
Optimized Unrolling of Nested Loops

Vivek S a r k a r

I B M R e s e a r c h

T h o m a s J . W a t s o n R e s e a r c h C e n t e r

P .O . B o x 704, Y o r k t o w n He igh t s , N Y 10598

Email: vsarkar@us.ibm.com

Abstract

In this paper, we address the problems of automatically
selecting unroll factors for perfectly nested loops, and gener-
ating compact code for the selected unroll factors. Compared
to past work, the contributions of our work include a) a more
detailed cost model that includes ILP and I-cache consid-
erations, b) a new code generation algorithm for unrolling
nested loops that generates more compact code (with fewer
remainder loops) than the unroll-and-jam transformation,
and c) a new algorithm for efficiently enumerating feasible
unroll vectors.

Our experimental results con.firm the wide applicability
of our approach by showing a 2.2× speedup on matrix multi-
ply, and an average 1.08× speedup on seven of the SPEC95fp
benchmarks (with a 1.2× speedup for two benchmarks).
These speedups are significant because the baseline compiler
used for comparison is the IBM XL Fortran product como
prier which generates high quality code with unrolling and
software pipelining of innermost loops enabled. Larger per-
formsnce improvements due to unrolling of nested loops can
be expected on processors that have larger numbers of regis-
ters and larger degrees of instruction-level parallelism than
the processor used for our measurements (PowerPC 604).

1 Introduct|on

Loop unrolling [2] is a well known program transformation
that has been used in optimizing compilers for over three
decades. In addition to its use in compilers, many software
libraries for matrix computations contain loops that have
been hand-unrolled for improved performance [11]. The
original motiwtion for loop unrolling was to reduce the
(amortized) increment-and-test overhead for loop iterations.
For modern processors, the primary benefits of loop un-
rolling include increased instruction-level parallelism (ILP),
improved register locality ("register tiling"), and improved
memory hierarchy locality [13, 3, 8]. Loop unrolling is also
essential for effective exploitation of some newer hardware
features e.g., for uncovering opportunities for generating
dual-load/dual-store instructions [1], and for amortizing the
overhead of a single prefetch instruction across multiple load

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed tbr profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS 2000 Santa Fe New Mexico USA
Copyright ACM 2000 1-58113-270-0/00/5...$5.00

or store instructions [16, 4].
However, it has been observed that loop unrolling can

also have a negative effect on a program's performance when
it is not used judiciously. For example, excessive unrolling
can lead to run-time performance degradation due to extra
register spills when the working set ('~egister pressure") of
the unrolled loop body exceeds the number of available regis-
ters [7]. Another concern is with the code size of the unrolled
loop, which can overflow a small first-level instruction-cache
if loop unrolling is performed too aggressively [10]. Apart
from creating a large unrolled loop body, additional loops
have to be introduced to correctly handle cases where the
unroll factor does not evenly divide the number of iterations.
These remainder loops substantially increase the compile-
time for the transformed code and the size of the final object
code, even though only a small fraction of the program's
execution time is spent in these remainder loops.

Most industry-strength compilers (including the optim/z-
ing back-end of the XL Fortran compiler, which is the base-
line for our performance measurements) perform software
pipelining and limited unrolling of innermost loops. How-
ever, zmrolling of perfectly nested loops (as in the unroll-and-
jam transformation [2, 5]) is performed less frequently (and
with greater caution) because of its potential for increased
overhead due to increases in run-time, compile-time or code
size.

In this paper, we address the problems of automatically
selecting unroll factors for a set of perfectly nested loops,
and generating compact code for the selected unroll fac-
tors as as to make it a practical transformation for use by
industry-strength compilers. Compared to past work, the
contributions of our work include a) a more detailed cost
model that includes ILP and I-cache considerations, b) a
new code generation algorithm for unrolling nested loops
that generates more compact code (with fewer remainder
loops) than the unroll-and-jam transformation, and c) a new
algorithm for efficiently enumerating feasible unroll vectors.

The problem of automatically selecting unroll factors
for nested loops has been addressed in past work by Cart
and Kennedy [7] and more recently by Carr and Guan [6].
For loop kernels, their results are impressive and make a
convincing case for leaving the task of selecting unroll factors
to the compiler rather than the programmer. However,
their results for full applications are less convincing ~ no
results were reported for applications in [6], and for the 10
applications considered in [7] from the SPEC92, Perfect and
RiCEPS benchmark suites, the average speedup obtained
was 1.04× on an RS/6000 model 540.

The algorithm used in [7] was based on the use of input

153

http://crossmark.crossref.org/dialog/?doi=10.1145%2F335231.335246&domain=pdf&date_stamp=2000-05-08

dependences [17], whereas the approach in [6] was based
on using the reuse model from [25] and its associated lin-
ear algebra]ramecaor~. Our solution (which was developed
independently 1 of these past approaches) has a different
technical foundation based on using cost models that are
both more detailed and more efficient to compute than the
cost models used in previous work. Our current performance
results on a PowerPC 604 processor show an average 1.08x
speedup on seven of the SPEC95fp benchmarks (with a
1.2× speedup for two benchmarks). The only benchmark
common to [7] and to our results is the SPEC benchmark,
tomcatv. For tomcatv, the speedup due to unroll-and-jam
(and scalar replacement) reported in [7] was only 1.01×,
whereas the speedup for tomcatv obtained using our ap-
proach was 1.23×.

The rest of the paper is organized as follows. Section 2
describes our approach to automatic selection of unroll fac-
tors for a set of perfectly nested loops. Section 3 describes
how we generate code for a specified unroll vector; this
algorithm generates code that is more compact than the
code generated by the unroll-and-jam transformation. Sec-
tion 4 contains our experimental results. Section 5 discusses
related work, and Section 6 contains our conclusions. Ap-
pendix A contains an example to illustrate the compactness
of the code generation obtained by our approach, compared
to that of the unroll-and-jam transformation.

2 Automatic Selection of Unroll Factors

This section describes our approach to automatic selection
of unroll factors for a set of perfectly nested loops. Sec-
tion 2.1 reviews the unroll-and-jam transformation. Sec-
tion 2.2 formalizes selection of unroll factors for multiple
perfectly nested loops as an optimization problem. Sec-
tion 2.3 introduces our cost function for estimating the cost
of an unrolled loop nest for a given vector of unroll factors,
and capacity cost functions to model register set and I-
cache constraints. Section 2.4 outlines our algorithm for
efficiently enumerating feasible unroll vectors and selecting
a feasible unroll vector that has lowest cost. Section 2.5 uses
a matrix multiply computation as an example to illustrate
our approach for automatically selecting unroll factors.

The program model assumed in our work is as follows. A
loop is a candidate for unrolling if it is a counted loop with
no premature exits e.g., Fortran DO loops, or special cases
of for loops in C and Java. Unllke some prior work on loop
unrolling, we allow the lower bound, upper bound, and step
expressions to have arbitrary (positive or negative) integer
values that may be unknown at compile-time. We also
permit general (structured or unstructured) acyclic control
flow within a single iteration of the loop nest.

2.1 Unroll-and-Jam

Consider a perfect nest of two loops, ii and £2, as shown in
Figure 1, and assume we wish to unroll only the outer loop
by a factor of R. The first step in Figure 1 shows the result
of a mechanical unrolling of the outer il loop by an unroll
factor of R. (For convenience, we use the standard Fortran
lower-bound, upper-bound, step triple notation to describe
loops that have non-unit step values.)

However, the output of the first step in Figure I is not in
a useful form for enabling code optimization because of the

ZTh¢ origins of our work lie in the ASTI optimizer built during
1991-1993 for adding high level transformations to the XL Fortran
product compilers [20].

STEP I: Unroll the outer il loop
.----.--.

! I|PtrrL00P rEST
DO il ffi lol,hil

DO i2 = io2,hi2
BODY(il,i2)

EID DO
EID DO

Unroll outer
. >

loop R times

! b~ROLLED LOOP
DO il = lol,hil-(R-1),R

DO i2 = io2,h12
BODY(il,i2)

EID DO
• . •

DO i2 = Io2,hi2
BODY(il+R-i,i2)

EID DO
EID DO

! RENAIIDERL00P
DO il = il,hi,1

DO i2 = lo2,hi2
BODY(il,i2)

KID DO
EID DO

STEP 2: Fuse/jam multiple copies of inner i2 loop

L~ROLLED LOOP ! UIROLLED LOOP
DO il = lol,hil-(R-l),R ! (AFTER FUSI0|)

DO i2 : Io2,hi2 DO il : lol,hil-(R-l),R
BODY(il,i2) DO i2 = Io2,hi2

END DO Fuse i2 loops BODY(il,i2)
• . • >

DO i2 = io2,hi2 BODY(il+R-I,i2)
BODY(iI+R-I,i2) E~D DO

E|D DO E|D DO
E|D DO

! RENAI|DER LOOP ! REI~tI|DER LOOP (UJCHA|GED)

Figure I: Unrolling of outer loop in a nest of two counted
loops (Unroll-and-Jam)

multiple copies of the inner £2 loop present after unrolling
the i l loop. The performance benefits due to unrolling are
realized when the multiple copies of the i2 loop are fused
together as shown in step 2 of Figure 1 (the remainder loop
is unaffected by this loop fusion step). As described in Sec-
tion 3, this two-step unroll-and-jam sequence is performed
as a single transformation in our framework.

