

A Loop Transformation Theory and an Algorithm to Maximize Parallelism

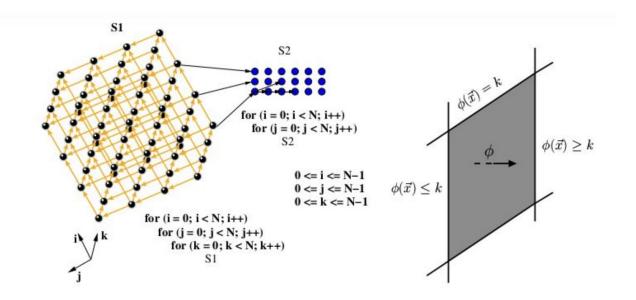
Z. Wang, M. Yuan, Z. Zhang , Z. Zhou From Group 7

Outline

- Introduction
- Distance vectors & Unimodular Transformation
- Direction vectors
- Implementation
- Summary

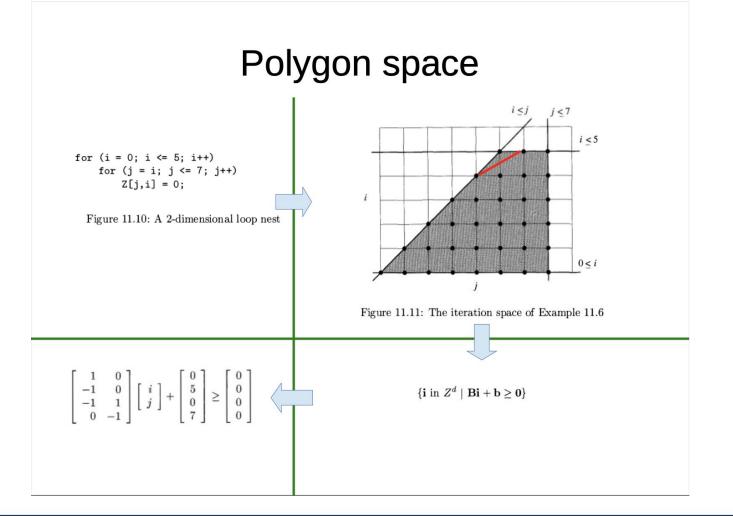
Introduction

- Why we need loop parallelization
- Model to represent large number of instructions
 - Polyhedral Model



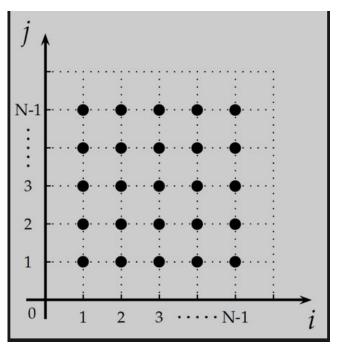
Polyhedral Model

- Polyhedral Model, or Polytope Model, is a mathematical framework for programs that perform large numbers of operations -- too large to be explicitly enumerated
- Mostly commonly used in nest loop optimization
- Lattice points are used to denote the instance of each statement



Example of Polyhedral Model

 In the below example, each instance / execution of statement A[i,j] is mapped to a dot from the right coordinate



Two types of vector

- Distance vector:
 - represent the "shape" of dependence, but no information of source and sink
- Direction vectors:
 - o captures of the "direction" of dependence, but no information of "shape"

source: https://engineering.purdue.edu/~milind/ece573/2011spring/lecture-14.pdf

Distance Vectors

Let's say in a loop, to compute V[i], we need the value of V[i - n]. then the distance vector can be represented as (i - (i - n)) = (n)

In 2D, to compute V[i + 1][j - 2] we need the value of V[i][j] and V[i - 1][j - 2]. then the distance vector can be represented as ((1, -2),(2, 0))

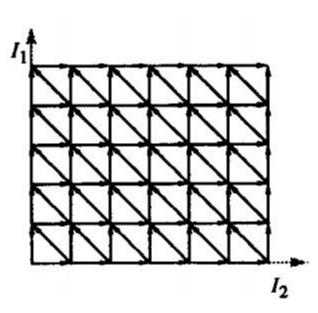
Why do we say the distance vector captures the information of "shape"?

