PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations

Group 6 Zheyu Zhang, Yunchi Lu, Xueming Xu

Agenda

- Motivation
- Method
- Experiments & Results

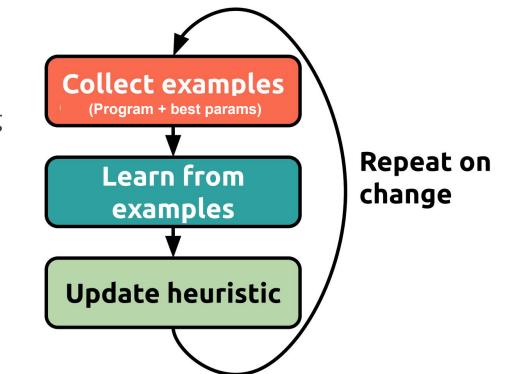
Motivation

Tuning Compiler Challenge

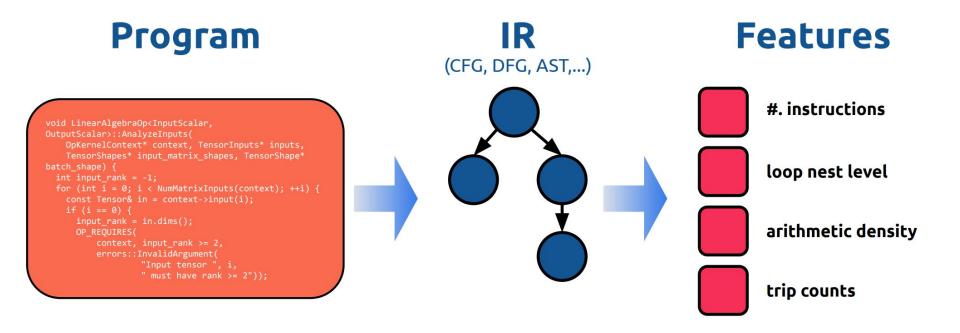
- 1000s of variables
- Limited by domain expertise
- Compiler/Hardware keeps changing
- Widening performance gap

Machine Learning in compiler optimization

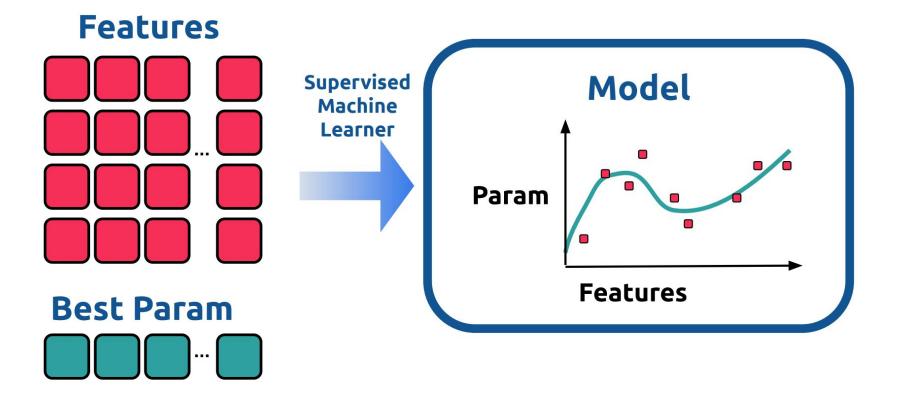
Turned into Data
 Science/Machine Learning
 Problems



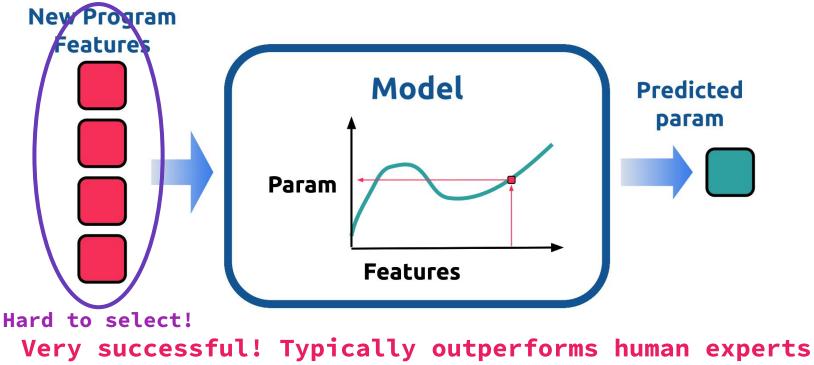
Traditional Machine Learning in compiler optimization