Unlike unrolling a single loop, unrolling of multiple loops
is not always legal. The first unroll step can always be
performed, but data dependences may prevent the second
fusion ("jam") step from being performed. Complex (non-
linear) loop bounds may also make it illegal to perform a
loop unrolling transformation. In a classical unroll-and-jam
transformation, it is the responsibRity of the fusion step to
recognize when an illegal unrolling transformation is being
at tempted on a loop nest. However, the legality condition
for unrolling multiple loops is equivalent to that of tiling [26]
i.e., given a set of/¢ perfectly nested loops i l , . . . , i k , it is
legal to unroll outer loop ~j if it is legal to permute loop
ij to the innermost position. In fact, unrolling of multiple
loops can be viewed as dividing the iteration space into small
tiles. However, the iterations in an unrolled "tile" execute
copies of the loop body that have been expanded (unrolled)
in place, rather than executing inner control loops as in tiling
for cache locality.

The transformation in Figure 1 demonstrates how un-
rolling can be performed on a doubly nested loop with unroll

154

vector (R, 1) i.e•, an unroll factor of R for the outer loop
and an unroll factor of 1 (no unrolling) for the inner loop.
However, the framework presented in this paper can be used
to generate code for any unrolling transformation specified
by an arbi t rary unroll vector for a set of perfectly nested
loops.

2.2 Problem Statement

Consider a set of k perfectly nested loops with index vari-
ables, Q , . . . , i~. The perfect loop nest may have been writ-
ten by a programmer or obtained as a result of compiler
transformations such as loop distribution [26, 20]. An un-
rolling transformation can be specified by an unroll vector,
(ffF1, UF2), which identifies an unroll factor, U F j , for
each loop j .

Figure 2 outlines the structure of the unrolled loop nest
that would be obtained from a given unroll vector. (For
simplicity, remainder loops are not shown in this code struc-
ture.) Note that the unrolled loop body contains UF1 ×
UF2 × . . . copies of the input loop body; each copy of B O D Y
is instant iated for a different tuple of index value taken from
the Cartesian product,

{ i ~ , . . . , i ~ + UF1 - 1} x . . . x { i k , . . . , i k + UFk - i}.
The optimization problem that we are interested in solv-

ing is to find an unroll vector, (U F ? ~ , . . . , U F ? ') , such tha t

1. Each unroll factor, UFF~ t is an integer in the range,

1 . . . U F ~ ~x, where U F "~'~ = (U F ~ = , . . . , U F ~ "=) is
the m a x i m u m unroll vector for the loop nest,

2. The unroll vector.identifies a legal unrolling transfor-
mation,

3. The amortized number of register spills per original
i terat ion in the unrolled body does not exceed the
number of register spills in the original loop body,

4. The unrolled loop body fits in the ins truct ion cache,
and

5. The est imated cost of the unroll configuration is min-
imized. (If multiple lmroll vectors have the same es-
t imated cost, then choose a vector with the smallest
total unroll factor, U F1 × . . . U Fk as the solution.)

Conditions 1 and 2 are requirements imposed on a le-
gel unrolling transformation. To enforce Condition 2, we
identify non-innermost loops that cannot be permuted to the
innermost position in the input loop nest due to dependence
constraints or constraints on loop bounds [22]. For each
such loop, i, we set U F ~ ' ~ = 1 to ensure that loop i is not
unrolled. For other loops, j , we set U F ~ ~ = maximum
number of iterations for loop j , using an est imated value
when the number is unknown.

Conditions 3 and 4 are capacity constraints. Condition 3
ensures that loop unrolling does not cause extra register
spills, and Condition 4 ensures that loop unrolling will (most
likely) not lead to extra I-cache misses. Our experience
is that Condition 3 is usually more tightly binding than
Condition 4 i.e., eusttring no increase in register spills is
usually sufficient to ensure that there is no increase in I-
cache misses.

In general, enforcing Condition 3 requires detailed knowl-
edge of the register allocation algorithm used by the back-
end. For simplicity, our current solution to modeling Con-
clition 3 is to ensure that the maximum numbers of fLxed-
point and floating-pointing values in the unrolled loop that

! IIPUT LOOP
DO i l = l o l , h i l

DO i2 = l o 2 , h i 2

B O D ¥ (i l , i 2 , . . .)

EID DO
EID DO

- - .>

! UIROLLED LOOP
DO i l = l o l , h i l - (b T l - 1) , U F 1

DO i2 ffi l o2 ,h i2 - (UF2-1) ,bT2

• ° .

B O D Y (i l + b T I - I , i 2 , . . .)
B O D ¥ (i l , i 2 + i , . . .)

• • .

. ; ;o"
EID DO

! RENAIIDER LOOPS

Figure 2: General unrolling of multiple nested loops

may be simultaneously live are bounded by the numbers of
available fixed-point and floating-point registers respectively
(see Section 2.3). This max computat ion is conservatively
large - - it assumes that two values may be simultaneously
live ff there exists some legal instruction reordering for which
they would be simultaneously live (even if the values are
not simultaneously live in the original instruction order-
ing). While this approximation may unnecessarily limit the
amount of unrolling permit ted, it ensures that any software
pipelining or instruction scheduling performed by the back-
end will not introduce additional spills.

Condition 5 is the objective f u n c t i o n to be minimized.

2.3 Cost Function

In tl~s section, we define an objective function F (U F z , . . . , UF~)
that evaluates the cost of a given unxoll vector, (UFi , UFk) ,
for a perfect nest of k loops. (A simpler version of this
cost function was presented in [20].) Having en explicit cost
function simplifies the unrolling optimization and makes it
convenient to retarget the optimization to different proces-
sor architectures or different models of the same processor
architecture.

In our approach, the compiler builds the following sym-
bolic cost func t ions based, on the da ta references in the loop
nest. All functions take unroll factors as arguments and re-
turn est imated values for the unrolled loop body that would
be generated by a UF1 × . . . × UFk unroll transformation of
the input loop nest:

• I R (U F 1 , . . . , UFk) = number of distinct Integer Reg-
ister (fixed-point) values in unrolled loop body.

• F R (U F 1 , . . . , UFk) - - n u m b e r of distinct Floating-point
Register values in unrolled loop body. I R and F R are
computed by using the approach in [12, 20] for esti-
mating the number of dist inct an 'ay elements accessed
in a loop nest. This approach avoids the expense
of computing input dependences or of using a linear
algebra framework to perform the estimation.

• L S (U F i , . . . , UFk) = est imated number of cycles spent
on Load and Store instructions in unrolled loop body.

• C P (U F 1 UFk) -- est imated Critical Pa th length
of unrolled loop body (in cycles). Assume zero cost for
load/store instructions when estimating C P , because
they are already accotmted for in L S . (As in [19],

155

average frequency values are used to estimate critical
path lengths in the presence of conditional branches.)

• TCi(UFi UFk) = estimated Total Cycles on class
j of functional units required by unrolled loop body.
Assume zero cost for load/store instructions when es-
timating TCj, because they are already accounted for
in LS. Let iVF i be the number of functional units of
class j available in the machine.

The symbolic cost functions are represented as expres-
sion trees in the compiler with internal nodes that represent
sum, product, reciprocal, rnin~ max operators. A leaf of an
expression tree can be an unroll factor, UF~, or a constant.
This representation makes it convenient to evaluate a sym-
bolic cost function for a given unroll vector.

The IR and FR cost functions are used to enforce regis-
ter capacity constraints. In addition, an estimated code size
for a single iteration is used to enforce the I-cache constraint.

The remalr~i~g cost functions contribute to the the objec-
tive function to be rn~nlmized, which is a cost per iteration
defined as follows:

load/store term
*%

F(UF, , . . . , UF~) "LS(UF,, . . . , UFk)"
= UFi x ... x UFk +

max [CP(UF1, . . . ,UFk) ,maxi ({ Tc'(trF~NFj ~r~) "/"~ l j / j

UF~ x . . . x UFk

ILP term

The objective function is defined to be the sum of the load~store
term, LS(UF1 , UFk) and the ILP term, which is a max
function that provides an estimation of the parallel execu-
tion t ime of the unrolled loop body. Both terms are divided
by the product of unroll factors, UF1 x ... x UFk so as to
obtain a cost function that is an amortized cost per original
iteration of the input loop nest, thus making it possible to
directly compare costs for different unroll vectors.

A key design principle behind this cost function is that
i ts terms should be efficient to evaluate for different unroll
vectors without actually having to perform the unrolling
transformation for each candidate unroll vector. Tha t is the
main motivation for separat ing the load/s tore term (LS)
from the ILP term in the max function. (Otherwise, we
would have to use different CP and T C functions for differ-
ent unroll vectors.)

It is instructive to compare the above ILP term with the
recurrence.constrained and resource-constrained m~nimuxn
initiation intervals (RecMII and ResMII) that are used as
lower bounds in modulo scheduling [18, 21]. In fact, a
computation similar to RecMII is used to obtain the CP
value for a given unroll vector, and a computation similar to
ResMII is used to obtain the TCj values for a given unroll
vector. The key difference is that software pipelining and
modulo scheduling are only concerned with analyzing mul-
tiple iterations of the innermost loop, whereas the above ILP
term is used for analyzing the combined effect of unrolling
multiple loops in a perfect nest. The notion of initiation
interval does not apply to non-innermost loops, which is why
we use the CP term instead. An interesting direction for
future work would be to combine both approaches by using
the above ILP cost model for non-innermost loops, and the
initiation interval cost model for the innermost loop.

Note that summing up the contributions of the load/store
term and the ILP term goes beyond the "balancing" ap-
proach proposed in [6]. Specifically, there are cases in which

I n p u t s :

1. Set of k perfectly nested loops with maximum unroll
vector, U.F ~ = = (U F ~ = , . . . , UF~'=), as defined in
Section 2.2.

2. F(UF, , UFFk), objective cost function for loop nest
defined in Section 2.3.

Output: UfoP t = (UF~Z,..., UF~), an optimized unroll
vector for input loop nest.