Distance Vectors

(a)

for $I_1 := 0$ to 5 do for $I_2 := 0$ to 6 do $a[I_2 + 1] := 1/3 * (a[I_2] + a[I_2 + 1] + a[I_2 + 2]);$

 $D = \{(0,1), (1,0), (1,-1)\}.$



legality of Unimodular Transformation

- Dependence vector must be **lexicographically positive**
- A unimodular transformation is legal if and only if:

 $\forall \vec{d} \in D: T\vec{d} \succ \vec{0}$

we will see what they mean later

Unimodular Transformation

There are three elementary transformations:

Permutation:

A permutation σ on a loop nest transfer iteration (p_1,\ldots,p_n) to $(p_{\sigma_1},\ldots,\sigma_n)$

Reversal:

Reversal of the *i*th loop, for example: $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.

Unimodular Transformation

There are three elementary transformations:

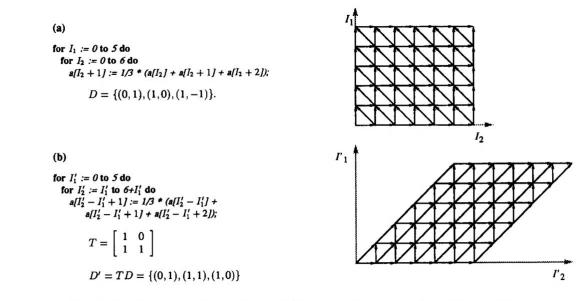


Fig. 1. Iteration space and dependences of (a) a source loop nest, and the (b) skewed loop nest.

Compounding of unimodular Transformation

for i from 1 to N:
 for j from 1 to N:
 a[i][j] = a[i][j] + a[i + 1][j - 1]

We can see it has dependence d = (1, -1), let's say we apply a loop interchange $T = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

is Td legal?

No! it must be lexicographically positive, but Td = (-1, 1).

Compounding of unimodular Transformation

$$T' = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

If we compounding the interchange with a reversal, T'.

The new transformation is legal because T'(1, -1) = (1, 1), which is lexicographically positive.

The problem with distance vectors: cannot represent general loop nests,

1: for $I_1 := 0$ to N do 2: for $I_2 := 0$ to N do 3: b := g(b)4: end for 5: end for

Itr (i, j) must precede itr $(i, j+1) \rightarrow (0, 1)$ Itr (i, N) must precede itr $(i+1, 0) \rightarrow (0, -N)$

Example 1 does not have any exploitable parallelism.

1: for $I_1 := 0$ to N do 2: for $I_2 := 0$ to N do 3: $a[I_1, I_2] := a[I_1 + 1, b[I_2]]$ 4: end for 5: end for

Iteration (i, j) must precede iteration (i+1, b[j])

Example 2 contains parallelism, but cannot be represented by distance vectors.

Direction vector: each component d_i of a dependence vector \vec{d} now a possibly infinite range of integers, represented by $[d_i^{min}, d_i^{max}]$,

$$d_i^{min} \in \mathcal{Z} \cup \{-\infty\}, \ d_i^{max} \in \mathcal{Z} \cup \{\infty\} \text{ and } d_i^{min} \leq d_i^{max}$$

A direction vector therefore represents a set $\mathcal{E}(\vec{d})$ of distance vectors,

$$\vec{d} = ([1, 2], [1, 2])$$
 represents $\mathcal{E}(\vec{d}) = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$

d_i^{min}	$d_i^{min} = d_i^{max}$	$([1, 1], [2, 2]) \rightarrow (1, 2)$
+	$[1,\infty]$	$([1, \infty], [2, 2]) \to (+, 2)$
_	[-∞, -1]	$([-\infty, -1], [2, 2]) \rightarrow (-, 2)$
±	[-∞, ∞]	$([-\infty, \infty], [2, 2]) \rightarrow (\pm, 2)$

Some conventions

As mentioned before, a unimodular transformation is legal for \vec{d} if,

 $\forall \vec{d} : \forall \vec{e} \in \mathcal{E}(\vec{d}) : T\vec{e} \succ \vec{0}$

- The direction vector can represent an infinite set of distance vectors!
 - Problem: hard to handle infinite distance vectors.
 - Solution: an arithmetic is defined to operate on direction vectors directly.

positive	$d^{min} > 0$	<i>d</i> > 0
nonnegative	$d^{min} \ge 0$	$d \ge 0$
negative	$d^{max} < 0$	d < 0
nonpositive	$d^{max} \leq 0$	$d \leq 0$

Lexicographically positive can apply to general dependence vectors!