Traditional Machine Learning in compiler optimization



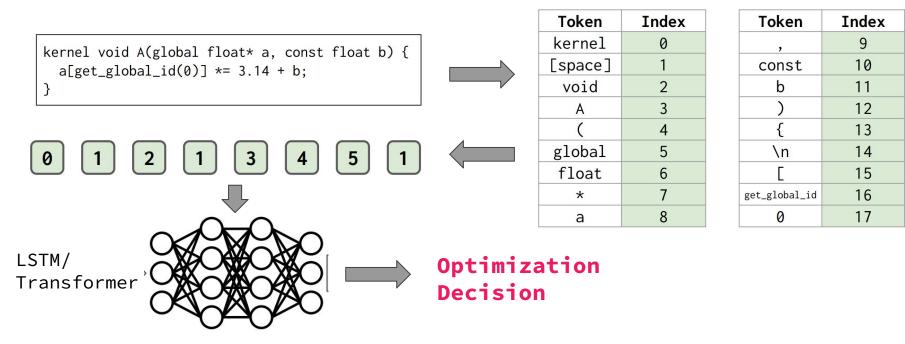
Traditional Machine Learning in compiler optimization



[Wang et. al. 2018]

Machine Learning "without" features (Attempt #1)

Treat "Program" as Natural Language (NLP problem) cummins et al., PACT 17

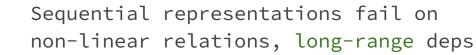


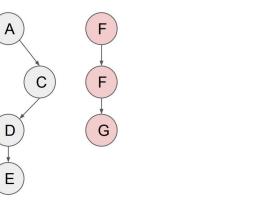
Machine Learning "without" features (Attempt #1)

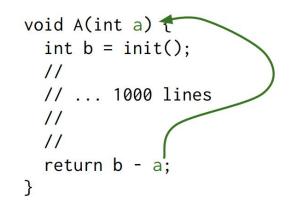
Problem: Source code is highly structured

Feature vectors are easy to fool (e.g. insert dead code)

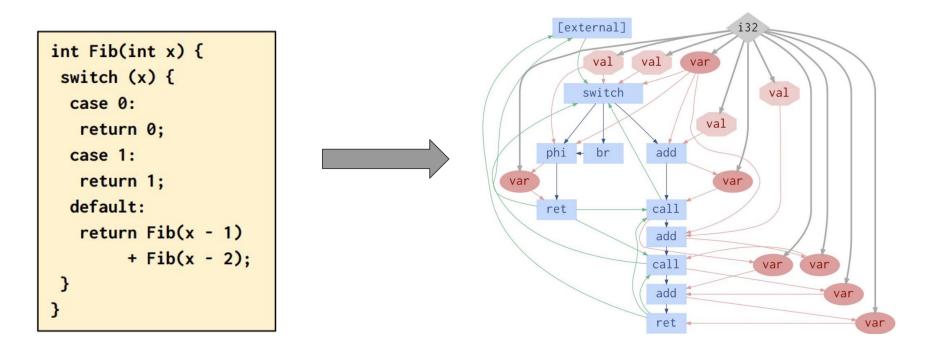
В







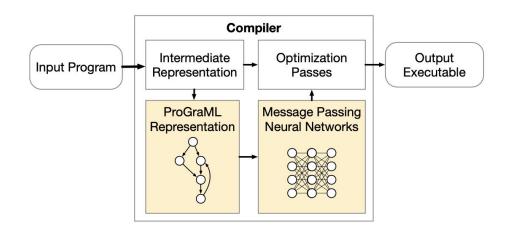
Machine Learning "without" features (Today's paper)