Algorithm:

I. /* Call function EnumerateFeasibleVectors 0 in
Figure 4, with unit vector 1 = (i,..., 1) as input. */
UV := EnumerateFeasibleVectors (k, [)

2. Initialize U f ~ * := f

3. for e ach unroll vector ~ 6 UV d o

i f F (~) < f (U f ~ ~) o r F (~) = F(UF,~ 't)

a n d (ul × . . . × uk) < (UF~ ~ ×. . . x U F ~ ~)

t h e n /* Bet ter unroll vector found * / U f , ~ t :=

e n d i f

e n d fo r

4. re turn U f ~

Figure 3: Algorithm for selecting an optimized unroll vector

it might be beneficial to reduce only one of the two terms
even if doing so causes an imbalance between the terms.

Finally, we briefly discuss the effect of control flow within
a loop iteration on cost estimation: For the register capacity
terms, IR and FR, we use the worst-case largest number
of registers that might be needed for executing a single
iteration. For the load/store and ILP terms, we instead do
an average-case estimation of the individual cost functions.

2.4 Algorithm for Selection of Unroll Factors

Our algorithm for selecting an optimized unroll vector is
driven by the cost ftmctions introduced in Section 2.3. The
basic idea is to enumerate a set of feasible and profitable
unroll vectors, compute the objective function for each one,
and select the one with smallest objective ftmction as the
optimized unroll vector (UF~*,..., UF~'t).

For feasibility, we have to ensure that an unroll vector
(UFI , UFFk) is legal and also that it satisfies the following
capacity constraints 2 :

I R (U F , , UF~)
Fa(UFi , U F k)

UF1 x . . . x UFk

<~ ~ available fixed-point regs

< # available floating-point regs

(size of instruction cache)

-< (code size of one iteration)

An important observation used to prune the search space
for feasible unroll vectors is that these capacity constraints
are monotonic i.e., if unroll vector (ul , uk) is infeasible
because it violates a capacity constraint, then all unroll

~We assume two register classes (fixed and float) in this descrip-
tion, but the approach can be easily adapted to a different number of
register classes.

156

f u n c t i o n EnumerateFeasibleVectors(i, U F ¢~'~)
r e t u r n s UV

I n p u t s :

I. Index of current loop, i.

2. Current unroll vector, Uf:~L with unroll factors
specified for loops in the range i+1.., k. Unroll factors
U F ~ ' , . . . , U F~ ¢~" are assumed to = 1.

O u t p u t : A set of feasible unroll vectors, UV, containing
"expansions" of U F ¢~'~. Each vector ,7 6 UV satisfies
Conditions 1--4 in Section 2.2, and also has the same unroll
factors as U F ¢~'r in positions i ÷ 1.. . k i.e., only unroll
factors in positions 1 . . . i are enumerated in the expansion.

A l g o r i t h m :

1. Initialize UV := empty set of unroll vectors

2. fo r n := 1 to UF~ ' ~ do
/* The UFy ~= bound enforces Conditions 1 and 2 in
Section 2.2 */

(a) Update unroll factor for loop i, UF~ ~" := n

(b) i f U F ~ r exceeds a capacity constraint (Condi-
tion 3 or Condition 4 in Section 2.2)
t h e n break/* exit for-loop */

(c) /* Pruning step - - exit loop if no improvement
is observed in the objective function by unrolling
loop i */
i f n > 1 and F(U1 yet') >_ F(UF ~)
t h e n break

(d) i f i = 1 t h e n / * i is the outermost loop */

i. /* Insert UF ¢~ into UV */
uv := uv u {uf ¢~-}

(e) else

i. /* Recursive call */
UV' :=
EnumerateFeasibleVectors(i - 1, UF c~)

ii. /* Append UV' to UV */
UV:=UV U UV'

end if

end for

3. return UV

end f u n c t i o n

Figure 4: Function EnumerateFeasibleVectors 0

vectors (v, ok) such that u{ < v1 uk < vk must
also be infeasible.

Figure 3 outlines the high-level structure of the algorithm
for selecting an optimized unroll vector. Step 1 calls function
EnumerateFeasibleVectors 0 to Obtain a set of feasible unroll
vectors, UV. Step 3 selects U i ~ t , the unroll vector from
UV that has thesmallest cost per iteration as the optimized
unroll vector for the input loop nest.

Figure 4 outlines the structure of function Enumerate-
FeasibleVectors 0 . The algorithm enumerates unroll vectors
by moving from the innermost loop to the outermost loop
of the nest. Step 2 enumerates the possible unroll factors,
1 . . . U F ~ ~ , for input loop i, and combines each value with
the input unroll vector, UF " ~ (Step 2a). The for-loop in
Step 2 is exited the first time an unroll factor is encountered
for loop i that causes a capacity constraint to be exceeded
(Step 2b). Step 2c implements a pruning heuristic ~ the for-
loop is exited if increasing the unroll factor for loop i from 1
to 2 shows no improvement in the objective function. If i is
the outermost loop, the current unroll vector is inserted into
the output set (Step 2di). Otherwise, function Enumerate-
FeasibleVectors 0 is invoked recursively to enumerate unroll
factors for enclosing loops i, i - 1 , . . . , 1. The resulting set,
UV', is then merged with the output set, UV (Steps 2e.i
and 2eli).

2.5 Example
As an illustration, Figure 5 compares the execution times
of a 500 x 500 double-precision dense matrix multiply com-
putation for different unroll factors. After tiling for cache
locality, the inner tile of the matrix multiply kernd consists
of three nested loops as follows:

do i l = i l _ lo , i l_h i
do i2 = i2_io, i2_hi

do i3 = i3_1o, i3_hi
a(i2,il) = a(i2,il) + b(i2,i3) * c(i3,il)

end do
end do

end do

Therefore, an tmroll vector for the inner tile is specified by a
(UF1, UF2, UFs) triple of unroll factors. The lexicographic
ordering of unroll factors in the triple corresponds to the
ordering of the loops- from outermost to innermost.

Figure 5 shows the execution time obtained for the ma-
trix multiply kernel for different choices of unroll factors.
To simplify the discussion in this section, we only consider
two choices for each unroll factor value, UF~ = 1 or UFi = 4,
which leads to the eight possible values for the (UF1, UF2, UFs)
triple enumerated along the horizontal axis. (Measurements
of a larger set of unroll factors are presented in Figure 7 in
Section 4.) The (1,1,1) triple corresponds to the original
loop nest because an unroll factor of one is an identity
transformation. Other than unrolling of nested loops, all
other optimization options are the same for the different
unroll vectors shown in Figure 5.

For this example, we see that the performance obtained
by unrolling nested loops varied significantly for different
unroll vectors. The worst performance was obtained for
(UF1, UF2, UFs) = (1,1, 4), which was slightly worse than
that of the (1, 1, 1) identity case. The best performance was
obtained for (UF1, UF~, UF~) = (4, 4,1), which delivered a
2.2× speedup.

We now describe how our approach can identify the (4, 4, 1)
unroll vector as the best candidate by using the cost funco

157

tions and algorithm outlined in Sections 2.3 and 2.4. Note
that a (4, 4,1) unroll vector is not likely to be obtained by
commonly-used heuristics such as "unroll only the innermost
loop" or "give all loops the same unroll factor".

Let (ul, u2, us) be a candidate unroll vector for the ma-
trix multiply example. The most binding capacity con-
strains for this example is the number of floating-point regis-
ters, which is estimated by the compiler as F R (u l , u2, us) =
u2ul -6 (u2us-/-usul). This estimation follows directly from
the presence of array references a (£, j), b (i , k) , and c (k, j)
(see [12, 20] for details). The u2tt~ term represents distinct
unrolled copies of the loop-invariant references to array a,
and the (u~us + usu~) term represents the number of reg-
isters required to hold distinct values of arrays b and o.
Assuming that there are 30 registers available for used in the
unrolled body, we need to ensure that FR(ul,u~,ttt) _< 30
to satisfy the capacity constraints.

To estimate the objective function, F(u~, u=, us), the
compiler builds the f~.lowing symbolic cost functions; we
only show TC for the FPU (floating point unit), since the
FPU is the critical resource for this example :

LS(m,u2,us) = u2us+usul
CP(m,u2,us) = 2us

T C F p u (u i , u 2 , u s) = 2ulu2us

NFFPu = 1

F(u1,u2,us) = LS(ul,u2,us) +
Ul X U2 X US

max [CP(ul, u;, us), rc~pt t (~, .~= ,.~.)] NFppu J
~1 X U 2 X 1.43

(.~ + ~s~) ÷ (2~u~)
F(u l , u2, u~) =

~1 X ~2 X U3

1 1
F(m,u2,us) = --+--+2

Ul U2

Since T C F p u (u l , u2, u s) / N F r p ~ > C P (u , , u~, us), the ILP
term for this example is resource bound rather than critical-
path bound. However, if there were additional floating-point
available (i.e., if IVF~pu > 1) then the ILP term may have
been critical-path bound for some unroll vectors.

The algorithm selects values of u,, u2, us so as to mini-
mize F(u , , u2, us) = 1/ u, + 1 / u 2 + 2 subject to the constraint
that F R (u l , u 2 , u s) = u2ul + u2ut + usul is < 3 0 . Note
that the objective function for this example, F(u,, u~, us),
decreases when either ul or u2 is increased, but remains
unchanged when us is increased. Hence, the search space for
optimal unroll vectors is significantly reduced by restricting
us = 1 (see Step 2c in Figure 4). Figure 6 illustrates
how the algorithm for selection of unroll factors (outlined
in Section 2.4) partitions the space of unroll vectors into
feasible and infeasible regions for different values of ul and
u~, assuming a maximum unroll factor of 20 iterations in
each dimension (a limit that may arise from the tile size
used for cache tiling). All unroll vectors in the feasible
region satisfy FR < 30. In the worst case s, our algorithm
will visit all 44 unroll vectors in the feasible region and the
10 unroll vectors along the infeasible boundar,j, but this is
considerably less work than visiting all 20×20 = 400 possible
values for (ul, u~, I) or all 20 × 20 × 20 = 8000 possible values
for (u~, ==, us).

