
Predicting Unroll Factors Using Supervised Classification

Mark Stephenson and Saman Amarasinghe
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
Cambridge, Massachusetts
{mstephen,saman}@mit.edu

Abstract

Compilers base many critical decisions on abstracted ar-
chitectural models. While recent research has shown that
modeling is effective for some compiler problems, building
accurate models requires a great deal of human time and ef-
fort. This paper describes how machine learning techniques
can be leveraged tohelp compiler writers model complex
systems. Because learning techniques can effectively make
sense of high dimensional spaces, they can be a valuable
tool for clarifying and discerning complex decision bound-
aries. In this work we focus on loop unrolling, a well-known
optimization for exposing instruction level parallelism. Us-
ing the Open Research Compiler as a testbed, we demon-
strate how one can use supervised learning techniques to
determine the appropriateness of loop unrolling. We use
more than 2,500 loops — drawn from 72 benchmarks —
to train two different learning algorithms to predict unroll
factors (i.e., the amount by which to unroll a loop) for any
novel loop. The technique correctly predicts the unroll fac-
tor for 65% of the loops in our dataset, which leads to a 5%
overall improvement for the SPEC 2000 benchmark suite
(9% for the SPEC 2000 floating point benchmarks).

1. Introduction

With enough time and effort, system engineers can create
models that accurately describe architectural components.
For example, Yotov et al. show that compilers and runtime
systems can rely on human-made models to make informed
decisions [23]. Unfortunately, it is not always easy to model
complex systems because many of the architectural compo-
nents are inextricably tied together. It is also difficult to
model the compiler passes with which a given optimization
may interfere. For example, register allocators are often
written to ignore important interactions with the instruction
scheduler.

Creating a reliable model upon which to base deci-

sions requires expert knowledge of the system and a huge
amount of trial-and-error tuning. This paper experiments
with applying machine learning techniques to the problem
of heuristic tuning. Essentially, we aim to automatically
create system models. Learning techniques can often find
sense in high-dimensional spaces, and thus they can be ef-
fectively applied to compiler optimizations where the re-
sulting performance is a function of several variables.

As a case study we apply two machine learning tech-
niques to the problem of loop unrolling. Because loop un-
rolling indirectly affects so many aspects of system perfor-
mance, it is difficult to model the appropriateness of the op-
timization. We show that near neighbor(NN) classification
and support vector machines(SVM) work remarkably well
for predicting unroll factors. Our best machine learning
classifier can predict with 65% accuracy the optimal unroll
factor, and the optimal, or second-best unroll factor 79% of
the time. For the benchmarks that we evaluate, this means
the classifier is within 7% of the optimal solution 79% of
the time.

We evaluate the implications of improved unrolling
decisions using the Open Research Compiler and an
Itanium R© 2 architecture. The Open Research Compiler
uses two loop unrolling heuristics: one is used when soft-
ware pipelining is disabled, and the other is used in conjunc-
tion with software pipelining to find schedules with frac-
tional II. We used the aforementioned learning techniques
to automatically create heuristics for both cases.

When software pipelining is disabled, our best classifier
achieves a 5% speedup (over ORC’s heuristic) for the SPEC
2000 benchmarks, and a 9% speedup for the floating point-
ing benchmarks in that suite. However, as is clear from the
history of ORC releases, the system is tuned with software
pipelining in mind. In fact, the release history shows that
a great deal of time was spent optimizing the unroll heuris-
tics for software pipelining: every major release employed a
different unrolling heuristic (the current version is 205 lines
worth of C++ code). Because of this effort, our results when
software pipelining is enabled are less dramatic. Our sys-



tem is able to create heuristics from scratch that achieve
a slight increase in performance (1% over ORC with soft-
ware pipelining enabled for the SPEC benchmarks). While
ORC’s heuristic is the product of multiple years of human
tuning, our machine-learned versions took seconds to cre-
ate (once the training data had been collected). The results
we present in this paper show that machine learning tech-
niques can model systems as well as human designers, but
with much less effort.

