Vivek Sarkar and Barbara Simons. Don't Waste Those 
Cycles: An In-Depth Look at Scheduling Instructions 
in Basic Blocks and Loops. Video Lecture in University 
Video Communication's Distinguished Lecture Series 
IX, August 1994. 

[22] Vivek Sarkar and Radhika Thekkath. A General Frame- 
work for Iteration-iteordering Loop Transformations. 
Proceedings of the A CM SIGPLAN "9~ Conference on 
Programming Language Design and Implementation, 
pages 176-187, June 1992. 

[23] Bogong Su, Shiyuan Ding, Jian Wang, and Jinshi 
Xia. GURPR--a  method for global software piplining. 
Proceedings of the ZOth annual international symposium 
on Microarch~tecture , pages 88-96, December 1986. 

[24] S. Weiss and J. E. Smith. A Study of Scalar 
Compilation Techniques for Pipelined Supercomputers. 
Proceedings of the Second International Conference on 
Architectural SUpport for Programming Language and 
Operating Systems (ASPLOS), pages 105-109, October 
1987. 

[25] Michael E. Wolf and Monica S. Lam. A Data Locality 
Optimization Algorithm. Proceedings of the A CM SIG- 
PLAN Symposium on Programming Language Design 
and Implementation, pages 30-44, June 1991. 

[26] Michael J. Wolfe. Optimizing Supercompilersfor Super- 
computers. Pitman, London and The MIT Press, Cam- 
bridge, Massachusetts, 1989. In the series, Research 
Monographs in Parallel and Distributed Computing. 

A Example, of Generating Compact Code for Unrolling 
Multiple Loops 

Consider generating code for unroll vector (4, 4, 4, 1) for the 
following example nest of four loops (such an unroll vector 
may be selected due to register locality considerations): 

dolfl, n 
dok= I, n 

d o j  = 1 ,  n 
d o i = 1 ,  n 

sum = sum + a ( i , j , k )  + b ( i , j , 1 )  + c ( i , k , 1 )  
end do 

end do 
end do 

end do 

The transformed code generated for this example ob- 
tained by using the unroll-and-jam approach is shown in 
Figures 11 and 12. Figure 13 shows the transformed code 
obtained by using the code generation algorithm presented 
in this paper. Both approaches generated an unrolled loop 
body containing 4 x 4 x 4 = 64 copies of the original loop 
body. However, our algorithm generated 4 x 4 % 4 + 1 = 21 
remainder loops for this example as opposed to 5 x 5 x 5 - 
64 -- 61 remainder loops generated by the unroll-and-jam 
approach. The number of remainder loops generated by the 
unroll-and-jam approach can potentially be reduced by first 
"rerolling" all unrolled remainder loops and then performing 
an "index set merging" transformation on remainder loops 
(i.e., the inverse of the "index set splitting" transforma- 
tion [26]). However, we are not aware of any compiler that 
performs loop rerolling and index set merging of loops after 
applying an unroll-and-jam transformation. 
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do 1 = 1 ,  n - 3 ,  4 sum 
do k = I ,  n - 3 ,  4 Sum 

do j = 1 ,  n - 3 ,  4 sum 
do  i = 1 ,  n s m  

sum = sum+a(i,j,k)+b(i,j,l)+c(i~k,l) sum 

sum = s u m + a ( i , j + l , k ) + b ( i , j + f , l ) ÷ ¢ ( i , k , l )  sum 

sum = sum+a(i,j+2,k)+b(i,j+2,1)+c(i,k,l) sum 

SUm = sum+a(i,j+3,k)+b(i,j+3,1)+c(i,k,l) sum 

SUm = sum+a(i,j,k+l)+b(i,j,l)+¢(i,k+1,1) e n d  do  

SUm = sum+a(i,j+l,k+l)+b(i,j÷l,l)+c(i,k+1,1) e n d  do  
SUm = sum+a(i,j+2,k+l)÷b(i,j+2,1)+c(i,k+1,1) do j = j, 