~In general, the cost functions are more complicated than in this
example (e.g., due to ILP and dual-load/store considerations), thus
making it it intractable to directly obtain an optimal solution without
enurnerating all feasible vectors.

.2

D

o

i

I0.0

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0 (1,1,1) (1,1,4) (1,4,1)
I

(4,1,1) (I,4,4)

)
(4,1.4) (4.4.1) (4.4,4)

Unroll Factors

Figure 5: Performance measurements on a 133MHz Pow-
erPC 004 processor for 500x500 matrix multiply example
with different unroll factors

20
19

18
17

16
15
14

13
12

II

io
9
8

7
6

5
4

3
2
I

o
o

Infeasible region
(346 points)

(4.4 points)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ul, unroll factor for outermost loop

Figure 6: Feasible and infeasible regions for enumeration of
unroll vectors, assuming us = I

158

There are two opt imal solutions to this const ra ined opti-
mizat ion problem, (u~,u~,u~) = (4, 5,1) and (u~,u~,u~) =
(5, 4, 1), b o t h of which use a to ta l of F R = 29 floating-point
registers in the unrol led loop body. Increasing u~ to 5 makes
FR equal 35, which exceeds the limit. Of the eight unron
vectors measured in Figure 5, our cost functions show tha t
(4, 4, 1) should indeed be the best choice. (It is closest to
the optimal (4, 5, 1) and (5, 4, I) solutions.)

3 Generat ion of Transformed Code

In this section, we outline how our compiler generates code
for a specified unroll vector, (UFi , UFk). The algorithm
processes loops by moving from the outermost loop to the
innermost loop of the nest. Let ~ be the current loop with
unroll factor UF~. First, the current unrolled loop body is
expanded by the specified unroll factor UF~. Second, the
loop header for the current loop is adjusted so that if the
loop's iteration count, COUNT~, is known to be less than
or equal to the unroll factor, UFi, then the loop is totally
unrolled by simply replacing the loop header by an assign-
ment of the index variable to the lower-bound expression;
otherwise, the loop header is adjusted so that the unrolled
loop's i te ra t ion count equals LCOUNTJUF~J. Third, a
remainder loop nest is generated, if needed. T h e body of
the remainder loop nest is a single copy of the input loop
body. The remainder loop is not c rea ted if i t is de termined
at compile time that the loop length CO UNT~ is a multiple
of the mxroll factor UF~.

In general, our algorithm produces UFi x ... UFk copies
of the code from the original loop body in the unrolled loop.
In addition, the number of remainder loops produced by our
algorithm is

(UF~ ×...UF~-~) +... + (UF~) + 1,

where j is the largest loop index with a non-identity unroll
factor Le., with UFj > I. Each remainder loop contains a
single copy of the code from the original loop body. In con-
trast, the unroll-and-jam transformation produces (UFi --k
r o o d (l , U F~)) x . . . (U Fk "b r o o d (l , U F k)) copies of the code
from the original loop body ~.

Appendix A contains an example to highlight the differ-
ence be tween our code generat ion and the code generat ion
obtained by the ururoll-and-jam approach. For this example,
our algorithm genera ted 21 remainder loops as opposed to 61
remainder loops generated by the unroll-and-jam approach.
For the sake of completeness, a complete description of our
algorithm for generating compact code when unrolling mul-
tiple nested loops is provided in Figure 10.

4 Exper imenta l Results

In this section, we present exper imenta l results to evaluate
our approach for opt imized unrolling of nes ted 10ops. The
algori thm outl ined in Section 2.4 has been implemented in
the IBM XL For t ran p roduc t compiler. This loop unrolling
phase is per formed as a ¢'high-order" t r a n s f o m a t i o n [20] so
tha t back-end opt imizat ions can exploit the code optimiza-
tion oppor tuni t ies c rea ted by loop unrolling. (One notable

%nod(1,¢) is a function that is = 0 if z = 1 and is = I otherwise
(assuming that z > 0).

?

V,
D

10.0

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

,~ unroll outer = 1
0 unroll_outer = 2

,.~ unroll_outer = 3
)(unroll_outer = 4

unroll_outer = 5
0 = unroll_outer = 6
A- unroll_outer = 7
• unroll outer = 8

unroll_outer = 9

unroll_outer = I0

I I I I I I I I I I
1 2 3 4 5 6 7 8 9 10

Unro|l factor for middle loop (unroll_middle)

Figure 7: Detailed performance measurements on a
133MHz PowerPC 604 processor for 500x500 matrix multi-
ply example with different unroll factors

qJ

.2

<

3.5

3.0

2 . 5 -

2.0

1.5

1.0

0 . 5 -

A unroll_outer = 1
0 trefoil_outer = 2
~ unrol l_~ter = 3

>(unroll_outer = 4

)K unroll_outer = 5
O, unroll_outer = 6

A unroll_outer = 7
• unroll_outer = 8

unroll_outer = 9
unroll_outer ffi 10

0.0 I I I I t I I f I I
0 1 2 3 4 5 6 7 8 9 l0

Unroll factor for middle loop (unroll_middle)

Figure 8: Average number of loads and stores per original it-
eration for 500x500 matrix multiply example with different
unroll factors

159

User execution times (in seconds) for different unroll configurations:

IBenchmark H NO-eNROLL I(2, 2, 2)[(3, 3, 3) I(4, 4,4)(5,5,5)I
lOl . tomcatv 1317.0 1 1 8 4 . 6 1256.8 1287.8 i375 .3 ; 1073.2
102.swim 2202.6 2127.4 2556.2 2928.7 3030.1 1836.4
103.su2cor 795.0 769.1 751.8 776.4 770.9 775.0
104.hydro2d 1581.3 1486.3 1496.7 1522.8 1469.8 1491.3
107.mgrid 1014.8 964.4 1024.5 1060.2 1407.1 1015.6
125.turb3d 1006.9 1028.1 1071.3 1207.9 1128.7 1007.3

1181.1 1189.2 1216.5 1173.9 1469.8

OPT-UNROLL

1159.6

S p e e d u p s (r e l a t i v e t o NO-UNROLL) for d i f f e r e n t u n r o l l c o n f i g u r a t i o n s :

Benchmark II ~ o - u N R o ~ L I (2, 2, 2) I (3, 3, 3) I
1.00
1.00

I.II
1.04

1.05
0.86

101.tomcatv
102 .swim +.

103.su2cor 1.00 1.03 1.06
1.00 1.06 1.06

0.99

(4, 4, 4) I (5, 5, 5)] OPT-UNROLL t

104.hydro2d
107.mgrid
125.turb3d
145.f10ppp

I[')
0.75
1.02
1.04
0.96

0.96
0.73

1.23
1.20

1.03 1.03
1.08 1.06

I , t 1.00 I[~ 0.72 1.00
1.00 0.98 0.94 0.83 0.89 1.00
1.00 0.99 0.97 1.01 0.80 1.02

0.89 0.95 1.04 1.08 I 0.99 Average Speedup H 1.00

Figure 9: Execution times and speedups of SPEC95fp benchmarks on a 133MHz PowerPC 604 for dif/erent unroll
configurations

limitation in the implementation of high-order transforma-
tions in the XL Fortran compiler is that scalar replacement
is only performed before uprolling; there may be opportuni-
ties for additional improvements when scalar replacement is
performed after unrolling, since not all scalar replacement
opportunities are caught by the back-end.) All run-time
performance measurements were made on a 133MHz Pow-
erPC 604 processor.

First, we present some detailed performance measure-
ments for the matrix multiply example discussed in Sec-
tion 2.5. Figure 7 shows the user execution times measured
for 100 different unroll vectors of the form (ui,,~2,1) for
1 _< t~l, ,~2 _< 10. (Recall that ,~I and ,J2 are the unxoll factors
for the the outer and middle loops respectively.) We set the
unroll factor for the innermost loop to us = 1 for all the 100
data points because the cost function analysis in Section 2.5
revealed that unrolling the innermost loop would not deliver
any performance benefit. (This was confirmed by the results
in Figure 5 as well.) The unron vector (4, 5,1) that was
identified in Section 2.5 as the optimal solution for this
example indeed delivered the best performance in Figure 7.
Since register locality is the most significant performance
issue for loop unrolling in this example, Figure 8 shows the
average number of loads and stores per original iteration for
these 100 iterations. The average drops from 2.1 for the
original loop identified by unroll vector (1, 1, 1) to 0.55 for
unroll vector (4, 5, 1) represents a nearly 4× reduction in the
number of load/store instructions executed. These averages
were obtained by using the hardware performance monitor
to measuring the total number of load/store instructions
executed and then dividing that number by the number
of times the inner loop is executed (500 × 500 × 500 -~
1.25x10S).

Figure 9 summarizes the execution times obtained on
seven SPEC95fp benchmark programs [9] for the following
unroll configurations:

• NO-UI~nROLL - - full -O optimization with unrolling sup-
pressed (except for the 2 × unrolling performed by soft-
ware pipelining in the back-end).

• (2, 2, 2) - - full -O optimization with all loops in an
innermost perfect loop nest assigned an unroll factor
of two. (There was no innermost perfect loop nest
encountered with > 3 loops in these benchmarks.)

• (3, 3, 3) - - full - 0 optimization with all loops in an
innermost perfect loop nest assigned an unroll factor
of three.

• (4, 4, 4) - - full -O optimization with all loops in an
hmermost perfect loop nest assigned an unroll factor
of four.

• (5, 5, 5) -- full -O optimization with all loops in an
innermost perfect loop nest assigned an unroll factor
of five.

• OPT-UNROLL -- full -0 optimization with unrolling
performed using the algori thm repor ted in this paper.

