
A Loop Transformation Theory and an
Algorithm to Maximize Parallelism

Z. Wang, M. Yuan, Z. Zhang , Z. Zhou
From Group 7

Outline

● Introduction

● Distance vectors & Unimodular Transformation

● Direction vectors

● Implementation

● Summary

2

Introduction

3

● Why we need loop parallelization

● Model to represent large number of instructions

○ Polyhedral Model

4

Polyhedral Model
● Polyhedral Model, or Polytope Model, is

a mathematical framework for programs
that perform large numbers of
operations -- too large to be explicitly
enumerated

● Mostly commonly used in nest loop
optimization

● Lattice points are used to denote the
instance of each statement

5

Example of Polyhedral Model

● In the below example, each instance / execution of statement A[i,j] is mapped to a dot from
the right coordinate

Two types of vector

● Distance vector:
○ represent the "shape" of dependence, but no information of source and sink

● Direction vectors:
○ captures of the "direction" of dependence, but no information of “shape”

6

source: https://engineering.purdue.edu/~milind/ece573/2011spring/lecture-14.pdf

Distance Vectors

Let’s say in a loop, to compute V[i], we need the value of V[i - n]. then the distance vector can
be represented as (i - (i - n)) = (n)

In 2D, to compute V[i + 1][j - 2] we need the value of V[i][j] and V[i - 1][j - 2]. then the
distance vector can be represented as ((1, -2),(2, 0))

Why do we say the distance vector captures the information of “shape”?

7

Distance Vectors

8

9

legality of Unimodular Transformation

● Dependence vector must be lexicographically positive
● A unimodular transformation is legal if and only if:

we will see what they mean later

10

Unimodular Transformation
There are three elementary transformations:

11

Unimodular Transformation
There are three elementary transformations:

Skewing:

12

Compounding of unimodular Transformation

13

Compounding of unimodular Transformation

Direction Vectors
The problem with distance vectors: cannot represent general loop nests,

14

Itr (i, j) must precede itr (i, j+1) ⟶ (0, 1)
Itr (i, N) must precede itr (i+1, 0) ⟶ (0, -N)

Example 1 does not have any exploitable
parallelism.

Iteration (i, j) must precede iteration (i+1, b[j])

Example 2 contains parallelism, but cannot be
represented by distance vectors.

Direction Vectors
Direction vector: each component di of a dependence vector now a possibly infinite range of
integers, represented by [di

min, di
max],

15

A direction vector therefore represents a set of distance vectors,

di
min di

min = di
max ([1, 1], [2, 2]) ⟶ (1, 2)

+ [1, ∞] ([1, ∞], [2, 2]) ⟶ (+, 2)

− [-∞, -1] ([-∞, -1], [2, 2]) ⟶ (−, 2)

± [-∞, ∞] ([-∞, ∞], [2, 2]) ⟶ (±, 2)

Some conventions

Direction Vectors
As mentioned before, a unimodular transformation is legal for if,

16

● The direction vector can represent an infinite set of distance vectors!
○ Problem: hard to handle infinite distance vectors.
○ Solution: an arithmetic is defined to operate on direction vectors directly.

Lexicographically positive can apply to general dependence vectors!

positive dmin > 0 d > 0

nonnegative dmin ≥ 0 d ≥ 0

negative dmax < 0 d < 0

nonpositive dmax ≤ 0 d ≤ 0

Direction Vectors
To enable unimodular transformation, we define component addition to be,

[a, b] + [c, d] = [a+c, b+d]
we define multiplication by a scalar as,

17

Let D be the set of dependence vectors of a computation. A unimodular transformation T is legal if

Just like distance vectors!

Direction Vectors - An Example

The dependence vectors for this nest are,
D = {(0, +, 0), (1, ±, -1), (0, 0, 1)}

The transformed dependences D’ becomes
D’ = {(0, 0, +), (1, 1, ±), (1, 0, 0)}

18

wavefront skew skewing middle loop permuting I2 and I3

Make the two outermost loops to
canonical form

Produce a loop nest with parallelism

parallelize the loop nest with distance vector
1. Canonical form
Transfer a loop nest into a fully permutable loop nest.
2. Wavefront transform
Use wavefront transformation to transform the loop nest for parallelization.

19

What is fully permutable loop nest?

i ↔ j , loops are still correct!

What is Wavefront transformation?

Wavefront

All inner loops (n-1 loops) are parallelizable after those transformations!

20

Implementation in general

- Same procedure
- Distance vectors → Direction

vectors
- skewing → SRP transformation
- Not all loops are parallelizable:

- loops are no longer fully
permutable

- no longer n-1 parallel loops

Loop nest Lexicographically
positive vectors Fully permutable loop nest parallel loopExtract

Dependence
skewing transform

21

How to transform to parallel loops?

Transform indices:

Transform bounds:
1. Extract inequalities
2. Find absolute maximum and minimum for

each loop
3. transform indices
4. calculate new loop bounds

Summary

The general step for loop transformations:
- Extract direction vector (lexicographically positive)
- Use SRP transformation to get maximum parallelizable loops
- Get transformed the indices and boundaries

Our plan — polyhedral model + affine transformation
- Handles a wider class of programs and transformations than the unimodular framework
- Automatic parallelization
- Data locality optimizations
- Memory management optimizations

22

Loop nest Lexicographically
positive vectors

loop nest with maximum
DOALL loops parallel loopExtract

Dependence
SRP

transform
transform

23

Backup

24

Affine Transformation

● c_0 + c_1 * v_1 + c_2 * v_2 + … + c_n *

v_n

● Such expression is also known as linear

expression

● Strictly speaking, an affine

transformation is linear only if c_0 is 0

25

Apply Affine Transformation
(i, j) maps to (i + j, j)

26

Optimized Code (using OpenMP)