sum = sma+a(i,j+3,k+l)+b(i,j+3,1)+c(i,k+l,l) do i = 

sum = sum+a(i,j,k+2)+b(i,j,l)+c(i,k+2,1) sum 

sum = sum+a(i,j+l,k+2)+b(i,j+l,l)+c(i,k+2,1) sum 

sum = sum+a(i,~+2,k+2)+b(i,j+2,1)+¢(i,k+2,1) sum 

sum = smm+a(i,j+3,k+2)+b(i,j+3,1)+c(i,k+2,1) sum 

sum = s u m + a ( i , j , k + 3 ) + b ( i , j , l ) + c ( i , k + 3 , 1 )  e n d  do  

sum = s u m + a ( i , j + l , k + 3 ) + b ( i , j + l , l ) ÷ c ( i , k + 3 , 1 )  e n d  do  
sum = s u m + a ( i , j + 2 , k + 3 ) + b ( i , j + 2 , 1 ) + c ( i , k + 3 , 1 )  e n d  do  
sum = s u m + a ( i , j + 3 , k + 3 ) + b ( i , j + 3 , 1 ) + c ( i , k + 3 , 1 )  do  k = k ,  n 

s u m =  s u m + a ( i , j , k ) + b ( i , j , l + l ) + c ( i , k , l + l )  do j = 1 ,  
sum = s u m + a ( i , j + l , k ) + b ( i , j + l , l + 1 ) + ¢ ( i , k , l + l )  do i = 
sum = sum+a(i,j+2,k)+b(i,j+2,1+l)+c(i,k,l+l) sum 

sum = sum+a(i,j+3,k)+b(i,j+3,1÷l)+c(i,k,l+l) sum 

sum = sum+a(i,j,k+l)+b(i,j,l+l)+c(i,k+l,l+1) sum 

sum= sum+a(i,j+l,k+l)+b(i,j+l,l+l)÷c(i,k+l,l+l) sum 

sum = sum+a(i,j+2,k+l)+b(i,j+2,1+l)+c(i,k+l,l÷l) end do 

sum : sum+a(i,j+3,k+l)+b(i,j+S,l+l)+c(i,k+l,l+l) e n d  do  

sum = sum+a(i,j,k+2)+b(i,j,l+l)+¢(i,k+2,1+l) do j = j, 

sum = sum+a(i,j+1,k+2)+b(i,j+1,1+1)+c(i,k+2,1+l) do i = 

sum = sum+a(i,j+2,k+2)+b(i,j+2,1+l)+¢(i,k+2,1+l) sum 

sum = sum+a(i,j+3,k+2)+b(i,j+3,1+l)+¢(i,k+2,1+i) end do 

sum = sum+a(i,j,k+3)+b(i,j,l+l)+c(i,k+3,1+l) end do 

sum = sum÷a(i,j+l,k+3)+b(i,j+l,l+l)+c(i,k+3,1+1) end do 

sum = sum+a(i,j+2,k+3)+b(i,j+2,1+1)÷c(i,k+3,1+l) 

sum = sum+a(i,j+3,k+3)+b(i,j+3,1+1)+c(i,k+3,1+l) 

sum = sum+a(i,j,k)+b(i,j,l÷2)+c(i,k,l+2) 

sum = sum+a(i,j+l,k)+b(i,j+1,1÷2)+c(i,k,l+2) 
sum = sum+a(i,j+2,k)+b(i,j+2,1+2)+c(i,k,l÷2) 

sum = sum+a(i,j+3,k)÷b(i,j+3,1+2)+c(i,k,l+2) 

sum = sum+a(i,j,k+l)+b(i,j,l+2)÷c(i,k+1,1+2) 

sum = sum+a(i,j+l,k+l)+b(i,j+l,l+2)+¢(i,k+l,l+2) e n d  do 

sum = $wm+a(i,j+2,k+l)+b(i,j+2,1+2)+c(i,k+l,l+2) end do 

sum = s u m + a ( i , j + 3 , k + l ) + b ( i , j + 3 , 1 + 2 ) + c ( i , k + l , l + 2 )  e n d  do  

sum = s u m + a ( i , j , k + 2 ) + b ( i , j , l + 2 ) ÷ ¢ ( i , k + 2 , 1 + 2 )  do k = k ,  n 
suJn = s u m + a ( i , j + l , k + 2 ) + b ( i , j + l , l + 2 ) + c ( i , k + 2 , 1 + 2 )  do  j = I ,  
sum = s u m + a ( i , j + 2 , k + 2 ) + b ( i , j + 2 , 1 + 2 ) + c ( i , k + 2 , 1 + 2 )  do i = 
sum = s u m + a ( i , j + 3 , k + 2 ) + b ( i , j + 3 , 1 + 2 ) + c ( i , k + 2 , 1 + 2 )  sum 

