UNIVERSITY OF

MICHIGAN

A Loop Transformation Theory and an
Algorithm to Maximize Parallelism

Z. Wang, M. Yuan, Z. Zhang , Z. Zhou
From Group 7

Outline

e [ntroduction

e Distance vectors & Unimodular Transformation
® Direction vectors

e |Implementation

® Summary

M UNIVERSITY OF MICHIGAN 2

Introduction

e \Why we need loop parallelization

e Model to represent large number of instructions
o Polyhedral Model

R o\ oo HX o oo
° o 3 ° o/ o0
L e S S 3 .9 for (i = 0;i < N; i++)
e 2 o 8 & for (j =0;j <N; j++)
o 8

<
.2 9 S2
> b @ 8 & Y
o § e o 9 0 <=i<=N-1
P\ o 0<=j<=N-1
) 9 0 <=k <= N-1
@ for (i=0; i< N;i++)

i Kk for (j=0; j<N: j++)
>/ for (k=0; k < N: k++)
S1

M UNIVERSITY OF MICHIGAN 3

Polyhedral Model

e Polyhedral Model, or Polytope Model, is

a mathematical framework for programs Polygon space
that perform large numbers of
operations -- too large to be explicitly e o I e
I ! | ‘ | ieS
enumerated . for (i =(0; i <= 5; i++) ; % l‘ L"‘ ?“Ml@%
for (j =i; j<=7; j++ ,a
o Mo_stly cqmmonly used in nest loop il el " B | F 0
optimization L) " 4
. . Figure 11.10: A 2-dimensional loop nest
e Lattice points are used to denote the
instance of each statement 0<i

Figure 11.11: The iteration space of Example 11.6

-
4

=

=
.

1 0 0 0
-1 0 i 5 0 A {in Z° i
BRI H RS
0 -1 7 0
M UNIVERSITY OF MICHIGAN 4

Example of Polyhedral Model

e In the below example, each instance / execution of statement AJi,j] is mapped to a dot from
the right coordinate

J p
o
'l e 6. 6.6 @
L
o -
il oo o 6.0 ..
i >
0 1 2 3 e N-1 i

M UNIVERSITY OF MICHIGAN 5

Two types of vector

e Distance vector:
o represent the "shape" of dependence, but no information of source and sink

e Direction vectors:
o captures of the "direction" of dependence, but no information of “shape”

source: https://engineering.purdue.edu/~milind/ece573/2011spring/lecture-14.pdf

M UNIVERSITY OF MICHIGAN 6

Distance Vectors

Let’s say in a loop, to compute V[i], we need the value of V[i - n]. then the distance vector can
be represented as (i - (i - n)) = (n)

In 2D, to compute V[i+ 1][j-2]we need the value of V[i][j]and V[i-1][]-2]. then the

distance vector can be represented as ((1, -2),(2, 0))

Why do we say the distance vector captures the information of “shape™?

M UNIVERSITY OF MICHIGAN 7

Distance Vectors

L
:a)l '=0to S5do kkkk
o;orll;—:z Oto 6do m“““
a(l + 1] := 13 * (a[2] + a(l, + 1] + a[l» +2)); HEBE
D = {(0.1),(1,0), (1,-1)} NN
NANNINLL

M UNIVERSITY OF MICHIGAN 8

legality of Unimodular Transformation

e Dependence vector must be lexicographically positive
e A unimodular transformation is legal if and only if:

Vde D:Td>0

we will see what they mean later

M UNIVERSITY OF MICHIGAN 9

Unimodular Transformation

There are three elementary transformations:

Permutation:

A permutation o on a loop nest transfer iteration (py,...,p,) to (ps,, ..., 00)

Reversal:

-1 0
Reversal of the ith loop, for example: [0 J :

M UNIVERSITY OF MICHIGAN

Unimodular Transformation

There are three elementary transformations:

Skewing: “

for I, :=0to 5do
for I := Oto 6do
aflb +1]:= 173 * (a[] + afl, + 1] + a[l +2));

D= {(0! 1)1(1!0)1(1'—1)}'

VY
V)
VY
VY

VY

N
N
Dy
N
N

ol

(b)
for I} :=Oto 5do
for I := I{ to 6+I{ do
al,—I +1]:=13* @I - I}] +
afl; — I +1]+al; - I{ +2))

r=[11]

D' =TD = {(0,1),(1,1),(1,0)} Iy

Fig. 1. Iteration space and dependences of (a) a source loop nest, and the (b) skewed loop nest.

M UNIVERSITY OF MICHIGAN

Compounding of unimodular Transformation

for 1 from 1 to N:
for j from 1 to N:

a[i][3] = a[1][3] + a[i + 1][J - 1]

0 1
We can see it has dependence d = (1, —1), let's say we apply a loop interchange T' = [1 O}

is T'd legal?

No! it must be lexicographically positive, but 7d = (—1,1).

