PROGRAML: A Graph-based Program
Representation for Data Flow Analysis and
Compiler Optimizations

Group 6

Zheyu Zhang, Yunchi Lu, Xueming Xu

e Motivation

Agenda e Method

e Experiments & Results

Motivation

Tuning Compiler Challenge

e 1000s of variables

e Limited by domain expertise

e Compiler/Hardware keeps
changing

e Widening performance gap

Machine Learning in compiler optimization

e Turned into Data

Collect examples

(Program + best params)

Science/Machine Learning

Problems Repeat on

Learn from
change

examples

[Update heuristic]

Traditional Machine Learning in compiler optimization

Program IR Features

(CFG, DFG, AST,...)

void LinearAlgebraOp<InputScalar,
OutputScalar>::AnalyzeInputs(
OpKernelContext* context, TensorInputs* inputs,
TensorShapes* input_matrix_shapes, TensorShape*
batch_shape) {
int input_rank = -1;
for (int i = @; i < NumMatrixInputs(context); ++i) {
const Tensor& in = context->input(i);
if (i == 0) {
input_rank = in.dims();
OP_REQUIRES(
context, input_rank >= 2,
errors::InvalidArgument (
"Input tensor ", i,
" must have rank >= 2"));

#. instructions

loop nest level

arithmetic density

trip counts

Traditional Machine Learning in compiler optimization

Features

280 -
Machine
0000 |

Best Param

Features

Traditional Machine Learning in compiler optimization

Ne rogram
eature

Predicted
param

U Features

Hard to select!

Very successful! Typically outperforms human experts
IWang et. al. 2018]

https://zwang4.github.io/publications/pieee18.pdf

Machine Learning “without” features (Attempt #1)

Treat “Program” as Natural Language (NLP problem) cumins et ai.. eact 17

Token Index Token Index
kernel void A(global floatx a, const float b) { [kernel:l ? 2 : 190
alget_global_id(0)] *= 3.14 + b; - space cons
} void 2 b 11
A 3) 12
(4 { 13
1 global 5 \n 14
LUEOGE G 0O) @m el s T
* 7 get_global_id 16
a 8 0 17
LSTM/ Optimization
Transformer I - P

Decision

https://chriscummins.cc/pub/2017-pact.pdf

Machine Learning “without” features (Attempt #1)

Problem: Source code is highly structured

Feature vectors are easy to fool Sequential representations fail on
(e.g. insert dead code) non-linear relations, long-range deps

° void A(int a)
int b = Init€l);
// ... 1000 lines
e ' 3
I

G return b - a;
¥

Machine Learning “without” features (Today’s paper)

int Fib(int x) {
switch (x) {
case 0:
return 0;
case 1:
return 1;
default:
return Fib(x - 1)

+ Fib(x - 2);

[external] P
gl vallk» valfJ
sw1tch
phi -« br add
ret call
v
add
v
call
v
add
v
ret

- -—_

var

val |

var var
var

var

Program Graphs for Machine Learning (ProGraML)

General-purpose representation of programs ftor optimization tasks.
Task independent - capture structured relations fundamental to program
reasoning (i.e. data flow analysis)

Language +independent - derived from compiler IRs

Main procedure:

Compiler
Intermediate | | Optimization | | Output
Input Program) Representation Passes Executable
¥ [)
ProGraML Message Passing
Representation Neural Networks

I
©)0)

—~ Gy
Rasa

(0

Building ProGraML: to IR

Input program passed through the
compiler front-end to produce an
IR (e.g., LLVM IR)
Why IR?

o Language agnostic

o Closer to what compiler sees

int Fib(int x) {
switch (x) {
case 0:
return 0;
case 1:
return 1;
default:
return Fib(x - 1)
+ Fib(x - 2);

define i32 @Fib(i32) #0 {
switch 132 %0, label %3 [
i32 0, label %9
i32 1, label %2

]
; <label>:2:

br label %9
; <label>:3:

%4 = add nsw 132 %0, -1

%5 = tail call i32 @Fib(i32 %4)
%6 = add nsw i32 %0, -2

%7 = tail call i32 @Fib(i32 %6)
%8 = add nsw 132 %7, %5

ret i32 %8
; <label>:9:

%10 = phi i32 [1, %2 1, [%0, %1 1
ret i32 %10
}

Building ProGraML: Control-flow

e Graph constructed of

switch
instructions and control
dependencies.