sum = sum+a(i,j,k+3)+b(i,j,l+2)÷c(i,k+3,1+2) sum 

smm = sum÷a(i,j+l,k+3)+b(i,j÷l,l+2)+c(i,k+3,1+2) sum 

sum = sum+a(i,j+2,k+3)+b(i,j÷2,1+2)+c(i,k÷3,1+2) sum 

sum = s u m + a ( i , j + 3 , k + 3 ) + b ( i , j + 3 , 1 + 2 ) ÷ c ( i , k + 3 , 1 ÷ 2 )  e n d  do 
sum = sum+a(i,j,k)+b(i,j,l+3)+¢(i,k,l+3) end do 

sum = sum+a(i,j+1,k)+b(i,j+l,l÷3)+c(i,k,l+3) do j = j, 

sum = sum+a(i,j+2,k)+b(i,J+2,1+3)+¢(i,k,l+3) do i = 

smm = sme+a(i,j+3,k)+b(i,j+3,1+3)+¢(i,k,l+3) sum 

s~m = s u m + a ( i , j , k + l ) + b ( i , j , l + 3 ) + c ( i , k + l , l + 3 )  end do 
sum = sum+a(i,j+l,k+l)+b(i,j+l,l+3)+c(i,k+1,1+3) end do 

sum = sum+a(i,j+2,k+1)+b(i,j+2,1+3)÷c(i,k+1,1+3) end do 

sum = sum+a(i,j+3,k+l)+b(i,j+3,1+3)+c(i,k+l,l+3) 

= s u m + a ( i , j , k + 2 ) + b ( i , j , l + 3 ) + c ( i , k + 2 , 1 + 3 )  

= s u m + a ( i , j + l , k + 2 ) + b ( i , j + l , l + 3 ) + c ( i , k + 2 , 1 + 3 )  
= s u m + a ( i , j + 2 , k + 2 ) + b ( i , j + 2 , 1 + 3 ) + c ( i , k + 2 , 1 + 3 )  
= sum+a(i,j+3,k+2)+b(i,j+3,1+3)+c(i,k+2,1+3) 

= S u m + a ( i , j , k + 3 ) + b ( i , j , l + 3 ) + c ( i , k + 3 , 1 + 3 )  
= s u m + a ( i , j + l , k + 3 ) + b ( i , j + 1 , 1 + 3 ) + c ( i , k + 3 , 1 + 3 )  

= s u m + a ( i , j + 2 , k + 3 ) + b ( i , j ÷ 2 , 1 + 3 ) + c ( i , k + 3 , 1 + 3 )  
= s u m + a ( i , j + 3 , k + 3 ) + b ( i , j + 3 , 1 + 3 ) + c ( i , k + 3 , 1 + 3 )  

I ,  n 

= sum+a(i,j,k)+b(i,j,l)+c(i,k,l) 

= sum+a(i,j,k+l)÷b(i,j,l)+¢(i,k+l,l) 

= sum+a(i,j,k+2)+b(i,j,l)+c(i,k+2,1) 

= sum+a(i,j,k+3)+b(i,j,l)+c(i,k+3,1) 

n-3, 4 

= sum+a(i,j,k)+b(i,j,l)+c(i,k,1) 

= sum+a(i,j+l,k)+b(i,j+l,l)+c(i,k,l) 

= s u m + a ( i , j + 2 , k ) + b ( i , j + 2 , 1 ) + c ( i , k , l )  
= s u m + a ( i , j + 3 , k ) + b ( i , j + 3 , 1 ) + c ( i , k , 1 )  

n 

l,n 

= sum+a(i, j ,k) +b(i, j, l)+c (i,k, I) 

do k = 1 ,  n - 3 ,  4 

d o j = j , n  
d o i : l ,  n 

sum = s u m + a ( i , j , k ) + b ( i , j , l + l ) + c ( i , k , l + l )  
sum = sum+a(i,j,k+l)+b(i,j,l+l)+c(i,k+l,l+l) 

sum= sum+a(i,j,k+2)+b(i,j,l+l)+c(i,k+2,1+l) 
sum = sum+a(i,j,k+3)+b(i,j,l+l)+c(i,k+3,1+l) 

n - 3 ,  4 

1 ,  n 
= sum+a(i,j,k)+b(i,j,l+l)+c(i,k,l+l) 