M UNIVERSITY OF MICHIGAN

Compounding of unimodular Transformation

If we compounding the interchange with a reversal, T"'.

The new transformation is legal because T'(1, —1) = (1, 1), which is lexicographically positive.

M UNIVERSITY OF MICHIGAN

Direction Vectors

The problem with distance vectors: cannot represent general loop nests,

1: for /1 : =0 to N do

2: for I, ;=0 to N do
3 b:= g(b)

4: end for

5: end for

Itr (7, /) must precede itr (i, j+1) — (0, 1)
Itr (, N) must precede itr (i+1, 0) — (0, -N)

Example 1 does not have any exploitable
parallelism.

M UNIVERSITY OF MICHIGAN

1: for I; :=0 to N do

2: for I :=0 to N do

3: ally, I5] := a[l; + 1, b[15]]
4: end for

5. end for

lteration (i, j) must precede iteration (i+1, b/j])

Example 2 contains parallelism, but cannot be
represented by distance vectors.

Direction Vectors

Direction vector: each component d. of a dependence vector d now a possibly infinite range of
integers, represented by [d"", d"*],

d;nan = 2] {—OO}, d;na.:zz = Z1] {OO} and ([;n.'i.n. S d;n.a:r,

—

A direction vector therefore represents a set £(d) of distance vectors,

d = ([1,2],[1,2]) represents E(d) = {(,1), 1, 2), (2,1.),02, 27}

dimin dimin — dimax ([1, 1], [2, 2]) N (1, 2)
, + [1, o] ([1,], [2,2]) = (+, 2)
Some conventions
- [-e0, -1] ([0, -1], [2,2]) — (2)
+ [-00, 0] ([-o0,], [2, 2]) = (£, 2)

M UNIVERSITY OF MICHIGAN

Direction Vectors

As mentioned before, a unimodular transformation is legal for d if,
Vd:Vee E(d): Te- 0

e The direction vector can represent an infinite set of distance vectors!
o Problem: hard to handle infinite distance vectors.

o Solution: to operate on direction vectors directly.
d" >0 d>0
dm" >0 d>0
negative d"™ <0 d<0
nonpositive d"™ <0 d<0

Lexicographically positive can apply to general dependence vectors!

M UNIVERSITY OF MICHIGAN

Direction Vectors

To enable unimodular transformation, we define component addition to be,
[a, b] + [c, d] = [atc, bHd]
we define multiplication by a scalar as,

[sa, sb] if s > 0
sla,b] = ¢ [0,0] ifs=0

[sb, sa] otherwise

Let D be the set of dependence vectors of a computation. A unimodular transformation T is legal if

V(IE D:Td=n
Just like distance vectors!

M UNIVERSITY OF MICHIGAN

Direction Vectors - An Example

1: for I; :=0 to N do
2: for Io ;=0 to N do

3: for I3 : =0 to N do

4: (a[ly, I3],b[1y, I3, I3]) :=

o: f((l[[l]3]. (I.[Il & 1, [3 =— 1] b[-[l- [2. [3]. 1){[1, [2, 13 = 1])
6: end for

i end for

8: end for

The dependence vectors for this nest are,
D= {0, +,0), (1, £ -1), (0, 0, 1)}

[1 1 0“ [1 0 O-‘ [1 0 O“ Make the two outermost loops to
T =

1 P] I - 0O 0 1 canonical form
8 0 0 1 0O 1 0 Produce a loop nest with parallelism
wavefront skew skewing middle loop permuting |, and I,

The transformed dependences D’ becomes
D’={(0,0,+), (1,1, %), (1, 0,0)}

M UNIVERSITY OF MICHIGAN

parallelize the loop nest with distance vector

1. Canonical form

Transfer a loop nest into a fully permutable loop nest.

2. Wavefront transform

Use wavefront transformation to transform the loop nest for parallelization.

What is fully permutable loop nest? What is Wavefront transformation?
for i = 1:N { e L cwams DL

for j = 1:M { T 0 %5 0 O
} Wavefront : - :

. o 0 --- 1 0]
| < |, loops are still correct! s
forc =:2:N#M {
for 1 = max(1,c-M), min(N,c-1) {
A(i, c-1) = A(i-1, c-i) + A(i, c-1i-1);
All inner loops (n-1 loops) are parallelizable after those transformations! }

}

M UNIVERSITY OF MICHIGAN

Loop nest

Lexicographically
positive vectors

Extract
Dependence

Same procedure

Distance vectors — Direction
vectors

skewing — SRP transformation
Not all loops are parallelizable:

1) serializing loops, loops with dependence components
including both +oc and —oc; these loop cannot be
included in the outermost fully permutable nest and can
be ignored for that nest.

2) loops that can be included via the SRP transformation,
an efficient transformation that combines permutation,
reversal, and skewing.