Methods

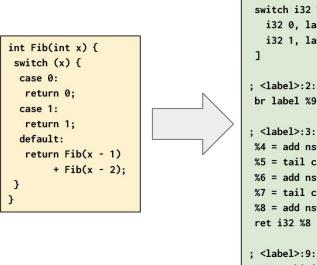
Program Graphs for Machine Learning (ProGraML)

- General-purpose representation of programs for optimization tasks.
- **Task independent** capture structured relations fundamental to program reasoning (i.e. data flow analysis)
- Language independent derived from compiler IRs
- Main procedure:



Building ProGraML: Code to IR

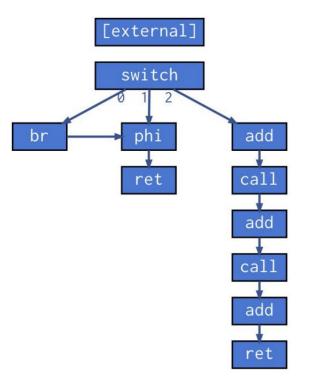
- Input program passed through the compiler front-end to produce an IR (e.g., LLVM IR)
- Why IR?
 - Language agnostic
 - Closer to what compiler sees



```
define i32 @Fib(i32) #0 {
 switch i32 %0, label %3 [
  i32 0, label %9
  i32 1, label %2
; <label>:2:
 br label %9
: <label>:3:
%4 = add nsw i32 %0, -1
 %5 = tail call i32 @Fib(i32 %4)
 %6 = add nsw i32 %0, -2
 %7 = tail call i32 @Fib(i32 %6)
 %8 = add nsw i32 %7, %5
: <label>:9:
%10 = phi i32 [ 1, %2 ], [ %0, %1 ]
ret i32 %10
```

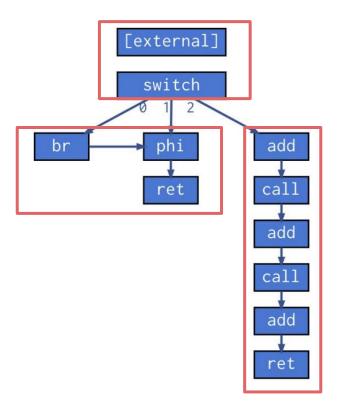
Building ProGraML: Control-flow

 Graph constructed of instructions and control dependencies.



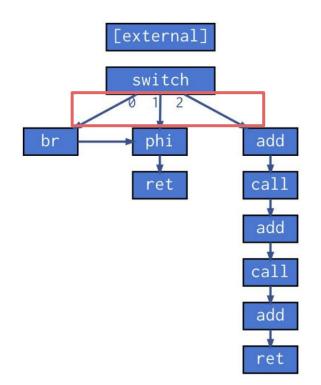
Building ProGraML: Control-flow

- Full-flow-graph
 - Node represents instruction.
 - Node label is the instruction name.



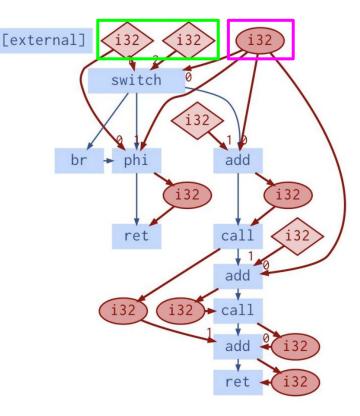
Building ProGraML: Control-flow

- Full-flow-graph
 - Node represents instruction.
 - Node label is the instruction name.
 - Edges are control-flow.
 - Edge position attribute for branching control-flow.



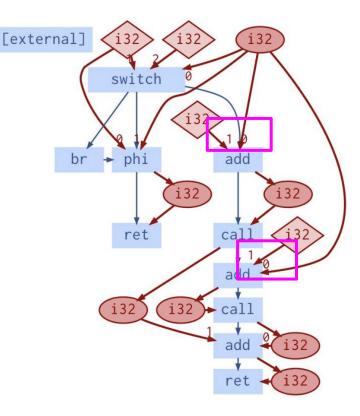
Building ProGraML: Data-flow

 Add nodes for constants (diamonds) and variables (oblongs).