= sum+a(i,j+l,k)+b(i,j+l,l+1)+c(i,k,l+l) 

= sum+a(i,j+2,k)+b(i,j+2,1+l)+c(i,k,l+l) 

= sum÷a(i,j+3,k)+b(i,j+3,1+1)+c(i,k,l+l) 

n 
1, n 
= s u m + a ( i , j , k ) + b ( i , j , l + l ) + c ( i , k , l + l )  

Figure 11: Generated code using unroll-and-jam transformation (Part 1 of 2) 
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do k = 1 ,  n - 3 ,  4 
do j = j ,  n 

do i = 1 ,  n 
sum = s u m + a ( i , j , k ) + b ( i , j , l + 2 ) + c ( i , k , l + 2 )  
sum = s u m + a ( i , j , k + l ) + b ( i , j , l + 2 ) + c ( i , k + l , l + 2 )  
sum = s u m + a ( i , j , k + 2 ) + b ( i , j , l + 2 ) + c ( i , k ÷ 2 , 1 ÷ 2 )  
sum = s u m + a ( i , j , k + 3 ) + b ( i , j , l + 2 ) + c ( i , k + 3 , 1 + 2 )  

end  do 
end  do 

e n d  do 
d o k  = k ,  n 

d o j  = 1 ,  
do i =  

s~um 

sum 

snm 

siQum 

e n d  do 
e n d  do 
doj = j ,  

do i =  
sum 

e n d  do 
end  do 

e n d  do 

n - 3 ,  4 
I~ n 

= sum+a(i,j,k)+b(i,j,l+2)+c(i,k,l+2) 
= sum+a(i,j+l,k)+b(i,j+l,l+2)+c(i,k,l+2) 
= sum+a(i,j+2,k)+b(i,j+2,1+2)+c(i,k,l+2) 
= sum+a(i,j+3,k)+b(i,j+S,l+2)+c(i,k,l+2) 

n 

1, n 

= sum+a(i,j ,k)+b(i,j ,l+2)+c(i,k,l+2) 

do k = 1, n-3, 4 
do j = j ,  n 

do i = 1, n 
sum= s m ~ + a ( i , j , k ) + b ( i , j , l + 3 ) + c ( i , k , l + 3 )  
sum= s u m + a ( i , j , k + l ) + b ( i , j , l + 3 ) + c ( i , k + l , l + 3 )  
sum = s u m + a ( i , j , k + 2 ) + b ( i , j , l + 3 ) + c ( i , k + 2 , 1 + 3 )  
sum = sum+a(i,j,k+3)+b(i,j,l+3)+c(i,k+3,1+3) 

end do 
end  do 

e n d  do 
do k = k ,  n 

do j = 1 ,  n - 3 ,  4 
do i = 1 ,  n 

s u m =  sum+a(i,j,k)+b(i,j,l+3)+c(i,k,l+3) 
sum= sum+a(i,j+l,k)+b(i,j+l,l+3)+c(i,k,l+3) 
sum = sum+a(i,j+2,k)+b(i,j+2,1+3)+c(i,k,l+3) 
sum= sum+a(i,j+3,k)+b(i,j+3,1+3)÷c(i,k,l+3) 

e n d  do 
end  do 
d o j = j , n  

do i = 1 ,  n 
sum = sum+a(i,j,k)+b(i,j,l+S)+c(i,k,l+3) 

e n d  do 
end  do 

end  do 
end  do 
do i=I, n 

do k = 1, n-3, 4 
do j = 1, n-3, 4 

doi=l~n 
sum = sum+a(i,j,k)+b(i~j,l)+c(i,k,l) 
sum = sum+a(i,j+1,k)+b(i,j+l,l)+c(i,k,l) 
sum = sum+a(i,j+2,k)+b(i,j+2,1)+c(i,k,l) 
sum = sum+a(i,j+3,k)+b(i,j+3,1)+c(i,k,l) 