The paper is organized as follows. The next section
briefly states the contributions of this research. Section 3
describes the advantages and disadvantages of loop un-
rolling; it lists some important factors that one should con-
sider when trying to determine whether unrolling a given
loop will be desirable. Section 4 discusses our approach and
our infrastructure. Section 5 describes the learning tech-
niques that we employ, while Section 6 describes experi-
ments with multi-class classification. Section 7 describes
experiments with finding the most informative characteris-
tics of the loop unrolling problem. Section 8 discusses some
potential issues with using machine learning for heuristic
design. Section 9 relates our work to previous work, and
we conclude in Section 10.

2. Contributions

The novel aspects of our research are summarized here:

• We use multi-class classification to improve compiler
decisions. Many compiler decisions involve choosing
between one of many options, not just making a binary
choice. While other compiler researchers have em-
ployed learning techniques for binary problems, none
to our knowledge have tried to solve harder multi-class
problems.

• We show that near neighbor classification and sup-
port vector machines are viable methods for improving
compiler decisions.

• We show how to use feature selection to identify the
most salient features of a compiler problem.

We have also released the instrumentation library that
we wrote and the raw loop data that we collected so other
researchers can easily apply their own learning techniques.
Please visit our website for information:

http://www.cag.csail.mit.edu/metaopt

3. Loop Unrolling

Loop unrolling is a well known transformation in which
the loop body is replicated a number of times. Since the
backward branch is needed only after executing the entire
unrolled body, loop unrolling reduces overhead by decreas-
ing the number of branch operations. This can be partic-
ularly important for architectures that have high branching
overhead. However, loop unrolling is primarily used to en-
able other optimizations, many of which target the memory
system. For example, unrolling creates multiple static mem-
ory instructions corresponding to dynamic executions of a
single operation. After unrolling, these instructions can be
rescheduled to exploit memory locality. If the loop accesses
the same memory locations on consecutive iterations, many
of these references can be eliminated altogether with scalar
replacement. Another method to reduce memory traffic uti-
lizes a wide memory bus to transfer multiple words with a
single load or store operation. Unrolling is key to expos-
ing adjacent memory references [6, 12] so that they can be
merged into a single wide reference.

Arguably, the most important aspect of loop unrolling is
its ability to expose instruction level parallelism (ILP) to the
compiler. After unrolling, the compiler can reschedule the
operations in the unrolled body to achieve overlap among it-
erations. Such a scheme was first used in the Bulldog com-
piler [9] and is still important in compiling for machines
that support a high degree of ILP. Typically, unrolling is
combined with other transformations that increase the size
of the scheduling window. Examples include trace schedul-
ing [9] and hyperblock formation [14]. These techniques
are particularly useful in scheduling for loops that contain
control flow or function calls because of the difficulty these
problems present to software pipelining.

Loop unrolling is an interesting optimization because it
indirectly affects many aspects of system performance: the
efficacy of the instruction scheduler, the software pipeliner,
the register architecture, and the memory system are all in-
fluenced by loop unrolling. Because its impact is mainly no-
ticed in secondary effects, it is difficult to decide when loop
unrolling is appropriate. Superficially, loop unrolling ap-
pears to be an optimization that is always beneficial. How-
ever, loop unrolling can impair performance in many cases.
The following non-exhaustive list considers some possible
drawbacks to loop unrolling:

• The most acknowledged detriment of unrolling is that
code expansion can degrade the performance of the in-
struction cache.

• Added scheduling freedom can result in an increase
in the live ranges of variables, resulting in additional
register pressure. Since memory spills and reloads are



typically long latency operations, this can negate the
benefits of unrolling.

• Control flow also complicates unrolling decisions. If
the compiler cannot determine that a loop may take an
early exit, it will actually have to add control flow to
the unrolled loop which may negate — or at the very
least neutralize — the benefits of unrolling.