To enable unimodular transformation, we define component addition to be,

[a, b] + [c, d] = [a+c, b+d]

we define multiplication by a scalar as,

 $s[a,b] = \begin{cases} [sa,sb] & \text{if } s > 0\\ [0,0] & \text{if } s = 0\\ [sb,sa] & \text{otherwise} \end{cases}$

Let D be the set of dependence vectors of a computation. A unimodular transformation T is legal if

$$\forall \vec{d} \in D: T\vec{d} \succ \vec{0}$$

Just like distance vectors!

Direction Vectors - An Example

1: for
$$I_1 := 0$$
 to N do
2: for $I_2 := 0$ to N do
3: for $I_3 := 0$ to N do
4: $(a[I_1, I_3], b[I_1, I_2, I_3]) :=$
5: $f(a[I_1, I_3], a[I_1 + 1, I_3 - 1], b[I_1, I_2, I_3], b[I_1, I_2, I_3 - 1])$
6: end for
7: end for
8: end for

The dependence vectors for this nest are,

$$D = \{(0, +, 0), (1, \pm, -1), (0, 0, 1)\}$$
$$T = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
wavefront skew skewing middle loop permuting l₂ and l₃

Make the two outermost loops to canonical form

Produce a loop nest with parallelism

The transformed dependences D' becomes

 $D' = \{(0, 0, +), (1, 1, \pm), (1, 0, 0)\}$

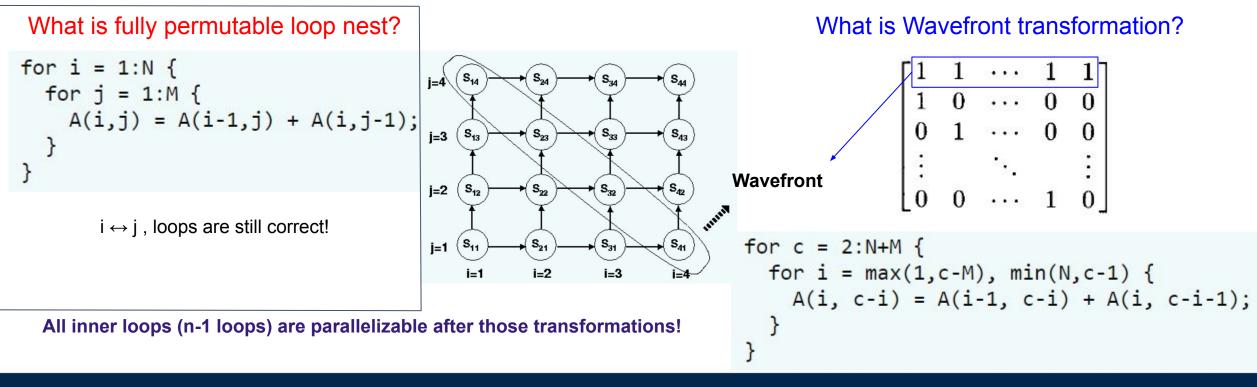
parallelize the loop nest with distance vector

1. Canonical form

Transfer a loop nest into a fully permutable loop nest.

2. Wavefront transform

Use wavefront transformation to transform the loop nest for parallelization.