The figure also shows the speedups obtained relative to NO-
UNROLL. The average speedup of 1.08x delivered by OPT-
UNROLL outperformed tha t of the other unron configura-
tions measured. The maximum speedup delivered by OPT-
UNROLL on a SPEC95fp benchmark was 1.2x, observed for
two of the benchmarks (101.tomcatv and 102.swim). It is
also important to note that, imli]ce al] the other unrolling
configurations, OPT-UNROLL never delivered a performance
degradation.

Thus, the results in this section demonstrate the effec-
tiveness of the approach presented in this paper for opti-
mized unrolling of nested loops. We believe that larger per-
formanceimprovements due to unrolling of nested loops can
be expected on processors that have larger numbers of regis-
ters and larger degrees of instruction-level parallelism than
the processor used for our measurements (a PowerPC 604).

160

I n p u t s :

1. LOOP[l],..., LOOP[k], a perfect nest of k loops, numbered from outermost to innermost. The index variable, lower
bound, upper bound, and increment for LOOP[j] are denoted by il, lbj, ubj, and incj respectively.

2. UF~] > 1, an unroll factor for each LOOP[j].

3. COUNT~], constant value or symbolic expression for number of iterations executed by LOOP[j], where UF[j] is
assumed to be less than or equal to COUNT[j] if COUNTy] is a constant.

O u t p u t : Updated intermediate representation of the unrolled loops to reflect the loop unrolling transformation specified by
u~ol l factors U f [1] , . . . , UF[k].

A l g o r i t h m :

1. Initialize nez~Parent := parent of LOOP[l] in intermediate representation ..

2. Detach subtree rooted at LOOP[l] from nextParent
/* This subtree is used as the source for generating copies of the original loop body */

3. Initialize unrolledBody := copy of body of innermost loop, LOOP[k]

4. for j := l t o k do

(a) currentParent := neztParent
(b) /* Expand unrolledBody by factor UF[j] for index ij */

Initialize newUnrolledBody := copy of unrolledBody
fo r u := 1 t o UF[j] do

i. Initialize oneCopy := copy of unrolledBody
ii. Replace all occurrences of loop index variable "ij" in oneCopyby "ij + incj*u"

iii. Append oneCopy to end of newUnrolledBody
e n d for
Delete old unrolledBody, and initialize unrolledBody := newUnrolledBody

(c) J* Adjust header for unroned loop j */
Construct remainder expression erj = rood(COUNT[j], U F[j])
i f (COUNT[j] is constant and COUNT[j] = UF[j]) t h e n
/* Loop j is to be completely unrolled */
Construct the statement, "ij = lbj", call it neztParent, and make it the first (leftmost) child of currentParent
else
Make a copy of the LOOP[j] statement, call it neztParent, change it to "do ij = lbi, ubj - erj*incj, UF[j]*incj",
and make it a child of currentParent
end if

(d)]* Generate remainder loop sub-nest, if necessary */
i f (erj ! = 0) t h e n
Set treeCopy := copy of subtree rooted at LOOP[j]
Change the outermost statement in treeCopy to "do ij = ub~ - (erj-1)*incj, ubj, incj"
Make treeCopy a child of currentParent
e n d if

5. Make unrolledBody a child of nextParent, and delete original subtree rooted at LOOP[l] (the original loop nest)

Figure 10: Code generation algorithm

161

5 Related Work

As mentioned earlier, the loop unrolling and the unroll-
and-jam transformations have been in use for over three
decades [2]. However, little attention has been paid until
recently to the problem of automatically selecting unroll
factors to obtain the best performance from loop unrolling.
For example, Wolf and Lain presented experimental results
for register tiling in conjunction with cache tiling [25] using
the SUIF compiler, but the register tiling in that work was
implemented by hand.

The most closely related work to this paper is that of
Carr and Kennedy [7] and by Carr and Guan [6]. Some of
the key differences between our approach and the approaches
in [7, 6] have already been discussed in Section 1. Another
difference that is worth mentioning is that the objective
function in [7, 6] is to balance floating-point and memory-
access instructions, whereas the objective function in our
approach is to reduce execution time. These two objective
functions are not necessarily equivalent. For example,
the best results for the matrix multiply example discussed
in this paper were obtained when the average number of
loads is driven down to 0.5 loads per original iteration (see
figures 7 and 8), even though each iteration has two floating-
point operations. It is unclear from the descriptions in [7, 6]
how a similar configuration would be obtained with their
goal of balancing memory instructions and floating-point
instructions.

Most of the other related work applies only to unrolling
innermost loops rather than nested loops. Several indus-
try compilers (including the baseline XL Fortran compiler
used to obtain our experimental results) perform unrolling
of (both counted and non-counted) innermost loops. The
problem of combining loop unrolling with software pipelin-
ing has also received a lot of attention. Weiss and Smith [24]
studied unrolling of a single innermost loop and compared
it with software pipelining. Their conclusion was that loop
unrolling can deliver greater speedup than software pipelin-
ing, but requires more hardware (more registers and a larger
instruction buffer) to do so. Jones and .Allan [14] suggested
that loop unrolling be performed before software pipelining
to effectively obtain a non-integer initiation interval. In their
work, the unroll factor is determined by the desired initia-
tion interval rather than by specific register and/or ILP cost
considerations. Su et al [23] proposed the URPR algorithm
(unroll, pipeline, reroll) as a way of combining loop unrolling
and instruction scheduling. Lavery and Hwu [15] evaluated
the benefits of unrolling loops prior to modulo scheduling.
In our approach, unrolling of nested loops is performed prior
to software pipeliuing in the XL Fortran back end.

6 Conclusions

In this paper, we formalized selection of unroll factors for
multiple perfectly nested loops as an optimization problem.
We introduced an objective function to estimate the savings
that will be obtained for a given vector of unroll factors,
and capacity cost functions to model register set and I-
cache constraints, and we specified the legality constraints
for tmrolling loops in a perfect nest. We outlined an al-
gorithm for efficiently enumerating feasible unroll vectors
(legal con.figurations that satisfy the capacity constraints)
and selecting an unroll vector that delivers the best savings.
We also addressed the problem of generating compact code
for the remainder loops resulting from an unroll transfor-
mation on nested loops, and showed how our approach can

generate fewer remainder loops than the classical unroll-and-
jam approach. Our experimental results on seven SPEC95fp
benchmarks using the XL Fortran compiler validated the
robustness of our aapproach and demonstrated its effective-
ness for use in industry-strength compilers. We expect to see
larger performance improvements due to unrolling of nested
loops on processors that have larger numbers of registers
and larger degrees of instruction-level parallelism than the
processor used for our measurements (PowerPC 604).

Possibilities for future work include extensions of the cost
functions presented in this paper to handle new processor
features such as software-controlled prefetching and multi-
media extensions, extensions to model the cache effects of
load/store instructions, and combining our cost model with
the initiation inter~ral cost models used in software pipelining
and modulo scheduling.

Acknowledgments

The author would like to thank Khoa Nguyen was his contri-
bution to the algorithm for generating compact code when
unrolling multiple nested loops, and Krish.ua Palem and
Barbara Simous for their contributions to the algorithm
for selection of unroll factors. The author would also like
to thank members of the original ASTI optimizer group
at IBM Santa Teresa Laboratory for their contributions to
the design and initial implementation of the ASTI optimizer
during 1991-1993, and members of the Parallel Development
group in the IBM Toronto Laboratory for their ongoing work
since 1994 on extending and shipping the ASTI optimizer as
part of the IBM xL FORTRAN compiler products.

References

[1] Michael J. Alexander, Mark W. Barley, Bruce R..
Childers, Jack W. Davidson, and Sanjay Jinturkar.
Memory bandwidth optimizations for wide-bus ma-
chines. Proceedings of the ~fith Hawaii International
Conference on System Sciences, Wailea, Hawaii, pages
466-475, January 1993.

[2] F. E. Allen and J. Cocke. A catalogue of optimizing
transformations. In Design and Optimization of Com-
pilers, pages 1-30. Prentice-Hall, 1972.

[3] D. F. Bacon, S. L. Graham, and O. J. Sharp. Com-
piler Transformations for High-Performance Comput-
ing. A CM Computing Surveys, 26(4):345-420, Decem-
ber 1994.

[4] Mauricio Breternitz, Michael Lai, Vivek Sarkar, and
Barbara Simons. Compiler Solutions for the Stale-Data
and False-Sharing Problems. Technical report, IBM
Santa Teresa Laboratory, April 1993. TR 03.466.

[5] David Callahan, Steve Can-, and Ken Kennedy. Im-
proving Register Allocation for Subscripted Variables.
Proceedings of the ACM SIGPLAN '90 Conference on
Programming Language Design and Implementation,
White Plains, New York, pages 53-65, June 1990.

[6] S. Can" and Y. Guan. Unroll-and-Jam Using Uniformly
Generated Sets. Proceedings of MICRO-30, pages 349-
357, December 1997.

[7] Steve Carr and Ken Kennedy. Improving the ratio
of memory operations to floating-point operations in
loops. ACM TOPLAS, 16(4), November 1994.

162

[8] Steve Cart and Ken Kennedy. Scalar Replacement in
the Presence of Conditional Control Flow. Software--
Practice and Experience, (I):51-77, January 1994.

[9] The Standard
Performance Evaluation Corporation. SPEC CPU95
Benchmarks. http://open.specbench.org/osg/cpu95/,
1997.

[10] Jack W. Davidson and Sanjay Jinturkar. Aggressive
Loop Unrolling in a Retargetable, Optimizing Corn-
prier. In Compiler construction. Proceedings of the
6th international conference. Held Apr. $~-$6, 1996 in
Linkoping, Sweden., volume 1060 of Lecture Notes in
Computer Science. Springer-Verlag, New York, 1996.