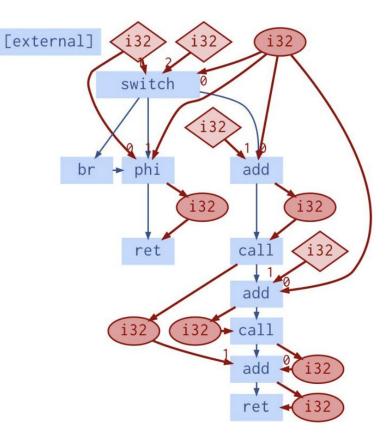
Building ProGraML: Data-flow

- Add nodes for constants (diamonds) and variables (oblongs).
- Edges are data-flow.
- Edge position attribute for operand order.



Building ProGraML: Data-flow

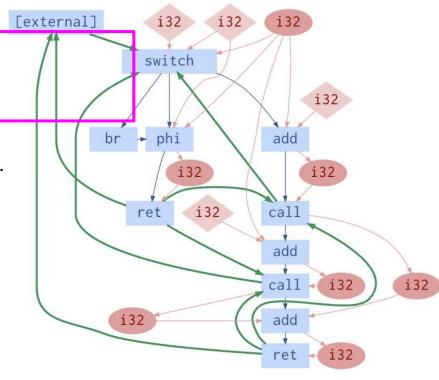
Elliptical	Variables
Diamonds	Constants
Data edges	Use/def relations
i32	32 bit signed integers
Numbers on edges	Operand positions



Building ProGraML: Call-flow

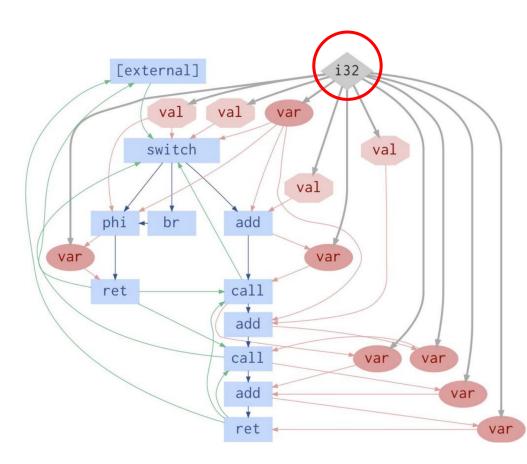
- Edges are call-flow.
- Inbound edge to function entry instruction.
- Outbound edge from (all)
 function exit instruction(s)

	from	to
Call edges	Call sites	Function entry instructions
Return edges	Function exits	Call sites



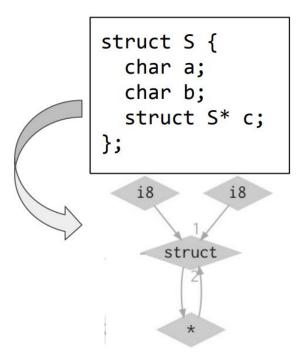
Building ProGraML: Types

- Nodes represent types,
 Edges are instances.
- Types are composable.
- Edge position per field.



Building ProGraML: Types

- Nodes represent types, Edges are instances.
- Types are **composable**. Edge position corresponds to the field.



Learning with ProGraML: Input encoding

- Map instruction, constant, and variable node to vector embedding
- Use node labels as embedding keys $br \rightarrow 0$ add $\rightarrow 1$

 $(i32) \rightarrow 2$

- **Derive** vocab from set of unique vertex labels on **training graphs**.
- Separate type/instruction nodes leads to **compact vocab**
 - excellent coverage on unseen programs compared to prior approaches

	Vocabulary Size	Vocabulary Test Coverage	 inst2vec: combined instruction+operands
inst2vec CDFG ProGrAML	8,565 75 2,230	34.0% 47.5% 98.3% Without types	 combined instruction+operands i32 <id> = a<id> <int8></int8></id></id> CDFG: uses only instructions for vocab, ignores data