• Some compilers aggressively speculate on memory ac-
cesses. Execution time will increase if the scheduler
chooses to speculatively hoist unrolled memory ac-
cesses that dynamically conflict.

Compilers and architectures are complex systems. The
scheduler, the register allocator, and the underlying archi-
tecture interact in non-trivial ways; loop unrolling increases
the aggressiveness of certain optimizations, which depend-
ing on the circumstances, may adversely affect other im-
portant optimizations and reduce overall performance. The
only way to truly know what will work is to empirically
evaluate decisions, because even human-designed models
must be evaluated at some point to determine their effective-
ness. It is the goal of this research to use empirical obser-
vations to train a learning algorithm how to make informed
decisions.

4. Methodology and Infrastructure

This section briefly introduces supervised learning in
terms of loop unrolling. A discussion of the infrastructure
that we use to perform the experiments in this paper follows.

4.1. Our Approach: Supervised Learning

Supervised learning is performed on a set of training ex-
amples. Each training example 〈xi, yi〉 is composed of a
feature vectorxi and a corresponding label yi. The fea-
ture vector contains measurable characteristics of the object
under consideration. Training a classifier usually involves
finding a mapping from feature vectors to output labels so
that the overall classification error is minimized on the train-
ing examples. The hope is that an adequately trained classi-
fier will also be able to accurately discriminate novel exam-
ples (examples that were not in the training set).

In our experiments, the feature vector contains loop char-
acteristics such as the trip count of the loop, the number of
operations in the loop body, the programming language the
loop is written in, etc. We extract a feature vector for every
unrollable loop in our suite of benchmarks. Table 1 shows a
subset of the features that we extracted for the experiments
in this paper. We collected 38 features for these experi-
ments, but as we discuss later, using a well chosen subset of
features improves classification accuracy.

Feature

The loop nest level.
The number of ops. in loop body.
The number of floating point ops. in loop body.
The number of branches in loop body.
The number of memory ops. in loop body.
The number of operands in loop body.
The number of implicit instructions in loop body.
The number of unique predicates in loop body.
The estimated latency of the critical path of loop.
The estimated cycle length of loop body.
The language (C or Fortran).
The number of parallel “computations” in loop.
The max. dependence height of computations.
The max. height of memory dependencies of computations.
The max. height of control dependencies of computations.
The average dependence height of computations.
The number of indirect references in loop body.
The min. memory-to-memory loop-carried dependence.
The number of memory-to-memory dependencies.
The tripcount of the loop (-1 if unknown).
The number of uses in the loop.
The number of defs. in the loop.

Table 1. A subset of features used for loop classification.
These characteristics are used to train the classifiers.

In addition to the feature vector, we also extract a train-
ing label for each unrollable loop in our benchmark suite.
The training label indicates which (mutually exclusive) op-
timization is the best for each training example. For the
experiments presented in this paper, labeling the data is rel-
atively straightforward; we measure each loop using eight
different unroll factors (1, 2, . . . , 8), and the label for the
loop is the unroll factor that yields the best performance.
Thus, for each example loop we have a vector of character-
istics that describes the loop, and a label that indicates what
the empirically found best action for the loop is. The task of
a classifier is to learn how best to map loop characteristics
(xi) to the observed labels (yi) using all the examples in the
training set.

While supervised learning is trained offline, the learned
classifier can easily be incorporated into a compiler.

4.2. Computing the Accuracy

The accuracy numbers presented in this paper were com-
puted using a methodology known as leave-one-out cross-
validation (LOOCV) [8]. The approach allows machine
learning researchers to estimate the generalizationability
of a learning algorithm (i.e., how well new examples can be
classified). LOOCV is an iterative process that iterates N
times, where N is the size of the training dataset. On each
iteration i, the technique removes the ith example from the
training set, trains the classifier using the remaining N − 1
examples, and then sees how well the resulting classifier
categorizes the left-out example. The generalization accu-
racy is then the number of correctly classified left-out ex-
amples divided by the total size of the training set.