[11] J. J. Dongarra and A. R. Hinds. Unrolling Loops in
Fortran. Software - Practice and Exper/ence, 9(3):219-
226, March 1979.

[12] Jeanne Ferrante, Vivek Sarkar, and Wendy Thrash. On
Estimating and Enhan~-xg Cache Effectiveness. Lecture
Notes in Computer Science, (589):328-343, 1991. Pro-
ceedings of the Fourth International Workshop on Lan-
guages and Compilers for Parallel Computing, Santa
Clara, California, USA, August 1991. Edited by U.
Banerjee, D. Gelernter, A. Nicolau, D. Padua.

[13] J. A. Fisher, J. It. Ellis, J. C. Ruttenberg, and
A. Nicolau. Parallel Processing: A Smart Compiler and
a Dumb Machine. Proceedings of the A CM Symposium
on Compiler Construction, pages 37 - 47, June 1984.

[14] Iteese B. Jones and Vicki H. Allan. Software pipellning:
an evaluation of enhanced pipelining. Proceedings of the
~ t h annual international symposium on Microarchitec-
ture, pages 82-92, December 1990.

[15] Daniel M.Lavery and Wen-Mei W.Hwu. Unrolling-
based optimizations for modulo scheduling. Proceedings
of MICRO-S8, pages 327-337, December 1995.

[16] T. C. Mowry. Tolerating Latency Through So , ware-
Controlled Data Prefetching. Phi) thesis, Stanford
University, March 1994.

[17] Allan K. Porterfield. Software Methods for Improve-
ment of Cache Performance on Supercomputer Appli-
cations. PhD thesis, Rice University, May 1989. Rice
COMP TR89-93.

[18] B. Ramakrishna Rau. Iterative modulo scheduling: an
algorithm for software pipelining loops. Proceedings of
the 27th annual international symposium on Microar-
chitecture, San Jose, CA USA, pages 63-74, November
1994.

[19] Vivek Sarkar. Automatic Partitioning of a Program
Dependence Graph into Parallel Tasks. IBM Journal
o] Research and Development, 35(5/6), 1991.

[20] Vivek Sarkar. Automatic Selection of High Order
Transformations in the IBM XL Fortran Compilers.
IBM Journal of Research and Development, 41(3), May
1997.

[21] Vivek Sarkar and Barbara Simons. Don't Waste Those
Cycles: An In-Depth Look at Scheduling Instructions
in Basic Blocks and Loops. Video Lecture in University
Video Communication's Distinguished Lecture Series
IX, August 1994.

[22] Vivek Sarkar and Radhika Thekkath. A General Frame-
work for Iteration-iteordering Loop Transformations.
Proceedings of the A CM SIGPLAN "9~ Conference on
Programming Language Design and Implementation,
pages 176-187, June 1992.

[23] Bogong Su, Shiyuan Ding, Jian Wang, and Jinshi
Xia. GURPR--a method for global software piplining.
Proceedings of the ZOth annual international symposium
on Microarch~tecture , pages 88-96, December 1986.

[24] S. Weiss and J. E. Smith. A Study of Scalar
Compilation Techniques for Pipelined Supercomputers.
Proceedings of the Second International Conference on
Architectural SUpport for Programming Language and
Operating Systems (ASPLOS), pages 105-109, October
1987.

[25] Michael E. Wolf and Monica S. Lam. A Data Locality
Optimization Algorithm. Proceedings of the A CM SIG-
PLAN Symposium on Programming Language Design
and Implementation, pages 30-44, June 1991.

[26] Michael J. Wolfe. Optimizing Supercompilersfor Super-
computers. Pitman, London and The MIT Press, Cam-
bridge, Massachusetts, 1989. In the series, Research
Monographs in Parallel and Distributed Computing.

A Example, of Generating Compact Code for Unrolling
Multiple Loops

Consider generating code for unroll vector (4, 4, 4, 1) for the
following example nest of four loops (such an unroll vector
may be selected due to register locality considerations):

dolfl, n
dok= I, n

d o j = 1 , n
d o i = 1 , n

sum = sum + a (i , j , k) + b (i , j , 1) + c (i , k , 1)
end do

end do
end do

end do

The transformed code generated for this example ob-
tained by using the unroll-and-jam approach is shown in
Figures 11 and 12. Figure 13 shows the transformed code
obtained by using the code generation algorithm presented
in this paper. Both approaches generated an unrolled loop
body containing 4 x 4 x 4 = 64 copies of the original loop
body. However, our algorithm generated 4 x 4 % 4 + 1 = 21
remainder loops for this example as opposed to 5 x 5 x 5 -
64 -- 61 remainder loops generated by the unroll-and-jam
approach. The number of remainder loops generated by the
unroll-and-jam approach can potentially be reduced by first
"rerolling" all unrolled remainder loops and then performing
an "index set merging" transformation on remainder loops
(i.e., the inverse of the "index set splitting" transforma-
tion [26]). However, we are not aware of any compiler that
performs loop rerolling and index set merging of loops after
applying an unroll-and-jam transformation.

163

do 1 = 1 , n - 3 , 4 sum
do k = I , n - 3 , 4 Sum

do j = 1 , n - 3 , 4 sum
do i = 1 , n s m

sum = sum+a(i,j,k)+b(i,j,l)+c(i~k,l) sum

sum = s u m + a (i , j + l , k) + b (i , j + f , l) ÷ ¢ (i , k , l) sum

sum = sum+a(i,j+2,k)+b(i,j+2,1)+c(i,k,l) sum

SUm = sum+a(i,j+3,k)+b(i,j+3,1)+c(i,k,l) sum

SUm = sum+a(i,j,k+l)+b(i,j,l)+¢(i,k+1,1) e n d do

SUm = sum+a(i,j+l,k+l)+b(i,j÷l,l)+c(i,k+1,1) e n d do
SUm = sum+a(i,j+2,k+l)÷b(i,j+2,1)+c(i,k+1,1) do j = j,

sum = sma+a(i,j+3,k+l)+b(i,j+3,1)+c(i,k+l,l) do i =

sum = sum+a(i,j,k+2)+b(i,j,l)+c(i,k+2,1) sum

sum = sum+a(i,j+l,k+2)+b(i,j+l,l)+c(i,k+2,1) sum

sum = sum+a(i,~+2,k+2)+b(i,j+2,1)+¢(i,k+2,1) sum

sum = smm+a(i,j+3,k+2)+b(i,j+3,1)+c(i,k+2,1) sum

sum = s u m + a (i , j , k + 3) + b (i , j , l) + c (i , k + 3 , 1) e n d do

sum = s u m + a (i , j + l , k + 3) + b (i , j + l , l) ÷ c (i , k + 3 , 1) e n d do
sum = s u m + a (i , j + 2 , k + 3) + b (i , j + 2 , 1) + c (i , k + 3 , 1) e n d do
sum = s u m + a (i , j + 3 , k + 3) + b (i , j + 3 , 1) + c (i , k + 3 , 1) do k = k , n

s u m = s u m + a (i , j , k) + b (i , j , l + l) + c (i , k , l + l) do j = 1 ,
sum = s u m + a (i , j + l , k) + b (i , j + l , l + 1) + ¢ (i , k , l + l) do i =
sum = sum+a(i,j+2,k)+b(i,j+2,1+l)+c(i,k,l+l) sum

sum = sum+a(i,j+3,k)+b(i,j+3,1÷l)+c(i,k,l+l) sum

sum = sum+a(i,j,k+l)+b(i,j,l+l)+c(i,k+l,l+1) sum

sum= sum+a(i,j+l,k+l)+b(i,j+l,l+l)÷c(i,k+l,l+l) sum

sum = sum+a(i,j+2,k+l)+b(i,j+2,1+l)+c(i,k+l,l÷l) end do

sum : sum+a(i,j+3,k+l)+b(i,j+S,l+l)+c(i,k+l,l+l) e n d do

sum = sum+a(i,j,k+2)+b(i,j,l+l)+¢(i,k+2,1+l) do j = j,

sum = sum+a(i,j+1,k+2)+b(i,j+1,1+1)+c(i,k+2,1+l) do i =

sum = sum+a(i,j+2,k+2)+b(i,j+2,1+l)+¢(i,k+2,1+l) sum

sum = sum+a(i,j+3,k+2)+b(i,j+3,1+l)+¢(i,k+2,1+i) end do

sum = sum+a(i,j,k+3)+b(i,j,l+l)+c(i,k+3,1+l) end do

sum = sum÷a(i,j+l,k+3)+b(i,j+l,l+l)+c(i,k+3,1+1) end do

sum = sum+a(i,j+2,k+3)+b(i,j+2,1+1)÷c(i,k+3,1+l)

sum = sum+a(i,j+3,k+3)+b(i,j+3,1+1)+c(i,k+3,1+l)

sum = sum+a(i,j,k)+b(i,j,l÷2)+c(i,k,l+2)

sum = sum+a(i,j+l,k)+b(i,j+1,1÷2)+c(i,k,l+2)
sum = sum+a(i,j+2,k)+b(i,j+2,1+2)+c(i,k,l÷2)

sum = sum+a(i,j+3,k)÷b(i,j+3,1+2)+c(i,k,l+2)

sum = sum+a(i,j,k+l)+b(i,j,l+2)÷c(i,k+1,1+2)

sum = sum+a(i,j+l,k+l)+b(i,j+l,l+2)+¢(i,k+l,l+2) e n d do

sum = $wm+a(i,j+2,k+l)+b(i,j+2,1+2)+c(i,k+l,l+2) end do

sum = s u m + a (i , j + 3 , k + l) + b (i , j + 3 , 1 + 2) + c (i , k + l , l + 2) e n d do

