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Motivation
Replacing compiler optimization 
heuristics with machine-learned 
policies.

◾ Heuristics are human-trained. 
ML easily scales up to large corpora of training sets.

◾ Heuristics are human-written code that 
needs to be maintained, # features limited.
 ML leverages more features. 



General Approach

Reinforcement 
learning

Evolution 
Strategies (ES)

Policy Gradient 
(PG)

Heuristics Based 
Optimization

Reduce code size 
with Inlining

Improve 
performance with 

Register Allocation



Why
Reinforcement Learning?
Lack of ground truth

Explore various strategies and 
improve strategies from experience



MLGO Overview (normal use)

foo.cpp foo.o

Trained Model

Inliner

Compiler (normal use)

inline? Y/N 

opt passes
more opt 
passes



MLGO Overview (training)

foo.cpp

Model under 
training

Compiler (normal use)

inline? Y/N 

opt passes
more opt 
passes

foo.o

Inliner

foo.log

Trainer



RL Policy Training

State 
S

The current call 
graph and the call 
site being visited 

to be the state

Action 
A

A = {0, 1}, where 1 
means inline and 0 

means not inline

State 
Transition 
Probability 

P

After action 
taken, compiler 

determines what 
the next state is.

Reward 
R

S(Callerbefore) - S(Callerafter) + 
I(Calleedeleted) ∙S(Calless)

where S(f) is the native 
size of function f.



LLVM Inliner
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LLVM Inliner
◾ A pass operating on a strongly-connected component(SCC) of static call graph.

◾ The inlined callee’s call sites are added to a work list and iteratively considered 
for inlining in a top down fashion.

◾ Perform a series of optimizations on the SCC, and these optimizations also 
influence the decision of inlining or not.

Original A->B not inlined A->B inlined

Theodoridis, T., Grosser, T., & Su, Z. (2022). Understanding and exploiting optimal function inlining. Proceedings of the 27th ACM International Conference on Architectural 
Support for Programming Languages and Operating Systems. https://doi.org/10.1145/3503222.3507744 



General LLVM Heuristic Steps
Computes the static “cost” of the callee post inlining. 
If shown the some call sites are constant during compiling, that 
information is used to confirm whether inline or not.

The cost is then compared with threshold.
Call site hotness, inline keywords, especially callee with a single 
basic block. 

01

02

03
Decide inline or not with step 2 comparison. 
Note that inline can be delayed if inlining the caller itself to its 
own caller would result in better saving. 



RL-driven inlining in LLVM

◾ Challenge: too complex state space. 
Encoding the call graph at each 
decision point would not be possible. 
Instead, come up with a self-designed 
feature space. Table→

Type Features

caller feature caller_basic_block_count
caller_conditionally_execute
d_blocks
caller_users

callee feature callee_basic_block_count
callee_conditionally_execute
d_blocks
callee_users

Call site feature callsite_height
cost_estimate
number_constant_params

Call graph feature edge_count
node_count

◾ Drawback: greatly reduces info, 
limited global and local call site info. 
Won’t hurt: same info available to 
current inlining heuristics.

◾ Side-step lack of partial reward: 
Evaluate native size with/without 
inlining (total R) .



LLVM implementation

- Inline Decision Making

- Cannot be interrupted
For model trainingFeature extraction

Passes/Model
Introduced

InlineAdvisorAnalysis FunctionPropertiesAnalysis Tensorflow module



Register Allocation
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Register Allocation

degrades performance.

Extra 
load/store

Register 
Allocation pass

make decisions to make room for q.



MLGO Regalloc

The problem of optimal register 
allocation is NP-complete. For 
n>2: Graph color Coalescing

Aims at learning eviction policy 
for register allocation.

Heuristics MLGO



Regalloc Policy Training

Warmstart with 
behavioral 

cloning policy

Train the model 
using behavioral 

cloning on the 
default heuristic.

Policy Gradient 
(PG) 

computing the 
gradients w.r.t. 

the reward 
function 

Training 
data

Internal Google 
code base from 
the Chromium.

Deploying 
new policy

Tested on the code of 
Fuchsia — OS designed to 
power diverse hardware 

and software.



Evaluating the Performance

■ More time consuming.
■ More noisy than size 

measurements.

■ Rewards:  the block freq-weighted sum 
of introduced moves per function

■ Using performance counters to track 
instructions executed, loads, and stores

Benchmark Reward 
Metrics



Evaluation
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Size 
Reduction

Compared to state of the art 
LLVM heuristic-driven Oz

Generalizabi
lity
Generalize well to a diversity of 
real-world targets, + after 
months of active development

7%

Good



Inlining for Size Results

Trained the policy for Google 
search (over 28,000 IR modules)

Better policy with larger NN 
Cost:  ↑ training resources

Performance

Efficiency

PG > ES
PG consumes ~4% training 

resources of ES



Generalizability across Software

ES(L) > PG > ES
Comparison

A policy performs better on a 
certain software also perform 
better on other software.

Consistency

Performance on SPEC 2006Performance on different apps, Clang



Generalizability across Time

3 months of active development

◾ Effectiveness may degrade

◾ Still decent wins compared with 
current-Oz



1.5% ↑ QPS 
Google uses it on a number of projects



Thank you! 
Questions?