Learning with ProGraML: Message propagation: Gated Graph Neural Networks (GGNNs)

order

• Message Passing function
$$m_v^t = \sum_{w \in \mathcal{N}(v)} W_{ ext{type}(e_{wv})} ig(h_w^{t-1} \odot p(e_{wv})ig) + b_{ ext{type}(e_{wv})}$$

Update function (Gated Recurrent Unit (GRU))

 $h_v^t = \operatorname{GRU}(h_v^{t-1}, m_v^t)$

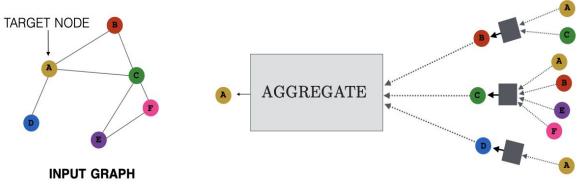


Figure: Message passing example. Adapted from (Hamilton, 2022)

Learning with ProGraML: Result Readout

- Readout Head
 - Node-level inference (e.g., per-statement/identifier classification)

$$R_v(h_v^T, h_v^0) = \sigma(i(h_v^T, h_v^0)) \cdot j(h_v^T)$$
per-node prediction after T sigmoid function feed-forward NNs
message-passing steps

• Graph-level classification (e.g., whole-program classification)

$$R_Gig(ig\{h_v^T,h_v^0ig\}_{v\in V}ig) = \sum_{v\in V} R_vig(h_v^T,h_v^0ig)$$

Experiments & Results

_ _ _

• Model: Gated-Graph Neural Networks

_ _ _

- Model: Gated-Graph Neural Networks
- Training Type: Supervised Classification Task

Reachability

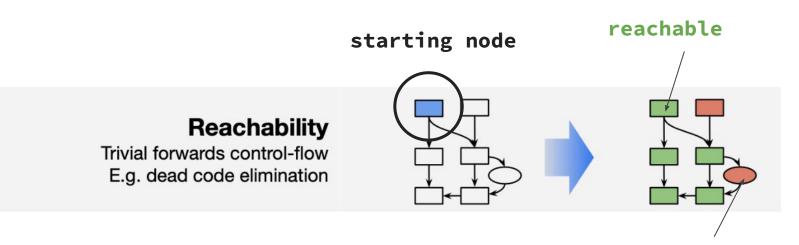
Trivial forwards control-flow E.g. dead code elimination

starting node

Reachability

Trivial forwards control-flow E.g. dead code elimination

binary classification



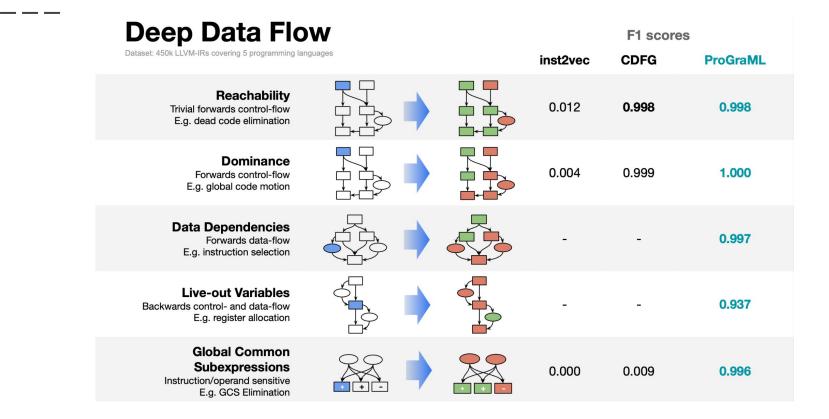
unreachable

Reachability Trivial forwards control-flow E.g. dead code elimination Dominance Forwards control-flow E.g. global code motion **Data Dependencies** Forwards data-flow E.g. instruction selection **Live-out Variables** Backwards control- and data-flow E.g. register allocation **Global Common**

