
PROGRAML: A Graph-based Program
Representation for Data Flow Analysis and

Compiler Optimizations

Group 6
Zheyu Zhang, Yunchi Lu, Xueming Xu

Agenda
● Motivation
● Method
● Experiments & Results

Motivation

Tuning Compiler Challenge

● 1000s of variables
● Limited by domain expertise
● Compiler/Hardware keeps

changing
● Widening performance gap

Machine Learning in compiler optimization

● Turned into Data
Science/Machine Learning
Problems

(Program + best params)

Traditional Machine Learning in compiler optimization

Traditional Machine Learning in compiler optimization

Traditional Machine Learning in compiler optimization

Very successful! Typically outperforms human experts
[Wang et. al. 2018]

Hard to select!

https://zwang4.github.io/publications/pieee18.pdf

Machine Learning “without” features (Attempt #1)
 Treat “Program” as Natural Language (NLP problem)Cummins et al., PACT 17

LSTM/
Transformer

Optimization
Decision

https://chriscummins.cc/pub/2017-pact.pdf

Machine Learning “without” features (Attempt #1)

Problem: Source code is highly structured
Feature vectors are easy to fool
(e.g. insert dead code)

Sequential representations fail on
non-linear relations, long-range deps

Machine Learning “without” features (Today’s paper)

Methods

Program Graphs for Machine Learning (ProGraML)

● General-purpose representation of programs for optimization tasks.
● Task independent - capture structured relations fundamental to program

reasoning (i.e. data flow analysis)
● Language independent - derived from compiler IRs
● Main procedure:

Building ProGraML: Code to IR
● Input program passed through the

compiler front-end to produce an
IR (e.g., LLVM IR)

● Why IR?
○ Language agnostic
○ Closer to what compiler sees

Building ProGraML: Control-flow

● Graph constructed of
instructions and control
dependencies.

Building ProGraML: Control-flow

● Full-flow-graph
○ Node represents instruction.
○ Node label is the instruction

name.

Building ProGraML: Control-flow

● Full-flow-graph
○ Node represents instruction.
○ Node label is the instruction

name.
○ Edges are control-flow.
○ Edge position attribute for

branching control-flow.

Building ProGraML: Data-flow
● Add nodes for constants (diamonds)

and variables (oblongs).

Building ProGraML: Data-flow
● Add nodes for constants (diamonds)

and variables (oblongs).
● Edges are data-flow.
● Edge position attribute for operand

order.

Building ProGraML: Data-flow

Elliptical Variables

Diamonds Constants

Data edges Use/def
relations

i32 32 bit signed
integers

Numbers on
edges

Operand
positions

Building ProGraML: Call-flow

● Edges are call-flow.
● Inbound edge to function

entry instruction.
● Outbound edge from (all)

function exit instruction(s)

from to

Call
edges

Call sites Function entry
instructions

Return
edges

Function
exits

Call sites

Building ProGraML: Types
● Nodes represent types,

Edges are instances.

● Types are composable.
● Edge position per field.

Building ProGraML: Types
● Nodes represent types,

Edges are instances.

● Types are composable.
Edge position corresponds
to the field.

Learning with ProGraML: Input encoding

● Map instruction, constant, and variable node to vector embedding
● Use node labels as embedding keys
● Derive vocab from set of unique vertex labels on training graphs.
● Separate type/instruction nodes leads to compact vocab

○ excellent coverage on unseen programs compared to prior approaches

Without types

● inst2vec:
combined instruction+operands

● CDFG:
uses only instructions for vocab,
ignores data

Learning with ProGraML:
Message propagation: Gated Graph Neural Networks (GGNNs)

● Message Passing function

● Update function (Gated Recurrent Unit (GRU))

Figure: Message passing example. Adapted from (Hamilton, 2022)

Position gating to differentiate
control branches and operand order

Learning with ProGraML: Result Readout
● Readout Head

○ Node-level inference (e.g., per-statement/identifier
classification)

○ Graph-level classification (e.g., whole-program classification)

per-node prediction after T
message-passing steps feed-forward NNssigmoid function

Experiments & Results

Exp: Deep Data Flow Analysis

● Model: Gated-Graph Neural Networks

● Model: Gated-Graph Neural Networks

● Training Type: Supervised Classification Task

Exp: Deep Data Flow Analysis

Exp: Deep Data Flow Analysis

Exp: Deep Data Flow Analysis

starting node

Exp: Deep Data Flow Analysis

starting node

binary classification

reachable

unreachable

Exp: Deep Data Flow Analysis

Exp: Deep Data Flow Analysis

Exp: Deep Data Flow Analysis

cannot
reason about
variables

Exp: Deep Data Flow Analysis Caveat: Limited Problem Size

● Traditional iterative dataflow analysis:
iterate until a fixed point is reached
○ meet functions & transfer functions

Exp: Deep Data Flow Analysis

● Traditional iterative dataflow analysis:
iterate until a fixed point is reached
○ meet functions & transfer functions

● T := number of iterations to solve dataflow analysis for
a piece of program

Caveat: Limited Problem Size

Exp: Deep Data Flow Analysis

● Traditional iterative dataflow analysis:
iterate until a fixed point is reached
○ meet functions & transfer functions

● T := number of iterations to solve dataflow analysis for
a piece of program

● Restriction of previous results:
○ only trained on examples with T <= 30
○ inference step set to be T = 30
○ excluding 28.7% larger programs

Caveat: Limited Problem Size

Exp: Deep Data Flow Analysis Caveat: Limited Problem Size

● Traditional iterative dataflow analysis:
iterate until a fixed point is reached
○ meet functions & transfer functions

● T := number of iterations to solve dataflow analysis for
a piece of program

● Restriction of previous results:
○ only trained on examples with T <= 30
○ inference step set to be T = 30
○ excluding 28.7% larger programs

Exp: Deep Data Flow Analysis Caveat: Limited Problem Size

Relatively small programs

Larger programs

Very large programs

Exp: Deep Data Flow Analysis Caveat: Limited Problem Size

Relatively small programs

Larger programs

Very large programs

Q: Is the prediction still accurate
when the input program is larger?

● Model is unchanged:
only trained on T = 30

● During inference
step is set T = 60, T = 200

Exp: Deep Data Flow Analysis Caveat: Limited Problem Size

Relatively small programs

Larger programs

Very large programs

Q: Is the prediction still accurate
when the input program is larger?

Validation

Exp: Deep Data Flow Analysis Scaling to Larger Problems

Exp: Deep Data Flow Analysis Scaling to Larger Problems

Exp: Deep Data Flow Analysis Scaling to Larger Problems

Exp: Deep Data Flow Analysis Scaling to Larger Problems

Exp: Deep Data Flow Analysis Scaling to Larger Problems

Exp: Downstream Tasks

Exp: Downstream Tasks

Conclusion

Conclusion

● ProGraML is expressive

● Compact embedding vocab with high test coverage

● Significant improvement on data flow analysis

● Limited by scalability issues imposed by MPNNs

References

- Paper
https://chriscummins.cc/pub/2021-icml.pdf

- Author Slides
https://spcl.inf.ethz.ch/Publications/.pdf/pr
ograml-icml21-slides.pdf

- Author Lecture
https://www.youtube.com/watch?v=cHElgMSOPFs

https://chriscummins.cc/pub/2021-icml.pdf
https://spcl.inf.ethz.ch/Publications/.pdf/programl-icml21-slides.pdf
https://spcl.inf.ethz.ch/Publications/.pdf/programl-icml21-slides.pdf
https://www.youtube.com/watch?v=cHElgMSOPFs

Q&A