sum = s u m + a (i , j , k + 2) + b (i , j , l + 2) ÷ ¢ (i , k + 2 , 1 + 2) do k = k , n
suJn = s u m + a (i , j + l , k + 2) + b (i , j + l , l + 2) + c (i , k + 2 , 1 + 2) do j = I ,
sum = s u m + a (i , j + 2 , k + 2) + b (i , j + 2 , 1 + 2) + c (i , k + 2 , 1 + 2) do i =
sum = s u m + a (i , j + 3 , k + 2) + b (i , j + 3 , 1 + 2) + c (i , k + 2 , 1 + 2) sum

sum = sum+a(i,j,k+3)+b(i,j,l+2)÷c(i,k+3,1+2) sum

smm = sum÷a(i,j+l,k+3)+b(i,j÷l,l+2)+c(i,k+3,1+2) sum

sum = sum+a(i,j+2,k+3)+b(i,j÷2,1+2)+c(i,k÷3,1+2) sum

sum = s u m + a (i , j + 3 , k + 3) + b (i , j + 3 , 1 + 2) ÷ c (i , k + 3 , 1 ÷ 2) e n d do
sum = sum+a(i,j,k)+b(i,j,l+3)+¢(i,k,l+3) end do

sum = sum+a(i,j+1,k)+b(i,j+l,l÷3)+c(i,k,l+3) do j = j,

sum = sum+a(i,j+2,k)+b(i,J+2,1+3)+¢(i,k,l+3) do i =

smm = sme+a(i,j+3,k)+b(i,j+3,1+3)+¢(i,k,l+3) sum

s~m = s u m + a (i , j , k + l) + b (i , j , l + 3) + c (i , k + l , l + 3) end do
sum = sum+a(i,j+l,k+l)+b(i,j+l,l+3)+c(i,k+1,1+3) end do

sum = sum+a(i,j+2,k+1)+b(i,j+2,1+3)÷c(i,k+1,1+3) end do

sum = sum+a(i,j+3,k+l)+b(i,j+3,1+3)+c(i,k+l,l+3)

= s u m + a (i , j , k + 2) + b (i , j , l + 3) + c (i , k + 2 , 1 + 3)

= s u m + a (i , j + l , k + 2) + b (i , j + l , l + 3) + c (i , k + 2 , 1 + 3)
= s u m + a (i , j + 2 , k + 2) + b (i , j + 2 , 1 + 3) + c (i , k + 2 , 1 + 3)
= sum+a(i,j+3,k+2)+b(i,j+3,1+3)+c(i,k+2,1+3)

= S u m + a (i , j , k + 3) + b (i , j , l + 3) + c (i , k + 3 , 1 + 3)
= s u m + a (i , j + l , k + 3) + b (i , j + 1 , 1 + 3) + c (i , k + 3 , 1 + 3)

= s u m + a (i , j + 2 , k + 3) + b (i , j ÷ 2 , 1 + 3) + c (i , k + 3 , 1 + 3)
= s u m + a (i , j + 3 , k + 3) + b (i , j + 3 , 1 + 3) + c (i , k + 3 , 1 + 3)

I , n

= sum+a(i,j,k)+b(i,j,l)+c(i,k,l)

= sum+a(i,j,k+l)÷b(i,j,l)+¢(i,k+l,l)

= sum+a(i,j,k+2)+b(i,j,l)+c(i,k+2,1)

= sum+a(i,j,k+3)+b(i,j,l)+c(i,k+3,1)

n-3, 4

= sum+a(i,j,k)+b(i,j,l)+c(i,k,1)

= sum+a(i,j+l,k)+b(i,j+l,l)+c(i,k,l)

= s u m + a (i , j + 2 , k) + b (i , j + 2 , 1) + c (i , k , l)
= s u m + a (i , j + 3 , k) + b (i , j + 3 , 1) + c (i , k , 1)

n

l,n

= sum+a(i, j ,k) +b(i, j, l)+c (i,k, I)

do k = 1 , n - 3 , 4

d o j = j , n
d o i : l , n

sum = s u m + a (i , j , k) + b (i , j , l + l) + c (i , k , l + l)
sum = sum+a(i,j,k+l)+b(i,j,l+l)+c(i,k+l,l+l)

sum= sum+a(i,j,k+2)+b(i,j,l+l)+c(i,k+2,1+l)
sum = sum+a(i,j,k+3)+b(i,j,l+l)+c(i,k+3,1+l)

n - 3 , 4

1 , n
= sum+a(i,j,k)+b(i,j,l+l)+c(i,k,l+l)

= sum+a(i,j+l,k)+b(i,j+l,l+1)+c(i,k,l+l)

= sum+a(i,j+2,k)+b(i,j+2,1+l)+c(i,k,l+l)

= sum÷a(i,j+3,k)+b(i,j+3,1+1)+c(i,k,l+l)

n
1, n
= s u m + a (i , j , k) + b (i , j , l + l) + c (i , k , l + l)

Figure 11: Generated code using unroll-and-jam transformation (Part 1 of 2)

164

do k = 1 , n - 3 , 4
do j = j , n

do i = 1 , n
sum = s u m + a (i , j , k) + b (i , j , l + 2) + c (i , k , l + 2)
sum = s u m + a (i , j , k + l) + b (i , j , l + 2) + c (i , k + l , l + 2)
sum = s u m + a (i , j , k + 2) + b (i , j , l + 2) + c (i , k ÷ 2 , 1 ÷ 2)
sum = s u m + a (i , j , k + 3) + b (i , j , l + 2) + c (i , k + 3 , 1 + 2)

end do
end do

e n d do
d o k = k , n

d o j = 1 ,
do i =

s~um

sum

snm

siQum

e n d do
e n d do
doj = j ,

do i =
sum

e n d do
end do

e n d do

n - 3 , 4
I~ n

= sum+a(i,j,k)+b(i,j,l+2)+c(i,k,l+2)
= sum+a(i,j+l,k)+b(i,j+l,l+2)+c(i,k,l+2)
= sum+a(i,j+2,k)+b(i,j+2,1+2)+c(i,k,l+2)
= sum+a(i,j+3,k)+b(i,j+S,l+2)+c(i,k,l+2)

n

1, n

= sum+a(i,j ,k)+b(i,j ,l+2)+c(i,k,l+2)

do k = 1, n-3, 4
do j = j , n

do i = 1, n
sum= s m ~ + a (i , j , k) + b (i , j , l + 3) + c (i , k , l + 3)
sum= s u m + a (i , j , k + l) + b (i , j , l + 3) + c (i , k + l , l + 3)
sum = s u m + a (i , j , k + 2) + b (i , j , l + 3) + c (i , k + 2 , 1 + 3)
sum = sum+a(i,j,k+3)+b(i,j,l+3)+c(i,k+3,1+3)

end do
end do

e n d do
do k = k , n

do j = 1 , n - 3 , 4
do i = 1 , n

s u m = sum+a(i,j,k)+b(i,j,l+3)+c(i,k,l+3)
sum= sum+a(i,j+l,k)+b(i,j+l,l+3)+c(i,k,l+3)
sum = sum+a(i,j+2,k)+b(i,j+2,1+3)+c(i,k,l+3)
sum= sum+a(i,j+3,k)+b(i,j+3,1+3)÷c(i,k,l+3)

e n d do
end do
d o j = j , n

do i = 1 , n
sum = sum+a(i,j,k)+b(i,j,l+S)+c(i,k,l+3)

e n d do
end do

end do
end do
do i=I, n

do k = 1, n-3, 4
do j = 1, n-3, 4

doi=l~n
sum = sum+a(i,j,k)+b(i~j,l)+c(i,k,l)
sum = sum+a(i,j+1,k)+b(i,j+l,l)+c(i,k,l)
sum = sum+a(i,j+2,k)+b(i,j+2,1)+c(i,k,l)
sum = sum+a(i,j+3,k)+b(i,j+3,1)+c(i,k,l)

S~

e n d do
e n d do
d o j = j ,

do i =
snm

s~um

sam

sum

e n d do
e n d do

e n d do
do k = k , n

sum= sum+a(i,j,k+l)+b(i,j,1)+c(i,k+l,1)
sum = sum+a(i,j+l,k+l)+b(i,j+l,1)+c(i,k+l,1)
sum = sum÷a(i,j+2,k+l)+b(i,j+2,1)+c(i,k+l,l)
sum = sum+a(i,j+3,k+l)+b(i,j+3,1)+c(i,k+l,l)
sum = sum÷a/i,j,k+2)+b(i,j,l)+c(i,k+2,1)
sum= sum*a(i,j÷l,k÷2)+b(i,j+l,l)+c(i,k+2,1)
sum= slm÷a(i~2,k+2)+b(i,j+2,1)+c(i,k+2,1)
sum = sum+a(i,j+3,k+2)+b(i,j+3,1)+c(i,k+2,1)
sum = $um+a(i~j~k+3)+b(i,j,l)÷¢(i,k+3,1)
sum = sum+a(i~j÷l,k+3)+b(i,j+l,1)+c(i,k+3,1)
sum = sum+a(i,j+2,k+3)+b(i,j+2,1)+c(i,k+3,1)

= sum÷a(i~j+3,k+3)+b(i,j+3,1)+¢(i,k+3,1)

n

1, n
= sum+a(i,j,k)+b(i,j,l)+c(i,k,l)
= sum+a(i,j,k+l)+b(i,j,1)+c(i,k+l,l)
= sum+a(i,j,k+2)÷b(i,j,l)+c(i,k+2,1)
= sum÷a(i,j,k+3)+b(i,j,l)+c(i,k+3,1)

do j = I , n - 3 , 4
d o i = l , n

sum -~ s u m ÷ a { i , j , k) + b (i , j , l) + c (£ , k , l)
sum = s a m ÷ a (i , j + l , k) + b (i , j + l , l) + c (i , k , l)
sam - s u a ÷ a (i , j + 2 , k) + b (i , j + 2 , 1) + c (i , k , 1)
sum = s n m + a (i , j ÷ 3 , k) + b (i , j + 3 , 1) + c (i , k , 1)

e n d do
e n d do
d o j = j , n

d o i = l , n
sum = s n m + a (i , j , k) + b (i , j , 1) + ¢ (i , k , 1)

e n d do
e n d do

en d do
en d do

Figure 12: Generated code using unrolI-aad-jam t r ans foma t ion (par t 2 of 2)