There are other methods available for estimating a classi-
fier’s accuracy, but LOOCV is particularly appealing when
the size of the training set is small — which ours is — be-
cause the learning algorithm can be trained using nearly all
the examples in the dataset.

4.3. Compiler and Platform

We used the Open Research Compiler (ORC
v2.1) [18]— an open source research compiler that
targets Itanium architectures— to evaluate the benefits
of applying learning to loop unrolling. ORC is a well-
engineered compiler whose performance rivals commercial
compilers. The experiments in this paper target a 1.3 GHz
Itanium 2 server running Red Hat Linux Advanced Server
2.1. We use -O3 optimizations for all experiments in the
paper. For the first set of experiments we disable software
pipelining to strictly focus on the loop unrolling heuristic,
but the second set of experiments enables all optimizations.
In all cases we set the maximum unroll factor to eight.
Unroll factors beyond eight do not compile properly for
many of the loops in our training benchmarks.

4.4. Loop Instrumentation

Because this paper is concerned with loop optimizations,
we instrumented ORC to measure the runtime of all inner-
most loops. The instrumented code assigns a counter to
every loop in the program. Immediately before execution
reaches an innermost loop, the instrumentation code cap-
tures the processor’s cycle counter and places it in the loop’s
associated counter. When the loop exits, the cycle counter
is again captured and the total running time of the loop is
computed.

We invested much engineering effort minimizing the im-
pact that the instrumentation code has on the execution of
the program. We initially inserted procedure calls to an
instrumentation library that started and stopped the loop
timers. This methodology proved to be extremely intrusive
since the caller-saved register allocator spilled many vari-
ables on each call to the instrumentation library.

Our current loop instrumentor inserts assembly instruc-
tions that start and stop the loop timers. This lightweight
model allows the instruction scheduler to bundle instru-
mentation code with a loop’s prologue and epilogue code.
Furthermore, the instrumentor does not significantly impact
register usage.

At all exit points in the program a call is made to our
instrumentation library to print the cumulative running time
of each loop in the program. This data is used to train the
offline learning algorithms we use; the learning algorithm
needs to know which loop optimization strategy is most

beneficial for each loop, and thus these cycle counts form
the basis of our labeled training dataset.

We realize that we cannot possibly measure loop run-
times without affecting the execution in some way. How-
ever, the fact that we were able to effectively train a learn-
ing algorithm using data collected by the instrumentation
library is evidence that the impact of our measurements is
minimal. Nevertheless, to further mitigate noise introduced
by instrumentation, we only use loops that are run for at
least 50,000 cycles. For instance, were we to train with
loops that are only run for a few thousand cycles, a loop
that sits on the edge of an instruction cache boundary could
introduce huge amounts of noise; a cache miss would com-
prise a significant portion of the total runtime of the loop.

We run each benchmark 30 times for all unroll factors up
to eight; an unroll factor of one corresponds to leaving the
loop intact (rolled). For each loop we base the performance
on the median runtime for each unroll factor.

4.5. Effort Involved

This section discusses the effort that was involved with
the experiments presented in this paper. The instrumenta-
tion of ORC — which at the time was unfamiliar to us —
was the most demanding task, taking about two weeks of
intensive work. Collecting the labels was somewhat time
consuming since we ran each benchmark 30 times for all
unroll factors, but this step was completely unsupervised
and only took a little longer than a week. Finally, when
we had our training dataset, we prototyped several popular
learning algorithms in Matlab, many of which are publicly
available online.

Now that our infrastructure is in place, quickly retuning
the unrolling heuristic to match architectural changes will
be trivial. We will simply have to collect a new labeled
dataset, which is a fully automated process, and then we
can apply the learning algorithm of our choice. Contrast
this with the tedious, manual retuning efforts currently em-
ployed today. Furthermore, we are in the position to create
heuristics for other loop optimizations such as loop tiling
and strip mining.