Building ProGraML: Control-flow

e Full-flow-graph
o Node represents 1instruction.

o Node label 1is the 1instruction
name.

Building ProGraML: Control-flow

e Full-flow-graph

O

O

Node represents 1instruction.
Node label 1is the dinstruction
name.

Edges are control-flow.

Edge position attribute for
branching control-flow.

switch

[externall

Building ProGraML: Data-flow

e Add nodes for constants (diamonds)
and variables (oblongs).

Building ProGraML: Data-flow

Add nodes for constants (diamonds)
and variables (oblongs).
Edges are data-flow.

Edge position attribute for operand
order.

Building ProGraML: Data-flow

Elliptical Variables
Diamonds Constants
Data edges Use/def
relations
132 32 bit signed

integers

Numbers on Operand
edges positions

Building ProGraML: Call-flow

[externall] i32 i32 32

Edges are call-flow. /
Inbound edge to function
entry 1instruction.

Outbound edge from (all)
function exit instruction(s)

from to »
132
Call Call sites Function entry
edges instructions
Return Function Call sites
edges exits

Building ProGraML: Types

[externall]

e Nodes represent types,
Edges are 1instances.

, va1

V4 Vi v [

/ sw1tch ’_«"' '
e Types are composable. ////:;/\ 4
e Edge position per field. LERir

Building ProGraML: Types

- struct 5 {
e Nodes represent types, char a;
Edges are instances. char b;
struct S* c;
3
e Types are composable.

Edge position corresponds 18 18
to the field.

Sfl"UCt

Learning with ProGraML: Input encoding

Map instruction, constant, and variable node to vector embedding
Use node labels as embedding keys |[HEBN-° -1 Ge2)—2
Derive vocab from set of unique vertex labels on training graphs.

Separate type/instruction nodes leads to compact vocab
o excellent coverage on unseen programs compared to prior approaches

Vocabulz}ry Vocabulary e <nstovec:
Size Test Coverage)))
combined instruction+operands
inst2vec 8,565 34.0%
CDFG 75 47.5% 132 <id> = a<id> <int8>
PROGRAML 2,230 98.3% e CDEG: ’
Without types uses only 1instructions for vocab,

ignores data

Learning with ProGraML:
Message propagation: Gated Graph Neural Networks (GGNNs)

Position gating to differentiate
control branches and operand order

o Message Passing function -
mf} — Z Wtype(ewv) (hfu_l ® p(e'wv)) + btype(ewv)
weN (v)

e Update function (Gated Recurrent Unit (GRU))
h, = GRU(h ™, ml)

@
TARGET NODE »
l . “4 ‘
................ o
® | AGGREGATE [s....cccomrce. ol @
e, .
................. v

INPUT GRAPH
Figure: Message passing example. Adapted from (Hamilton, 2022)

Learning with ProGraML: Result Readout

e Readout Head
o Node-level 1inference (e.g., per-statement/identifier
classification)

R, (k) hy) = a(i(hl,) - §(hy)

v v v

per-node prediction after T sigmoid function

. feed-forward NNs
message-passing steps

o Graph-level classification (e.g., whole-program classification)

Re({h,hd},.)) = Y Ry(hl,n)

v 1% vEV v v
veV

Experiments & Results

Exp: Deep Data Flow Analysis

e Model: Gated-Graph Neural Networks

Exp: Deep Data Flow Analysis

e Model: Gated-Graph Neural Networks

e Training Type: Supervised Classification Task

Exp: Deep Data Flow Analysis

Reachability

Trivial forwards control-flow
E.g. dead code elimination

Exp: Deep Data Flow Analysis

starting node

Reachability =

Trivial forwards control-flow [| '
E.g. dead code elimination ¥ v

binary classification

Exp: Deep Data Flow Analysis

starting node reachable

o -

Reachability } !
-

Trivial forwards control-flow [|
E.g. dead code elimination ¥ v

Exp: Deep Data Flow Analysis

Reachability

Trivial forwards control-flow
E.g. dead code elimination

Dominance
Forwards control-flow
E.g. global code motion

Data Dependencies
Forwards data-flow
E.g. instruction selection

Live-out Variables
Backwards control- and data-flow
E.g. register allocation

Global Common

Subexpressions
Instruction/operand sensitive
E.g. GCS Elimination

e o e B3

Exp: Deep Data Flow Analysis

Deep Data FIow

0k LLVM-IRs co

Reachability

Trivial forwards control-flow
E.g. dead code elimination

Dominance
Forwards control-flow
E.g. global code motion

Data Dependencies
Forwards data-flow
E.g. instruction selection

Live-out Variables
Backwards control- and data-flow
E.g. register allocation

Global Common

Subexpressions
Instruction/operand sensitive
E.g. GCS Elimination

ring 5 programming lang

i
&
3

e e e B3

inst2vec

0.012

0.004

0.000

TP

F1 Score =]
TP+ L(FP+FN)