3) the remaining loops; they may possibly be included via
a general transformation using the time cone method.

loops are no longer fully
permutable
no longer n-1 parallel loops

M UNIVERSITY OF MICHIGAN

skewing

Implementation in general

Fully permutable loop nest

transform

parallel loop

" Theorem 6.2: Let L = {I1,--+,I,} be a loop nest with
lexicographically positive dependences d € D, and D' =
{d € D|(d,---,d;_1) ¥ 0}. Loop I; can be made into a
fully permutable nest with loop I;, where 7 < j, via reversal
and/or skewing, if
Vd € D' : (dP'™ # —o0 A (d" < 0 — dP™ > 0)) or
Vd € D' : (dP™ # 0o A (dT* > 0 — &P > 0)) .
Proof: All dependence vectors for which (dy,---,

di—1) > 0 do not prevent loops I; and I; from being fully
permutable and can be ignored. If

Vd € D' : (d™" # —o0 A (dP® < 0 — dP™® > 0))

then we can skew loop I; by a factor of f with respect to
loop I; where

f2 o max [—dmin/dmn

" {dldeDindminz0}

to make loop I; fully permutable with loop I;. If instead the
condition

Vd € D' : (dP** # oo A (d7** > 0 — dPi" > 0)) .

holds, then we can reverse loop I; and proceed as above. [J

How to transform to parallel loops?

Suppose we have the loop nest

mrh.—~
mrI
S(Il, -,In);
Transform indices: I B
3 = T_l
s - b i

Transform bounds:
1. Extract inequalities
2. Find absolute maximum and minimum for
each loop
transform indices
calculate new loop bounds

B w

M UNIVERSITY OF MICHIGAN

An example loop nest:

for I} '=1ton; do
for I, := 21; to ny do
for :=2L +5L ~1to min(]z,m) do
S(I] > 12, Ig),'
Step 1: Extract inequalities:
L2>1 L <n
L 224 h<m
L>2h+h-1 [h<h [h<m

Step 2: Find [absolute maximum and minimum for each loop index:

Imin = 1 PW_m
I'“"' 2% 3=2 I = ny

I““" 2x1+2-1=3 1"‘“ min(nz, n3)

Step 3: Transform indices: I, =I5 L=, L =1

Inequalities Maxima and minima
5>1 I <n I[™* =3 [{™* = min(ny,n3)
L >2q I <ny Thsin, L™ =n,

L>20+0-1 I[<I I[<n3 Imin =1 [jmx = p
Step 4: Calculate new loop bounds:

Index Inequality (index on LHS) Substituting in I /™" ang ’™= Result

L Z>25 L>2 5>2 |
L>1 5>
L<m L<m
B<n-21+1 e | B<n-1

] 521 L34
Ii<m I <ny
E<(fi-n+1)/2 L -1-1)/2)

The loop nest after transformation:

for I{ :=3 to min(ny, n;) do
for I} :=I{ to min(n,, I] — 1) do
for I := 1 to min(ny, |(I{ — I; + 1)/2]) do
S, I, I

Summary

Extract Lexicographically SRP loop nest with maximum transform
Seetlls Dependence positive vectors transform DOALL loops el e

The general step for loop transformations:
- Extract direction vector (lexicographically positive)
- Use SRP transformation to get maximum parallelizable loops
- Get transformed the indices and boundaries

Our plan — polyhedral model + affine transformation
- Handles a wider class of programs and transformations than the unimodular framework
- Automatic parallelization
- Data locality optimizations
- Memory management optimizations

M UNIVERSITY OF MICHIGAN

Backup

M UNIVERSITY OF MICHIGAN

Affine Transformation

e cO+c1*v1+c2*v2+...+cn”

vV._n for (1 = 2; i <= 100; i = i+3)
L , Z[i] = 0;
e Such expression is also known as linear J t
expression
e Strictly speaking, an affine for (j = 0; j <= 32; j++)
Z[3%j+2] = 0;

transformation is linear only if ¢ 0is O

M UNIVERSITY OF MICHIGAN

Apply Affine Transformation

(i, j) maps to (i +j,)

]z
| Tt t 1
¢ - ® > Q—>@—>@ - -
1 ¢+ QL 1 ?
3 e —-— > Q@=—>@ - - - -
1 1 T 1
2 - @—@—@— - - - -
.,
[.—»Q—).—»._ P
o . .. =

S T

LR e
: WSS S S

o oo ->@—>@—>0—>@ -
- WL i

ol R SR = > @=> @@

Ty WU
p I MO SR SR e—>0—> —>0—>0
v, T

[Bt ._y._y._) _).
0 1 2 3 :1 5 6 7 8 even 2N-2

M UNIVERSITY OF MICHIGAN

Optimized Code (using OpenMP)

co N): ¢l min(N ;

Alcl] [cO — c1] (Alcl] [cO@ - c1] Alcl] [cO - c1

M UNIVERSITY OF MICHIGAN