Implementation in general

Lexicographically Extract skewing transform Fully permutable loop nest Loop nest parallel loop Dependence positive vectors Same procedure Theorem 6.2: Let $L = \{I_1, \dots, I_n\}$ be a loop nest with Distance vectors \rightarrow Direction lexicographically positive dependences $\vec{d} \in D$, and $D^i =$ $\{\vec{d} \in D | (d_1, \dots, d_{i-1}) \neq \vec{0}\}$. Loop I_i can be made into a vectors fully permutable nest with loop I_i , where i < j, via reversal and/or skewing, if - skewing \rightarrow SRP transformation $\forall \vec{d} \in D^i : (d_i^{\min} \neq -\infty \land (d_i^{\min} < 0 \rightarrow d_i^{\min} > 0)) \text{ or }$ Not all loops are parallelizable: $\forall \vec{d} \in D^i : (d_i^{\max} \neq \infty \land (d_i^{\max} > 0 \to d_i^{\min} > 0)) .$ *Proof:* All dependence vectors for which (d_1, \cdots, d_n) 1) serializing loops, loops with dependence components d_{i-1} > $\vec{0}$ do not prevent loops I_i and I_i from being fully including both $+\infty$ and $-\infty$; these loop cannot be permutable and can be ignored. If included in the outermost fully permutable nest and can $\forall \vec{d} \in D^i : (d_i^{\min} \neq -\infty \land (d_i^{\min} < 0 \to d_i^{\min} > 0))$ be ignored for that nest. 2) loops that can be included via the SRP transformation, then we can skew loop I_i by a factor of f with respect to an efficient transformation that combines permutation, loop I_i where reversal, and skewing. 3) the remaining loops; they may possibly be included via $f \ge \max_{\{\vec{d} \mid \vec{d} \in D^i \land d_i^{\min} \neq 0\}} \left\lceil -d_j^{\min} / d_i^{\min} \right\rceil$ a general transformation using the time cone method. to make loop I_i fully permutable with loop I_i . If instead the loops are no longer fully condition $\forall \vec{d} \in D^i : (d_i^{\max} \neq \infty \land (d_i^{\max} > 0 \to d_i^{\min} > 0)) .$ permutable holds, then we can reverse loop I_i and proceed as above. \Box no longer n-1 parallel loops

How to transform to parallel loops?

Suppose we have the loop nest

for
$$I_1 := \cdots$$

...
for $I_n := \cdots$
 $S(I_1, \cdots, I_n);$

Transform indices:

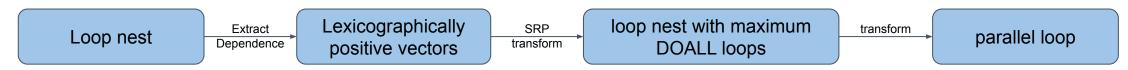
$$\begin{bmatrix} I_1 \\ \vdots \\ I_n \end{bmatrix} = T^{-1} \begin{bmatrix} I_1' \\ \vdots \\ I_n' \end{bmatrix}.$$

Transform bounds:

- 1. Extract inequalities
- 2. Find absolute maximum and minimum for each loop
- 3. transform indices
- 4. calculate new loop bounds