Subexpressions Instruction/operand sensitive E.g. GCS Elimination

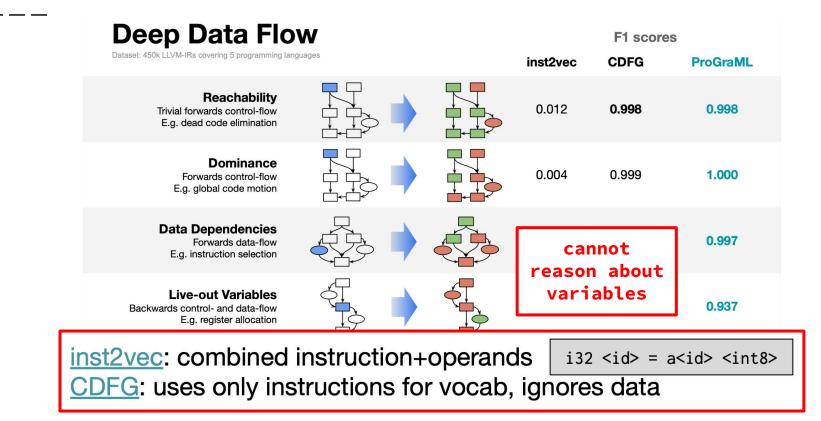
F1 Score = $\frac{TP}{TP + \frac{1}{2}(FP + FN)}$

Exp: Deep Data Flow Analysis



F1 Score = $\frac{TP}{TP + \frac{1}{2}(FP + FN)}$

Exp: Deep Data Flow Analysis



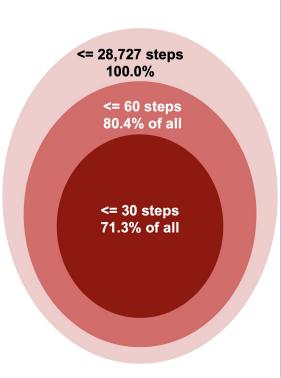
Exp: Deep Data Flow Analysis Caveat: Limited Problem Size

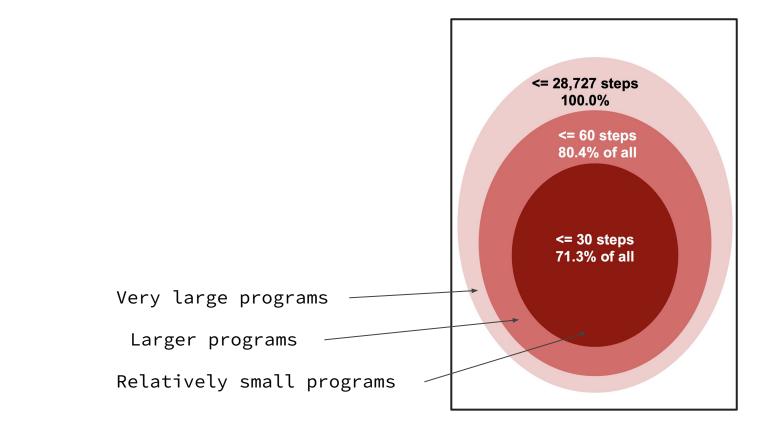
- Traditional iterative dataflow analysis: iterate until a fixed point is reached
 - \circ meet functions & transfer functions

- Traditional iterative dataflow analysis: iterate until a fixed point is reached
 - \circ $\,$ meet functions & transfer functions
- T := number of iterations to solve dataflow analysis for a piece of program