S~ 

e n d  do 
e n d  do 
d o j  = j ,  

do i =  
snm 

s~um 

sam 

sum 

e n d  do 
e n d  do 

e n d  do 
do k = k ,  n 

sum= sum+a(i,j,k+l)+b(i,j,1)+c(i,k+l,1) 
sum = sum+a(i,j+l,k+l)+b(i,j+l,1)+c(i,k+l,1) 
sum = sum÷a(i,j+2,k+l)+b(i,j+2,1)+c(i,k+l,l) 
sum = sum+a(i,j+3,k+l)+b(i,j+3,1)+c(i,k+l,l) 
sum = sum÷a/i,j,k+2)+b(i,j,l)+c(i,k+2,1) 
sum= sum*a(i,j÷l,k÷2)+b(i,j+l,l)+c(i,k+2,1) 
sum= slm÷a(i~2,k+2)+b(i,j+2,1)+c(i,k+2,1) 
sum = sum+a(i,j+3,k+2)+b(i,j+3,1)+c(i,k+2,1) 
sum = $um+a(i~j~k+3)+b(i,j,l)÷¢(i,k+3,1) 
sum = sum+a(i~j÷l,k+3)+b(i,j+l,1)+c(i,k+3,1) 
sum = sum+a(i,j+2,k+3)+b(i,j+2,1)+c(i,k+3,1) 

= sum÷a(i~j+3,k+3)+b(i,j+3,1)+¢(i,k+3,1) 

n 

1, n 
= sum+a(i,j,k)+b(i,j,l)+c(i,k,l) 
= sum+a(i,j,k+l)+b(i,j,1)+c(i,k+l,l) 
= sum+a(i,j,k+2)÷b(i,j,l)+c(i,k+2,1) 
= sum÷a(i,j,k+3)+b(i,j,l)+c(i,k+3,1) 

do j = I ,  n - 3 ,  4 
d o i = l , n  

sum -~ s u m ÷ a { i ,  j , k ) + b ( i ,  j , l ) + c ( £ , k , l )  
sum = s a m ÷ a ( i , j + l , k ) + b ( i , j + l , l ) + c ( i , k , l )  
sam - s u a ÷ a ( i , j + 2 , k ) + b ( i , j + 2 , 1 ) + c ( i , k , 1 )  
sum = s n m + a ( i , j ÷ 3 , k ) + b ( i , j + 3 , 1 ) + c ( i , k , 1 )  

e n d  do 
e n d  do 
d o j = j , n  

d o i = l , n  
sum = s n m + a ( i , j , k ) + b ( i , j , 1 ) + ¢ ( i , k , 1 )  

e n d  do 
e n d  do 

en d  do 
en d  do 

Figure 12: Generated code using unrolI-aad-jam t r ans foma t ion  (par t  2 of 2) 
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do I = I , n - 3 , 4  
do k = 1 , n - 3 , 4  

do j = l , n - 3 , 4  
do i = l , n , l  
sum = s u m + a ( i , j , k ) + b ( i , j , l ) + c ( i , k , l )  
sum = sum+a(i,j,k)+b(i,j,l+l)+c(i,k,l+l) 

sum = sum+a(i,j,k)+b(i,j,l+2)+¢(i,k,l+2) 

sum = sum+a(i,j,k)÷b(i,j,l+3)+c(i,k,l+3) 

sum = sum+a(i,j,k+l)÷b(i,j,1)+c(i,k+l,l) 

sum= sum+a(i,j,k+l)+b(i,j,l+l)+¢(i,k+l,l+l) 

sum = sum+a(i,j,k+l)+b(i,j,l+2)+¢(i,k+l,1+2) 
sum = sum+a(i,j,k+l)+b(i,j,l+3)+¢(i,k+l,l+3) 

sum = sum+a(i,j,k+2)+b(i,j,l)+c(i,k+2,1) 

sum = sum+a(i,j,k+2)+b(i,j,l+l)+¢(i,k+2,1+1) 

sum = sum+a(i,j,k+2)+b(i,j,l+2)÷c(i,k+2,1+2) 

sum = sum+a(i,j,k+2)+b(i,j,l+3)+c(i,k+2,1+3) 