165

do I = I , n - 3 , 4
do k = 1 , n - 3 , 4

do j = l , n - 3 , 4
do i = l , n , l
sum = s u m + a (i , j , k) + b (i , j , l) + c (i , k , l)
sum = sum+a(i,j,k)+b(i,j,l+l)+c(i,k,l+l)

sum = sum+a(i,j,k)+b(i,j,l+2)+¢(i,k,l+2)

sum = sum+a(i,j,k)÷b(i,j,l+3)+c(i,k,l+3)

sum = sum+a(i,j,k+l)÷b(i,j,1)+c(i,k+l,l)

sum= sum+a(i,j,k+l)+b(i,j,l+l)+¢(i,k+l,l+l)

sum = sum+a(i,j,k+l)+b(i,j,l+2)+¢(i,k+l,1+2)
sum = sum+a(i,j,k+l)+b(i,j,l+3)+¢(i,k+l,l+3)

sum = sum+a(i,j,k+2)+b(i,j,l)+c(i,k+2,1)

sum = sum+a(i,j,k+2)+b(i,j,l+l)+¢(i,k+2,1+1)

sum = sum+a(i,j,k+2)+b(i,j,l+2)÷c(i,k+2,1+2)

sum = sum+a(i,j,k+2)+b(i,j,l+3)+c(i,k+2,1+3)

sum = sum+a(i,j,k+3)+b(i,j,l)+c(i,k+3,1)

sum = sum+a(i,j,k+3)+b(i,j,l+l)+c(i,k+3,1+1)

sum = sum+a(i,j,k÷3)+b(i,j,l+2)+c(i,k+3,1+2)

sum = sum+a(i,j,k÷3)+b(i,j,l+3)+c(i,k+3,1+3)

sum = sum+a(i,j+1,k)+b(i,j+l,l)+c(i,k,l)

sum = sum+a(i,j÷l,k)+b(i,j+l,l+l)+c(i,k,l+l)

sum = sum+a(i,j+1,k)+b(i,j+l,l+2)+c(i,k,l+2)

sum = s~m+a(i,j+l,k)+b(i,j+l,l+3)+c(i,k,l+3)

sum = sum+a(i,j+l,k+l)+b(i,j+l,l)+c(i,k+l,l)

sum = sum+a(i,j+l,k+l)+b(i,j+l,l+l)+c(i,k+1,1+l)

sum = snm+a(i,j+l,k+l)+b(i,j+1,1+2)+c(i,k+l,l÷2)

sum = sum+a(i,j+l,k+l)+b(i,j+l~l+3)+e(i,k+l,l+3)

sum = sum+a(i,j+l,k+2)+b(i,j+l,l)+c(i,k+2,1)

sum = smm+a(i,j+1,k+2)+b(i,j÷1,1+1)+c(i,k+2,1+1)

sum = sum+a(i,j+l,k+2)+b(i,j+1,1+2)+c(i,k+2,1+2)

sum = smm÷a(i,j~1,k+2)÷b(i,j+l,l÷3)+c(i,k+2,1+3)

sum = sum+a(i,j+l,k+3)+b(i,j+l,l)+c(i,k+3,1)

sum = sum+a(i,j+1,k+3)+b(i,j+l,l+l)+c(i,k+3,1+l)

sum = sum+a(i,j+1,k+3)+b(i,j+1,1+2)+c(i,k+3,1+2)

sum= sum+a(i,j+l,k+3)+b(i,j+l,l+3)+c(i,k+3,1+3)

sum = sum+a(i,j+2,k)+b(i,j+2,1)+c(i,k,l)

sum = sum+a(i,j+2,k)+b(i,j+2,1+l)+c(i,k,l+l)

sum = sum+a(i,j+2,k)+b(i,j+2,1+2)+c(i,k,l+2)
sum = s~um+a(i,j+2,k)+b(i,j+2,1+3)÷¢(i,k,l+3)

sum = sum+a(i,j+2,k+l)+b(i,j÷2,1)+c(i,k+1,1)

S~ = sum+a(i,j+2,k+1)÷b(i,~+2,1+1)+c(i,k+1,1+1)
sum = sum+a(i,j+2,k+l)+b(i,j+2,1+2)+c(i,k+l,l+2)

sum = sum+a(i,j+2,k+l)+b(i,j+2,1+3)+c(i,k+l,l+3)
sum = sum+a(i,j+2,k+2)+b(i,j+2,1)+c(i,k+2,1)

sum = sum+a(i,j+2,k+2)+b(i,j+2,1+1)+c(i,k+2,1+l)

sum = sum+a(i,j+2,k+2)+b(i,j+2,1+2)+¢(i,k+2,1+2)

sum = sum+a(i,j+2,k+2)+b(i,j+2,1+3)+c(i,k+2,1+3)

sum = sum+a(i,j+2,k+3)+b(i,j+2,1)+¢(i,k+3,1)

sum = sum+a(i,j+2,k+3)+b(i,j+2,1+1)+c(i,k+3,1+l)
sum = svm+a(i,j+2,k+3)+b(i,j+2,1+2)+c(i,k+3,1+2)

sum = sum+a(i,j+2,k+3)+b(i,j+2,1+3)+¢(i,k+3,1+3)

s ~ m = snm+a(i,j+3,k)+b(i,j+3,1)+c(i,k,l)

sum= sum+a(i,j+3,k)+b(i,j+3,1+1)+¢(i,k,l+1)

sum = sum+a(i,j+3,k)+b(i,j+3,1+2)÷c(i,k,l+2)

sum = sum+a(i,j+3,k)+b(i,j+3,1+3)÷c(i,k,l+3)
sum = sum+a(i,j+3,k+l)+b(i,j+3,1)÷c(i,k+l,l)

sum= sum+a(i,j+S,k+l)+b(i,j+3,1+l)+c(i,k+l,l+l)

sum = sum+a(i,j+3,k+l)+b(i,j+3,1+2)+c(i,k+l,l+2)
sum = sum+a(i,j+3,k+l)+b(i,j+3,1+3)+c(i,k+l,l+3)

sum = sum+a(i,j+3,k+2)+b(i,j+3,1)÷¢(i,k+2,1)
sum= sum+a(i,j+3,k+2)+b(i,j+S,l+l)+c(i,k+2,1+l)

sum = sum+a(i,j+3,k+2)+b(i,j+3,1+2)+c(i,k+2,1+2)

sum = sum+a(i,j+3,k+2)+b(i,j+3,1+3)+c(i,k+2,1+3)
sum = sum+a(i,j+3,k+Z)+b(i,j+3,1)+c(i,k+3,1)
sum = sum+a(i,j+3,k+3)+b(i,j+3,1+l)+c(i,k+3,1+l)

sum = sum+a(i,j+3,k+3)+b(i,j+3,1+2)+c(i,k+3,1+2)

sum = sum+a(i,j+3,k+3)+b(i,j+3,1+3)+c(i,k+3,1+3)
end do

end do
do j=j,n,1

do i=l,n,1

sum = sum+a(i,j,k)+b(i,j,l)+c(i,k,l)

s11m =

$ ' o m =

S R m =

S U m =

S'OR =

s ~ =

S l l ~ t =

S ~ =

S l i m =

s l i m =

S ~] l l =

s ' o l =

sD.m =

S'O.R =

e n d d o

end do
end do

sum÷a(i,j,k)+b(i,j,l÷1)+c(i,k,l+l)

sum+a(i,j,k)+b(i,j,l+2)+c(i,k,l+2)

sum+a(i,j,k)+b(i,j,l+3)+c(i,k,l+3)

sum+a(i,j,k+l)+b(i,j,l)+c(i,k+l,l)

sum+a(i,j,k+l)+b(i,j,l+l)+c(i,k+l,l+l)

sum+a(i,j,k+l)+b(i,j,l+2)+c(i,k+l,l+2)

sum+a(i,j,k+l)+b(i,j,l+3)+c(i,k+1,1+3)

sum+a(i,j,k+2)+b(i,j,l)+c(i,k+2,1)

sum÷a(i,j,k+2)+b(i,j,l+1)+c(i,k+2,1+l)

sum÷a(i,j,k+2)+b(i,j,l+2)+c(i,k+2,1+2)

snm+a(i,j,k+2)+b(i,j,l+3)+c(i,k+2,1+3)

sum+a(i,j,k+3)+b(i,j,l)+c(i,k+3,1)
sum+a(i,j,k+3)+b(i,j,l+l)+c(i,k+3,1+1)

sum+a(i,j,k+3)+b(i,j,l+2)+c(i,k+3,1+2)

sum÷a(i,j,k+3)+b(i,j,l+3)+c(i,k+3,1+3)

do k = k , n , l
do j : l , n , 1

do i : l , n , 1
SUm = sum+a(i,j,k)+b(i,j,l)+c(i,k,l)

sum = sum+a(i,j,k)+b(i,j,l+l)+c(i,k,l+l)

sum= sum+a(i,j,k)+b(i,j,l+2)+c(i,k,l+2)

smn = sum+a(i,j,k)+b(i,j,l+3)+c(i,k,l+3)

end do
end do

end do
end do

do 1 = 1 , n , 1
do k = l , n , 1

do j = l , n , 1
do i = l , n , l

sum = sum÷a(i,j,k)+b(i,j,l)+c(i,k,1)

end do
end do

end do
end do

Figure 13: Generated code using compact code generation

166

