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Motivation



Tuning Compiler Challenge

● 1000s of variables
● Limited by domain expertise
● Compiler/Hardware keeps 

changing
● Widening performance gap



Machine Learning in compiler optimization

● Turned into Data 
Science/Machine Learning 
Problems

(Program + best params)
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Traditional Machine Learning in compiler optimization

Very successful! Typically outperforms human experts 
[Wang et. al. 2018]

Hard to select!

https://zwang4.github.io/publications/pieee18.pdf


Machine Learning “without” features (Attempt #1)
 Treat “Program” as Natural Language (NLP problem)Cummins et al., PACT 17 

LSTM/
Transformer 

Optimization 
Decision 

https://chriscummins.cc/pub/2017-pact.pdf


Machine Learning “without” features (Attempt #1)

Problem: Source code is highly structured
Feature vectors are easy to fool 
(e.g. insert dead code)

Sequential representations fail on 
non-linear relations, long-range deps



Machine Learning “without” features (Today’s paper)



Methods



Program Graphs for Machine Learning (ProGraML)

● General-purpose representation of programs for optimization tasks.
● Task independent - capture structured relations fundamental to program 

reasoning (i.e. data flow analysis)
● Language independent - derived from compiler IRs
● Main procedure:



Building ProGraML: Code to IR
● Input program passed through the 

compiler front-end to produce an 
IR (e.g., LLVM IR)

● Why IR?
○ Language agnostic
○ Closer to what compiler sees



Building ProGraML: Control-flow

● Graph constructed of 
instructions and control 
dependencies.
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Building ProGraML: Control-flow

● Full-flow-graph
○ Node represents instruction.
○ Node label is the instruction 

name.
○ Edges are control-flow.
○ Edge position attribute for 

branching control-flow.



Building ProGraML: Data-flow
● Add nodes for constants (diamonds) 

and variables (oblongs).



Building ProGraML: Data-flow
● Add nodes for constants (diamonds) 

and variables (oblongs).
● Edges are data-flow.
● Edge position attribute for operand 

order.



Building ProGraML: Data-flow

Elliptical Variables

Diamonds Constants

Data edges Use/def 
relations

i32 32 bit signed 
integers

Numbers on 
edges

Operand 
positions



Building ProGraML: Call-flow

● Edges are call-flow.
● Inbound edge to function 

entry instruction.
● Outbound edge from (all) 

function exit instruction(s)

from to

Call 
edges

Call sites Function entry 
instructions

Return 
edges

Function 
exits

Call sites



Building ProGraML: Types
● Nodes represent types, 

Edges are instances.

● Types are composable. 
● Edge position per field.



Building ProGraML: Types
● Nodes represent types, 

Edges are instances.

● Types are composable. 
Edge position corresponds 
to the field.



Learning with ProGraML: Input encoding

● Map instruction, constant, and variable node to vector embedding
● Use node labels as embedding keys
● Derive vocab from set of unique vertex labels on training graphs.
● Separate type/instruction nodes leads to compact vocab

○ excellent coverage on unseen programs compared to prior approaches

Without types

● inst2vec:
combined instruction+operands

● CDFG:
uses only instructions for vocab, 
ignores data



Learning with ProGraML: 
Message propagation: Gated Graph Neural Networks (GGNNs)

● Message Passing function

● Update function (Gated Recurrent Unit (GRU))

Figure: Message passing example. Adapted from (Hamilton, 2022) 

Position gating to differentiate 
control branches and operand order  



Learning with ProGraML: Result Readout 
● Readout Head

○ Node-level inference (e.g., per-statement/identifier 
classification) 

○ Graph-level classification (e.g., whole-program classification)

per-node prediction after T 
message-passing steps feed-forward NNssigmoid function



Experiments & Results



Exp: Deep Data Flow Analysis

● Model: Gated-Graph Neural Networks



● Model: Gated-Graph Neural Networks

● Training Type: Supervised Classification Task

Exp: Deep Data Flow Analysis
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Exp: Deep Data Flow Analysis

starting node



Exp: Deep Data Flow Analysis

starting node

binary classification

reachable

unreachable



Exp: Deep Data Flow Analysis



Exp: Deep Data Flow Analysis



Exp: Deep Data Flow Analysis

cannot 
reason about 
variables
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Exp: Deep Data Flow Analysis Caveat: Limited Problem Size

● Traditional iterative dataflow analysis: 
iterate until a fixed point is reached
○ meet functions & transfer functions

● T := number of iterations to solve dataflow analysis for 
a piece of program

● Restriction of previous results:
○ only trained on examples with T <= 30
○ inference step set to be T = 30
○ excluding 28.7% larger programs
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Exp: Deep Data Flow Analysis Caveat: Limited Problem Size

Relatively small programs

Larger programs

Very large programs

Q: Is the prediction still accurate 
when the input program is larger?



● Model is unchanged:
only trained on T = 30

● During inference
step is set T = 60, T = 200

Exp: Deep Data Flow Analysis Caveat: Limited Problem Size

Relatively small programs

Larger programs

Very large programs

Q: Is the prediction still accurate 
when the input program is larger?

Validation



Exp: Deep Data Flow Analysis Scaling to Larger Problems
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Exp: Downstream Tasks



Conclusion



Conclusion

● ProGraML is expressive

● Compact embedding vocab with high test coverage

● Significant improvement on data flow analysis

● Limited by scalability issues imposed by MPNNs 
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Q&A