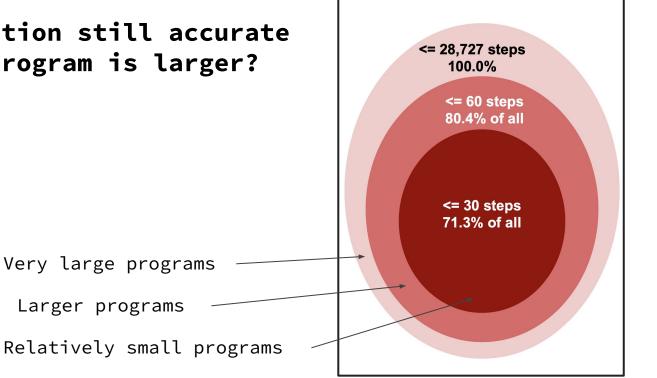
- Traditional iterative dataflow analysis: iterate until a fixed point is reached
 - \circ $\,$ meet functions & transfer functions
- T := number of iterations to solve dataflow analysis for a piece of program
- Restriction of previous results:
 - \circ only trained on examples with T <= 30
 - \circ inference step set to be T = 30
 - excluding 28.7% larger programs

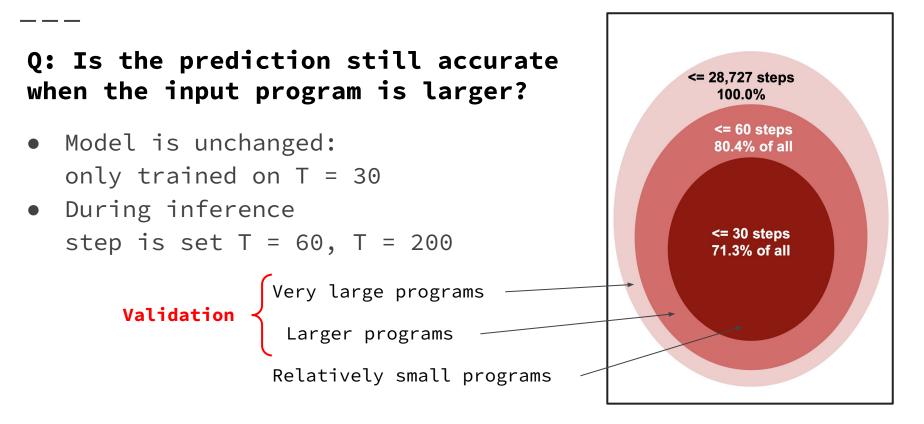
- Traditional iterative dataflow analysi iterate until a fixed point is reached meet functions & transfer functions \bigcirc
- T := number of iterations to solve dat a piece of program
- Restriction of previous results:
 - only trained on examples with T <= 30 Ο
 - inference step set to be T = 30Ο
 - excluding 28.7% larger programs Ο



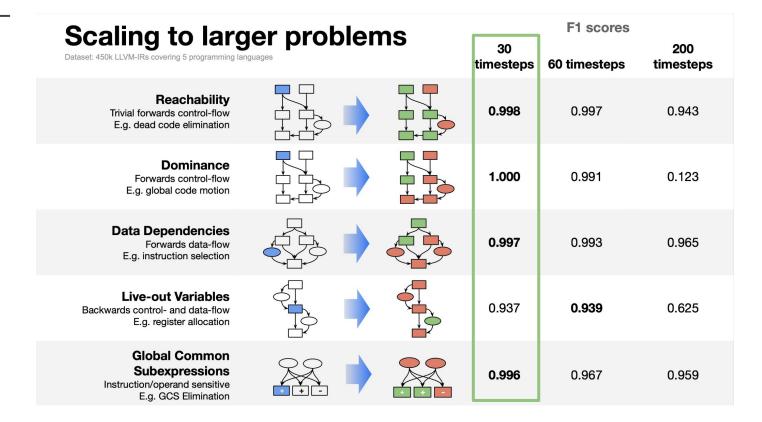


Q: Is the prediction still accurate when the input program is larger?