F1 scores
CDFG ProGraML
0.998 0.998
0.999 1.000

- 0.997

- 0.937
0.009 0.996

Deep Data Flow

set: 450k LLVM-IRs co

Reachability

Trivial forwards control-flow
E.g. dead code elimination

Dominance
Forwards control-flow
E.g. global code motion

Data Dependencies
Forwards data-flow
E.g. instruction selection

Live-out Variables
Backwards control- and data-flow
E.g. register allocation

Exp: Deep Data Flow Analysis

TP

F1 Score =]
TP + E(FP + F'N)
F1 scores
inst2vec CDFG ProGraML
0.012 0.998 0.998
0.004 0.999 1.000
0.997
cannot
reason about
variables
0.937

iInst2vec: combined instruction+operands
CDFEG: uses only instructions for vocab, ignores data

132 <id> = a<id> <int8>

Exp: Deep Data Flow Analysis Caveat: Limited Problem Size

e Traditional iterative dataflow analysis:

iterate until a fixed point 1is reached
o meet functions & transfer functions

Exp: Deep Data Flow Analysis Caveat: Limited Problem Size

e Traditional iterative dataflow analysis:

iterate until a fixed point 1is reached
o meet functions & transfer functions

e T := number of iterations to solve dataflow analysis for
a piece of program

Exp: Deep Data Flow Analysis Caveat: Limited Problem Size

e Traditional iterative dataflow analysis:

iterate until a fixed point 1is reached
o meet functions & transfer functions

e T := number of iterations to solve dataflow analysis for
a piece of program

e Restriction of previous results:
o only trained on examples with T <= 30
o 1inference step set to be T = 30
o excluding 28.7% larger programs

Exp: Deep Data Flow Analysis Caveat: Limited Problem Size

e Traditional iterative dataflow analys] <= 28,727 steps
iterate until a fixed point is reachec 100.0%

o meet functions & transfer functions <= 60 steps

80.4% of all

e T := number of iterations to solve dat
a piece of program

<= 30 steps

71.3% of all

e Restriction of previous results:
o only trained on examples with T <= 30
o 1inference step set to be T = 30
o excluding 28.7% larger programs

