
Group 3
Xuweiyi Chen
Jiaming Zheng
Congming Liao

Zin Hu

MLGO
A Machine Learning Guided
Compiler Optimizations
Framework

Trofin, Mircea, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof
Choromanski, and David Li (2021)

Introduction

01

Motivation
Replacing compiler optimization
heuristics with machine-learned
policies.

◾ Heuristics are human-trained.
ML easily scales up to large corpora of training sets.

◾ Heuristics are human-written code that
needs to be maintained, # features limited.
 ML leverages more features.

General Approach

Reinforcement
learning

Evolution
Strategies (ES)

Policy Gradient
(PG)

Heuristics Based
Optimization

Reduce code size
with Inlining

Improve
performance with

Register Allocation

Why
Reinforcement Learning?
Lack of ground truth

Explore various strategies and
improve strategies from experience

MLGO Overview (normal use)

foo.cpp foo.o

Trained Model

Inliner

Compiler (normal use)

inline? Y/N

opt passes
more opt
passes

MLGO Overview (training)

foo.cpp

Model under
training

Compiler (normal use)

inline? Y/N

opt passes
more opt
passes

foo.o

Inliner

foo.log

Trainer

RL Policy Training

State
S

The current call
graph and the call
site being visited

to be the state

Action
A

A = {0, 1}, where 1
means inline and 0

means not inline

State
Transition
Probability

P

After action
taken, compiler

determines what
the next state is.

Reward
R

S(Callerbefore) - S(Callerafter) +
I(Calleedeleted) ∙S(Calless)

where S(f) is the native
size of function f.

LLVM Inliner

02

LLVM Inliner
◾ A pass operating on a strongly-connected component(SCC) of static call graph.

◾ The inlined callee’s call sites are added to a work list and iteratively considered
for inlining in a top down fashion.

◾ Perform a series of optimizations on the SCC, and these optimizations also
influence the decision of inlining or not.

Original A->B not inlined A->B inlined

Theodoridis, T., Grosser, T., & Su, Z. (2022). Understanding and exploiting optimal function inlining. Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. https://doi.org/10.1145/3503222.3507744

General LLVM Heuristic Steps
Computes the static “cost” of the callee post inlining.
If shown the some call sites are constant during compiling, that
information is used to confirm whether inline or not.

The cost is then compared with threshold.
Call site hotness, inline keywords, especially callee with a single
basic block.

01

02

03
Decide inline or not with step 2 comparison.
Note that inline can be delayed if inlining the caller itself to its
own caller would result in better saving.

RL-driven inlining in LLVM

◾ Challenge: too complex state space.
Encoding the call graph at each
decision point would not be possible.
Instead, come up with a self-designed
feature space. Table→

Type Features

caller feature caller_basic_block_count
caller_conditionally_execute
d_blocks
caller_users

callee feature callee_basic_block_count
callee_conditionally_execute
d_blocks
callee_users

Call site feature callsite_height
cost_estimate
number_constant_params

Call graph feature edge_count
node_count

◾ Drawback: greatly reduces info,
limited global and local call site info.
Won’t hurt: same info available to
current inlining heuristics.

◾ Side-step lack of partial reward:
Evaluate native size with/without
inlining (total R) .

LLVM implementation

- Inline Decision Making

- Cannot be interrupted
For model trainingFeature extraction

Passes/Model
Introduced

InlineAdvisorAnalysis FunctionPropertiesAnalysis Tensorflow module

Register Allocation

03

Register Allocation

degrades performance.

Extra
load/store

Register
Allocation pass

make decisions to make room for q.

MLGO Regalloc

The problem of optimal register
allocation is NP-complete. For
n>2: Graph color Coalescing

Aims at learning eviction policy
for register allocation.

Heuristics MLGO

Regalloc Policy Training

Warmstart with
behavioral

cloning policy

Train the model
using behavioral

cloning on the
default heuristic.

Policy Gradient
(PG)

computing the
gradients w.r.t.

the reward
function

Training
data

Internal Google
code base from
the Chromium.

Deploying
new policy

Tested on the code of
Fuchsia — OS designed to
power diverse hardware

and software.

Evaluating the Performance

■ More time consuming.
■ More noisy than size

measurements.

■ Rewards: the block freq-weighted sum
of introduced moves per function

■ Using performance counters to track
instructions executed, loads, and stores

Benchmark Reward
Metrics

Evaluation

04

Size
Reduction

Compared to state of the art
LLVM heuristic-driven Oz

Generalizabi
lity
Generalize well to a diversity of
real-world targets, + after
months of active development

7%

Good

Inlining for Size Results

Trained the policy for Google
search (over 28,000 IR modules)

Better policy with larger NN
Cost: ↑ training resources

Performance

Efficiency

PG > ES
PG consumes ~4% training

resources of ES

Generalizability across Software

ES(L) > PG > ES
Comparison

A policy performs better on a
certain software also perform
better on other software.

Consistency

Performance on SPEC 2006Performance on different apps, Clang

Generalizability across Time

3 months of active development

◾ Effectiveness may degrade

◾ Still decent wins compared with
current-Oz

1.5% ↑ QPS
Google uses it on a number of projects

Thank you!
Questions?