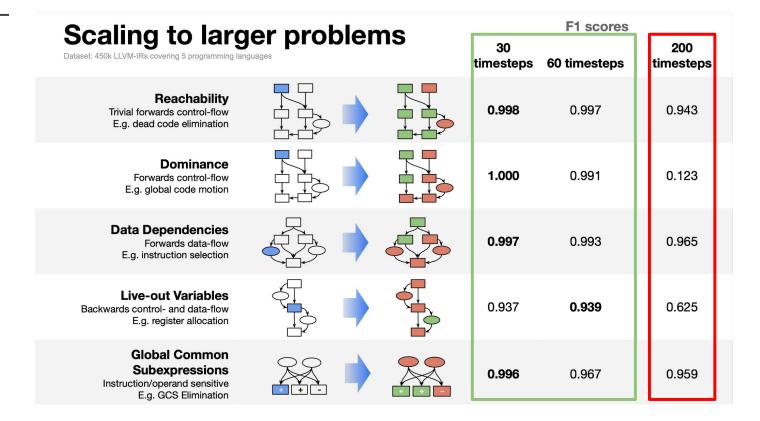


Scaling to larger problems	F1 scores		
Dataset: 450k LLVM-IRs covering 5 programming languages	30 timesteps	60 timesteps	200 timesteps
Reachability Trivial forwards control-flow E.g. dead code elimination	0.998	0.997	0.943
Dominance Forwards control-flow E.g. global code motion	1.000	0.991	0.123
Data Dependencies Forwards data-flow E.g. instruction selection	0.997	0.993	0.965
Live-out Variables Backwards control- and data-flow E.g. register allocation	0.937	0.939	0.625
Global Common Subexpressions Instruction/operand sensitive E.g. GCS Elimination	0.996	0.967	0.959



_

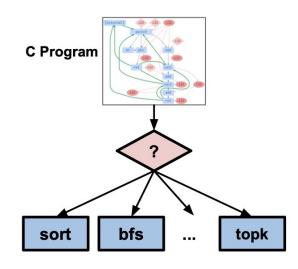
Scaling to larger problems Dataset: 450k LLVM-IRs covering 5 programming languages		F1 scores			
		30 timesteps	60 timesteps	200 timesteps	
Reachability Trivial forwards control-flow E.g. dead code elimination			0.998	0.997	0.943
Dominance Forwards control-flow E.g. global code motion			1.000	0.991	0.123
Data Dependencies Forwards data-flow E.g. instruction selection			0.997	0.993	0.965
Live-out Variables Backwards control- and data-flow E.g. register allocation			0.937	0.939	0.625
Global Common Subexpressions Instruction/operand sensitive E.g. GCS Elimination			0.996	0.967	0.959



Scaling to larger problems Dataset: 450k LLVM-IRs covering 5 programming languages			F1 scores			
		30 timesteps				
Reachability		0.998	0.997	0.943		
At 6.6x training step count, inference deteriorates significantly. :-(No longer						
behaving like fixed point - model over-approximates on some problems and under-approximates on others.						
Backwards control- and data-flow E.g. register allocation		0.937	0.939	0.625		
Global Common Subexpressions Instruction/operand sensitive E.g. GCS Elimination		0.996	0.967	0.959		

Exp: Downstream Tasks

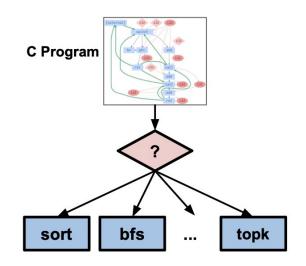
1. Algorithm Classification



1.35× improvement over state-of-art

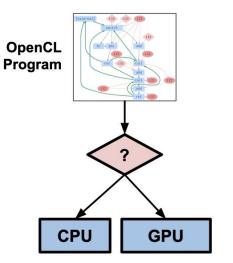
Exp: Downstream Tasks

1. Algorithm Classification



1.35× improvement over state-of-art

2. Heterogeneous Device Mapping



1.20× improvement over state-of-art

Conclusion

Conclusion

- ProGraML is expressive
- Compact embedding vocab with high test coverage
- Significant improvement on data flow analysis
- Limited by scalability issues imposed by MPNNs

References

- Paper

https://chriscummins.cc/pub/2021-icml.pdf

- Author Slides
 <u>https://spcl.inf.ethz.ch/Publications/.pdf/pr</u>
 <u>ograml-icml21-slides.pdf</u>
- Author Lecture <u>https://www.youtube.com/watch?v=cHElgMSOPFs</u>

ProGraML: Graph-based Deep Learning for Program Optimization and Analysis.