4.6. Benchmarks Used

We extracted training examples from 72 benchmarks
taken from a variety of benchmark suites. We use bench-
marks from SPEC 20001, SPEC ’95, and SPEC ’92 [21].
For SPEC benchmarks such as swim, where the application
appears in two different SPEC suites, we use the newest

1Please note that we have excluded two SPEC 2000 benchmarks: We cannot com-
pile 252.eon because it is a C++ program, and 191.fma3d does not compile correctly
with our instrumentation library (it creates a different number of loops depending on
the unroll factor, and thus features and labels cannot be correlated).



−1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

Figure 1. Near neighbor classification. This figure de-
picts the near neighbors algorithm on real unroll data. Note
that this graphic is only meant to illustrate the idea of near
neighbors; this figure only considers four classes, whereas
the remainder of the paper considers classification into eight
classes. To further improve visualization, we only include
examples where the given unroll factor is at least 30% better
than the other three.

version only. In addition, we train with Mediabench appli-
cations, benchmarks from the Perfect suite, and a handful of
kernels. The training benchmarks span three languages (C,
Fortran, and Fortran90). For each benchmark we only use
loops that ORC can unroll and whose optimal unroll factor
is measurably better than the average (1.05x) over all unroll
factors up to eight.

There are many different classification techniques that
one could choose to employ. The next section describes two
techniques that work well for a wide range of problems.

5. Multi-Class Classification

This section describes two multi-class classification al-
gorithms, which to our knowledge, we are the first to em-
ploy for compiler heuristic design. We begin by describ-
ing near neighbor classification, a conceptually simple, but
highly effective technique. We then describe support vec-
tor machines, a statistical learning algorithm that is widely
used in the machine learning community.

5.1. Near Neighbor Classification

Near neighbor (NN) classification is an extremely intu-
itive learning technique [8]. The idea of the algorithm is
to construct a database of all 〈xi, yi〉 pairs in the training
set. A label (unroll factor) can be computed for a novel ex-
ample simply by inspecting the labels of the nearest exam-
ples in the database. This is a sensible approach for assign-
ing loop unroll factors: the compiler should treat similar

loops similarly. We use Euclidean distance as the similar-
ity metric. The distance between database entry x i and a
novel loop with feature vector xnovel is ‖xnovel−xi‖. The
feature vector is normalized to weigh all features equally;
otherwise, features with large values such as loop tripcount
would grossly outweigh small-valued features in the dis-
tance calculation.

The graph in Figure 1 visually depicts the operation of
NN on real loop data. Each of the points in the figure rep-
resents a loop from our suite of benchmarks. Points repre-
sented by pluses, circles, stars, and dots correspond to un-
roll factors one, two, four, and eight respectively. Because
there are too many dimensions in the original feature space
to graphically depict (equivalent to the number of features
in Table 1), we have reduced the dimensionality by project-
ing loops from the original feature space — each of which
is represented by a feature vector (xi) — onto a plane2.

The near neighbors algorithm makes predictions for a
new point based on the labels of points that lie within a
specified radius of the new point. For all NN experiments
we use a radius of 0.3, the value of which was determined
experimentally. In Figure 1, the query point centered by the
dotted circle has three neighbors that lie within the spec-
ified radius. The algorithm predicts that the unroll factor
for the query point is the same label as the most commonly
occurring label among the near neighbors. In this case, the
algorithm would predict an unroll factor of two, represented
by circles in the figure.

Near neighbors can be used to assign a confidence to a
query. If the vast majority of near neighbors share the same
label, then the confidence of the query is high. Alterna-
tively, there are cases when there is no clear winner — or
even no near neighbors — which corresponds to a low con-
fidence. In these cases, we simply assign the unroll factor
based on the label of the single nearest neighbor, but more
elaborate schemes are certainly possible. One can imag-
ine a tool that automatically detects outliers by setting low
confidence examples aside. An engineer could then visu-
ally inspect outlier loops to determine why they are hard to
classify.