sum = sum+a(i,j,k+3)+b(i,j,l)+c(i,k+3,1) 

sum = sum+a(i,j,k+3)+b(i,j,l+l)+c(i,k+3,1+1) 

sum = sum+a(i,j,k÷3)+b(i,j,l+2)+c(i,k+3,1+2) 

sum = sum+a(i,j,k÷3)+b(i,j,l+3)+c(i,k+3,1+3) 

sum = sum+a(i,j+1,k)+b(i,j+l,l)+c(i,k,l) 

sum = sum+a(i,j÷l,k)+b(i,j+l,l+l)+c(i,k,l+l) 

sum = sum+a(i,j+1,k)+b(i,j+l,l+2)+c(i,k,l+2) 

sum = s~m+a(i,j+l,k)+b(i,j+l,l+3)+c(i,k,l+3) 

sum = sum+a(i,j+l,k+l)+b(i,j+l,l)+c(i,k+l,l) 

sum = sum+a(i,j+l,k+l)+b(i,j+l,l+l)+c(i,k+1,1+l) 

sum = snm+a(i,j+l,k+l)+b(i,j+1,1+2)+c(i,k+l,l÷2) 

sum = sum+a(i,j+l,k+l)+b(i,j+l~l+3)+e(i,k+l,l+3) 

sum = sum+a(i,j+l,k+2)+b(i,j+l,l)+c(i,k+2,1) 

sum = smm+a(i,j+1,k+2)+b(i,j÷1,1+1)+c(i,k+2,1+1) 

sum = sum+a(i,j+l,k+2)+b(i,j+1,1+2)+c(i,k+2,1+2) 

sum = smm÷a(i,j~1,k+2)÷b(i,j+l,l÷3)+c(i,k+2,1+3) 

sum = sum+a(i,j+l,k+3)+b(i,j+l,l)+c(i,k+3,1) 

sum = sum+a(i,j+1,k+3)+b(i,j+l,l+l)+c(i,k+3,1+l) 

sum = sum+a(i,j+1,k+3)+b(i,j+1,1+2)+c(i,k+3,1+2) 

sum= sum+a(i,j+l,k+3)+b(i,j+l,l+3)+c(i,k+3,1+3) 

sum = sum+a(i,j+2,k)+b(i,j+2,1)+c(i,k,l) 

sum = sum+a(i,j+2,k)+b(i,j+2,1+l)+c(i,k,l+l) 

sum = sum+a(i,j+2,k)+b(i,j+2,1+2)+c(i,k,l+2) 
sum = s~um+a(i,j+2,k)+b(i,j+2,1+3)÷¢(i,k,l+3) 

sum = sum+a(i,j+2,k+l)+b(i,j÷2,1)+c(i,k+1,1) 

S~ = sum+a(i,j+2,k+1)÷b(i,~+2,1+1)+c(i,k+1,1+1) 
sum = sum+a(i,j+2,k+l)+b(i,j+2,1+2)+c(i,k+l,l+2) 

sum = sum+a(i,j+2,k+l)+b(i,j+2,1+3)+c(i,k+l,l+3) 
sum = sum+a(i,j+2,k+2)+b(i,j+2,1)+c(i,k+2,1) 

sum = sum+a(i,j+2,k+2)+b(i,j+2,1+1)+c(i,k+2,1+l) 

sum = sum+a(i,j+2,k+2)+b(i,j+2,1+2)+¢(i,k+2,1+2) 

sum = sum+a(i,j+2,k+2)+b(i,j+2,1+3)+c(i,k+2,1+3) 

sum = sum+a(i,j+2,k+3)+b(i,j+2,1)+¢(i,k+3,1) 

sum = sum+a(i,j+2,k+3)+b(i,j+2,1+1)+c(i,k+3,1+l) 
sum = svm+a(i,j+2,k+3)+b(i,j+2,1+2)+c(i,k+3,1+2) 

sum = sum+a(i,j+2,k+3)+b(i,j+2,1+3)+¢(i,k+3,1+3) 

s ~ m  = snm+a(i,j+3,k)+b(i,j+3,1)+c(i,k,l) 

sum= sum+a(i,j+3,k)+b(i,j+3,1+1)+¢(i,k,l+1) 