Exp: Deep Data Flow Analysis Caveat: Limited Problem Size

<= 28,727 steps
100.0%

<= 60 steps
80.4% of all

<= 30 steps
71.3% of all

Very large programs —— |

I

Larger programs

_—

Relatively small programs

Exp: Deep Data Flow Analysis Caveat: Limited Problem Size

Q: Is the prediction still accurate <
when the 1input program 1is larger? 100.0%

<= 60 steps
80.4% of all

<= 30 steps
71.3% of all

Very large programs —— |

I

_—

Larger programs

Relatively small programs

Exp: Deep Data Flow Analysis Caveat: Limited Problem Size

Q: Is the prediction still accurate
<= 28,727 steps

when the 1input program 1is larger? 100.0%
e Model 1is unchanged: ;;.2&52:23

only trained on T = 30
e During inference
step is set T = 60, T = 200 1.3% of ol

Very large programs ————
Validation
Larger programs —— |

Relatively small programs — |

Exp: Deep Data Flow Analysis Scaling to Larger Problems

F1 scores

30 200
timesteps 60 timesteps timesteps

Scaling to larger problems

Dataset: 450k LLVM-IRs covering 5 programming languages

Reachability

Trivial forwards control-flow
E.g. dead code elimination

0.998 0.997 0.943

Dominance
Forwards control-flow
E.g. global code motion

Data Dependencies)
Forwards data-flow
E.g. instruction selection /

1.000 0.991 0.123

é 0.997 0.993 0.965

Live-out Variables
Backwards control- and data-flow
E.g. register allocation

0.937 0.939 0.625

Global Common

Subexpressions N
Instruction/operand sensitive S Co]
E.g. GCS Elimination

0.996 0.967 0.959

Exp: Deep Data Flow Analysis Scaling to Larger Problems

F1 scores

30 200
timesteps | 60 timesteps timesteps

Scaling to larger problems

Dataset: 450k LLVM-IRs covering 5 programming languages

Reachability

Trivial forwards control-flow
E.g. dead code elimination

0.998 0.997 0.943

Dominance
Forwards control-flow
E.g. global code motion

1.000 0.991 0.123

Data Dependencies
Forwards data-flow
E.g. instruction selection

0.997 0.993 0.965

Live-out Variables
Backwards control- and data-flow
E.g. register allocation

0.937 0.939 0.625

Global Common

Subexpressions
Instruction/operand sensitive
E.g. GCS Elimination

0.996 0.967 0.959

Exp: Deep Data Flow Analysis Scaling to Larger Problems

F1 scores

30 200
timesteps 60 timesteps timesteps

Scaling to larger problems

Dataset: 450k LLVM-IRs covering 5 programming languages

Reachability

Trivial forwards control-flow
E.g. dead code elimination

0.998 0.997 0.943

Dominance
Forwards control-flow
E.g. global code motion

1.000 0.991 0.123

Data Dependencies
Forwards data-flow
E.g. instruction selection

0.997 0.993 0.965

Live-out Variables
Backwards control- and data-flow
E.g. register allocation

0.937 0.939 0.625

Global Common

Subexpressions
Instruction/operand sensitive
E.g. GCS Elimination

0.996 0.967 0.959

Exp: Deep Data Flow Analysis Scaling to Larger Problems

F1 scores

30 200
timesteps 60 timesteps timesteps

Scaling to larger problems

Dataset: 450k LLVM-IRs covering 5 programming languages

Reachability

Trivial forwards control-flow
E.g. dead code elimination

0.998 0.997 0.943

Dominance
Forwards control-flow
E.g. global code motion

Data Dependencies)
Forwards data-flow
E.g. instruction selection /

1.000 0.991 0.123

é 0.997 0.993 0.965

Live-out Variables
Backwards control- and data-flow
E.g. register allocation

0.937 0.939 0.625

Global Common

Subexpressions N
Instruction/operand sensitive S Co]
E.g. GCS Elimination

0.996 0.967 0.959

Exp: Deep Data Flow Analysis Scaling to Larger Problems

F1 scores

30 200
timesteps 60 timesteps timesteps

Reachabili
b E E A E E 0.9ag 0997 0.943

At 6.6x training step count, inference
deteriorates significantly. :-(No longer [0128
behaving like fixed point - model
over-approximates on some problems and
under-approximates on others.
Backwards céi;trr:gi:g: :I?;E;ftl:)v: ’ 0.937 0.939 0.625
Global Common >E§> xz%b

i OO
| St:?exprgsswns } ﬁ 0.996 0.967 0.959
nstruction/operand sensitive

E.g. GCS Elimination EX -]

Scalin‘g to Iarger problems

O

93 0.965

Exp: Downstream Tasks

1. Algorithm Classification

C Program

xxxxx

sort bfs topk

1.35x improvement over
state-of-art

Exp: Downstream Tasks

1. Algorithm Classification 2. Heterogeneous Device Mapping
OpenCL | \ :
C Program Program
sort bfs | .. | topk CPU GPU
1.35x improvement over 1.20x improvement over

state-of-art state-of-art

Conclusion

Conclusion

e ProGraML 1is expressive
e Compact embedding vocab with high test coverage
e Significant improvement on data flow analysis

e Limited by scalability issues imposed by MPNNs

References

Paper
https://chriscummins.cc/pub/2021-icml.pdf

Author Slides
https://spcl.inf.ethz.ch/Publications/.pdf/pr

ograml—icml21-slides.pdf

Author Lecture
https://www.youtube.com/watch?v=cHE1lgMSOPFs

ProGraML.:
Graph-based Deep

Learning for
Program Optimization
and Analysis.

2 YouTube

https://chriscummins.cc/pub/2021-icml.pdf
https://spcl.inf.ethz.ch/Publications/.pdf/programl-icml21-slides.pdf
https://spcl.inf.ethz.ch/Publications/.pdf/programl-icml21-slides.pdf
https://www.youtube.com/watch?v=cHElgMSOPFs