An example l	An example loop nest:					
1	for $I_1 := 1$ to n_1 do for $I_2 := 2I_1$ to n_2 do for $I_3 := 2I_1 + I_2 - 1$ to min (I_2, n_3) do $S(I_1, I_2, I_3);$					
Step 1: Extrac	Step 1: Extract inequalities:					
$I_1 \ge 1 \qquad I_1 \le n_1 \\ I_2 \ge 2I_1 \qquad I_2 \le n_2 \\ I_3 \ge 2I_1 + I_2 - 1 \qquad I_3 \le I_2 I_3 \le n_3$						
Step 2: Find absolute maximum and minimum for each loop index:						
$I_{1}^{\min} = 1 \qquad I_{1}^{\max} = n_{1} \\ I_{2}^{\min} = 2 \times 1 = 2 \qquad I_{2}^{\max} = n_{2} \\ I_{3}^{\min} = 2 \times 1 + 2 - 1 = 3 \qquad I_{3}^{\max} = \min(n_{2}, n_{3})$						
Step 3: Transform indices: $I_1 \Rightarrow I'_3$ $I_2 \Rightarrow I'_2$ $I_3 \Rightarrow I'_1$						
Step 4: Calcul	Inequalities Maxima and minima $I'_2 \ge 1$ $I'_3 \le n_1$ $I'_1^{\min} = 3$ $I'_1^{\min} = 3$ $I'_1^{\min} = 3$ $I'_2 \ge 2I'_3$ $I'_2 \le n_2$ $I'_2^{\min} = 2$ $I'_2^{\max} = n_2$ $I'_1 \ge 2I'_3 + I'_2 - 1$ $I'_1 \le I'_2$ $I'_1 \le n_3$ $I'_3^{\min} = 1$ $I'_3^{\max} = n_1$ alate new loop bounds: $I'_2 = I'_2$ $I'_2 = I'_2$ $I'_3 = n_1$ $I'_3 = n_1$					
Index						
	Inequality (index on LHS) Substituting in I'^{min} and I'^{max} Result $I'_2 \ge 2I'_3$ $I'_2 \ge 2$ $I'_2 \ge 2$ $I'_2 \ge I'_1$ $I'_2 \ge I'_1$ $I'_2 \ge I'_1$ $I'_2 \le I'_1$ $I'_2 \ge I'_1$ $I'_2 \ge I'_1$ $I'_2 \le I'_1 - 2I'_3 + 1$ $I'_2 \le I'_1 - 1$ $I'_2 \le I'_1 - 1$					
I's	$\begin{array}{ll} I'_3 \geq 1 & I'_3 \geq 1 \\ I'_3 \leq n_1 & I'_3 \leq n_1 \\ I'_3 \leq (I'_1 - I'_2 + 1)/2 & I'_3 \leq \lfloor (I'_1 - I'_2 + 1)/2 \\ \end{array}$	½ − 1)/2]				
The loop nest after transformation:						
for $I'_1 := 3$ to min (n_3, n_2) do for $I'_2 := I'_1$ to min $(n_2, I'_1 - 1)$ do for $I'_3 := 1$ to min $(n_1, \lfloor (I'_1 - I'_2 + 1)/2 \rfloor)$ do $S(I'_3, I'_2, I'_1);$						

Summary



The general step for loop transformations:

- Extract direction vector (lexicographically positive)
- Use SRP transformation to get maximum parallelizable loops
- Get transformed the indices and boundaries

Our plan — polyhedral model + affine transformation

- Handles a wider class of programs and transformations than the unimodular framework
- Automatic parallelization
- Data locality optimizations
- Memory management optimizations

Backup

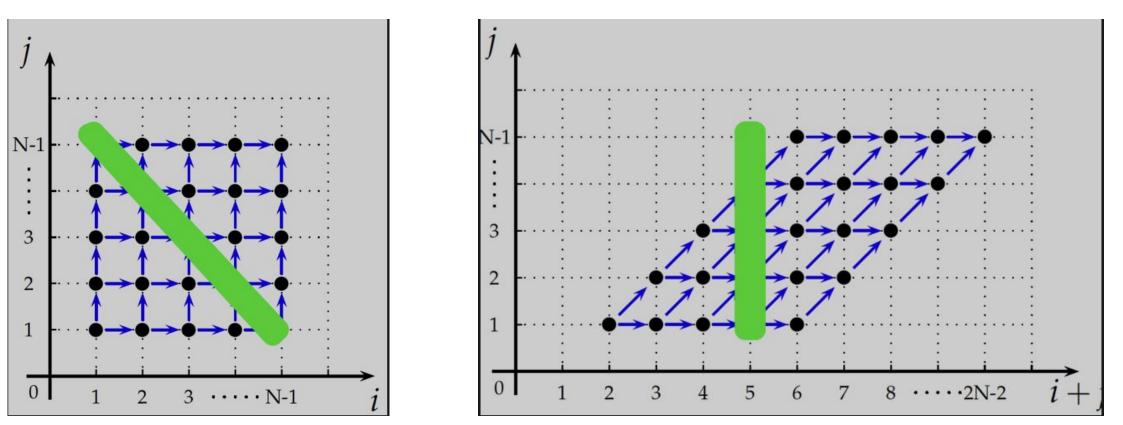
Affine Transformation

- c_0 + c_1 * v_1 + c_2 * v_2 + ... + c_n *
 v_n
- Such expression is also known as linear expression
- Strictly speaking, an affine transformation is linear only if c_0 is 0

for (i = 2; i <= 100; i = i+3)
Z[i] = 0;
for (j = 0; j <= 32; j++)
Z[3*j+2] = 0;</pre>

Apply Affine Transformation

(i, j) maps to (i + j, j)



Optimized Code (using OpenMP)