sum = sum+a(i,j+3,k)+b(i,j+3,1+2)÷c(i,k,l+2) 

sum = sum+a(i,j+3,k)+b(i,j+3,1+3)÷c(i,k,l+3) 
sum = sum+a(i,j+3,k+l)+b(i,j+3,1)÷c(i,k+l,l) 

sum= sum+a(i,j+S,k+l)+b(i,j+3,1+l)+c(i,k+l,l+l) 

sum = sum+a(i,j+3,k+l)+b(i,j+3,1+2)+c(i,k+l,l+2) 
sum = sum+a(i,j+3,k+l)+b(i,j+3,1+3)+c(i,k+l,l+3) 

sum = sum+a(i,j+3,k+2)+b(i,j+3,1)÷¢(i,k+2,1) 
sum= sum+a(i,j+3,k+2)+b(i,j+S,l+l)+c(i,k+2,1+l) 

sum = sum+a(i,j+3,k+2)+b(i,j+3,1+2)+c(i,k+2,1+2) 

sum = sum+a(i,j+3,k+2)+b(i,j+3,1+3)+c(i,k+2,1+3) 
sum = sum+a(i,j+3,k+Z)+b(i,j+3,1)+c(i,k+3,1) 
sum = sum+a(i,j+3,k+3)+b(i,j+3,1+l)+c(i,k+3,1+l) 

sum = sum+a(i,j+3,k+3)+b(i,j+3,1+2)+c(i,k+3,1+2) 

sum = sum+a(i,j+3,k+3)+b(i,j+3,1+3)+c(i,k+3,1+3) 
end do 

end do 
do j=j,n,1 

do i=l,n,1 

sum = sum+a(i,j,k)+b(i,j,l)+c(i,k,l) 

s11m = 

$ ' o m  = 

S R m  = 

S U m  = 

S'OR = 

s ~  = 

S l l ~ t  = 

S ~  = 

S l i m  = 

s l i m  = 

S ~ ] l l  = 

s ' o l  = 

sD.m = 

S'O.R = 

e n d  d o  

end do 
end do 

sum÷a(i,j,k)+b(i,j,l÷1)+c(i,k,l+l) 

sum+a(i,j,k)+b(i,j,l+2)+c(i,k,l+2) 

sum+a(i,j,k)+b(i,j,l+3)+c(i,k,l+3) 

sum+a(i,j,k+l)+b(i,j,l)+c(i,k+l,l) 

sum+a(i,j,k+l)+b(i,j,l+l)+c(i,k+l,l+l) 

sum+a(i,j,k+l)+b(i,j,l+2)+c(i,k+l,l+2) 

sum+a(i,j,k+l)+b(i,j,l+3)+c(i,k+1,1+3) 

sum+a(i,j,k+2)+b(i,j,l)+c(i,k+2,1) 

sum÷a(i,j,k+2)+b(i,j,l+1)+c(i,k+2,1+l) 

sum÷a(i,j,k+2)+b(i,j,l+2)+c(i,k+2,1+2) 

snm+a(i,j,k+2)+b(i,j,l+3)+c(i,k+2,1+3) 

sum+a(i,j,k+3)+b(i,j,l)+c(i,k+3,1) 
sum+a(i,j,k+3)+b(i,j,l+l)+c(i,k+3,1+1) 

sum+a(i,j,k+3)+b(i,j,l+2)+c(i,k+3,1+2) 

sum÷a(i,j,k+3)+b(i,j,l+3)+c(i,k+3,1+3) 

do k = k , n , l  
do j : l , n , 1  

do i : l , n , 1  
SUm = sum+a(i,j,k)+b(i,j,l)+c(i,k,l) 

sum = sum+a(i,j,k)+b(i,j,l+l)+c(i,k,l+l) 

sum= sum+a(i,j,k)+b(i,j,l+2)+c(i,k,l+2) 

smn = sum+a(i,j,k)+b(i,j,l+3)+c(i,k,l+3) 

end do 
end do 

end do 
end do 

do 1 = 1 , n , 1  
do k = l , n , 1  

do j = l , n , 1  
do i = l , n , l  

sum = sum÷a(i,j,k)+b(i,j,l)+c(i,k,1) 

end do 
end do 

end do 
end do 

Figure 13: Generated code using compact code generation 
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