MLGO

A Machine Learning Guided Compiler Optimizations Framework

Trofin, Mircea, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choromanski, and David Li (2021)

Group 3 Xuweiyi Chen Jiaming Zheng Congming Liao Zin Hu

Introduction

Motivation

Replacing compiler optimization heuristics with machine-learned policies.

Heuristics are human-trained.

ML easily scales up to large corpora of training sets.

 Heuristics are human-written code that needs to be maintained, # features limited.

ML leverages more features.

General Approach

Reinforcement learning

Evolution Strategies(ES) Policy Gradient (PG) Reduce code size with **Inlining**

Improve performance with Register Allocation

Heuristics Based Optimization

Why Reinforcement Learning?

Lack of ground truth

Explore various strategies and improve strategies from experience

MLGO Overview (normal use)

MLGO Overview (training)

RL Policy Training

LLVM Inliner

LLVM Inliner

- A pass operating on a strongly-connected component(SCC) of **static call graph**.
- The inlined callee's call sites are added to a work list and iteratively considered for inlining in a top down fashion.
- Perform a series of optimizations on the SCC, and these optimizations also influence the decision of inlining or not.

Theodoridis, T., Grosser, T., & Su, Z. (2022). Understanding and exploiting optimal function inlining. *Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems*. https://doi.org/10.1145/3503222.3507744

General LLVM Heuristic Steps

01	

Computes the **static** "**cost**" of the callee post inlining. If shown the some call sites are constant during compiling, that information is used to confirm whether inline or not.

02

The **cost** is then compared with **threshold**.

Call site hotness, inline keywords, especially callee with a single basic block.

Decide inline or not with step 2 comparison.

Note that inline can be delayed if inlining the caller itself to its own caller would result in better saving.

RL-driven inlining in LLVM

- Challenge: too complex state space. Encoding the call graph at each decision point would not be possible. Instead, come up with a self-designed feature space. Table→
- Drawback: greatly reduces info, limited global and local call site info.
 Won't hurt: same info available to current inlining heuristics.
- Side-step lack of partial reward: Evaluate native size with/without inlining (total R).

Туре	Features		
caller feature	caller_basic_block_count caller_conditionally_execute d_blocks caller_users		
callee feature	callee_basic_block_count callee_conditionally_execute d_blocks callee_users		
Call site feature	callsite_height cost_estimate number_constant_params		
Call graph feature	edge_count node_count		

LLVM implementation

Register Allocation

Register Allocation

MLGO Regalloc

Heuristics

MLGO

The problem of optimal register allocation is NP-complete. For n>2: Graph color Coalescing

Aims at learning eviction policy for register allocation.

Regalloc Policy Training

Evaluating the Performance

Benchmark

Reward Metrics

More time consuming.
 More noisy than size measurements.

- Rewards: the block freq-weighted sum of introduced moves per function
- Using performance counters to track instructions executed, loads, and stores

Evaluation

Compared to state of the art LLVM heuristic-driven Oz

Size Reduction

Generalizabi lity

Generalize well to a diversity of real-world targets, + after months of active development

Inlining for Size Results

	PG	ES	ES (L)
Size Reduction	4.95%	3.74%	5.94%
Parallelism in Data Collection	100	488	488
Training Time	~12h	~60h	~150h

Table 2. Policy Gradient v.s. Evolution Strategies

Trained the policy for Google search (over 28,000 IR modules)

Efficiency

PG > ES PG consumes ~4% training resources of ES

Better policy with larger NN Cost: ↑ training resources

Generalizability across Software

Comparison ES(L) > PG > ES

Consistency

A policy performs better on a certain software also perform better on other software.

Performance on different apps, Clang

Performance on SPEC 2006

Generalizability across Time

- Effectiveness may degrade
- Still decent wins compared with current-Oz

3 months of active development

1.5% ↑ QPS

Google uses it on a number of projects

Thank you! Questions?