Note that NN classification is trivial to train: one sim-
ply has to populate a ‘database’ of examples. Though the
training time of a classifier is not a paramount concern
(since training the classifier is done offline), the time it takes
for the resulting classifier to make predictions is important
(since this task will be performed by the compiler at com-
pile time). NN classifies a new example by performing a lin-
ear scan of the examples in the training set. For small train-
ing sets like ours, the lookup is extremely fast: with over
2,500 examples in our database, the linear-time scan takes

2To find a ‘good’ plane onto which to project the data, we use the linear discrim-
inant analysis algorithm described in [8]. Note that the axes of the graph correspond
to a linear combination of the dimensions in the original feature space.



Don’t unroll
Unroll

Figure 2. Support vector machine classification. This fig-
ure shows the classification of loop data by an SVM. In this
example the SVM non-linearly maps the 2-dimensional fea-
ture space into a higher dimensional space (using a radial
basis kernel function [8]). The SVM then finds the bound-
aries in the high dimensional space that maximally sepa-
rate data from distinct classes. To improve visualization
in this example we cast the original feature space to a 2-
dimensional plane, we only consider binary classification,
and we only consider examples where there is a 30% per-
formance improvement.

less than 5 ms. Lookup time is far outweighed by compiler
fixed-point dataflow analyses. Furthermore, advances in the
area of approximate near neighbor lookup permit fast access
(sublinear in the size of the database) to databases on the or-
der of hundreds of thousands of examples, so we expect the
NN method to scale well with database size [10].

5.2. Support Vector Machines

A detailed description of support vector machines
(SVMs) is beyond the scope of this paper, so only the high
level ideas of the algorithm are described here. The op-
eration of an SVM is shown in Figure 2. There are two
unique aspects of SVMs: first, an SVM maps the origi-
nal D-dimensional feature space (using a non-linear func-
tion) to a higher-dimensional space where it is easier to
‘separate’ data, and second, in this transformed space the
SVM attempts to find boundaries that maximally separate
the classes. The latter aspect means that an SVM does not
necessarily try to minimize the errors on the training set.
Proponents of SVMs claim that this prevents ‘overfitting’
the training data, and thus will more likely generalize better
to novel examples.

SVMs are binary classifiers, and thus some work must
be done to use them in a multi-class classification context.

Prediction Correctness NN SVM ORC Cost

Optimal unroll factor 0.62 0.65 0.16 1x
Second-best unroll factor 0.13 0.14 0.21 1.07x
Third-best unroll factor 0.09 0.06 0.21 1.15x
Fourth-best unroll factor 0.06 0.06 0.13 1.20x
Fifth-best unroll factor 0.03 0.02 0.16 1.31x
Sixth-best unroll factor 0.03 0.03 0.04 1.34x
Seventh-best unroll factor 0.02 0.02 0.05 1.65x
Worst unroll factor 0.02 0.02 0.04 1.77x

Table 2. Accuracy of predictions for the nearest neighbors
algorithm, an SVM, and ORC’s heuristic. This table shows
the percentage of the predictions that each algorithm made
that were optimal. In addition, the table shows the percent-
age of predictions made by each algorithm that were N th
best. The SVM predicts the optimal or nearly-optimal un-
roll factor 79% of the time. The Cost column shows the
average runtime penalty for mispredicting (as compared to
the optimal factor).

While there are many ways to do this, one common method
uses output codes[7]. Output codes associate a unique
binary code to each label. For example, one possible set of
codewords for a three-class problem is,

class h1 h2 h3

1 1 0 0
2 0 1 0
3 0 0 1

Now, the problem has been transformed into many bi-
nary classification problems. In the case of the above
example, we would train three binary classifiers, each
of which would use the binary partition induced by the
codewords. Thus, classifier h1 would learn to discriminate
examples in class one from examples in classes two and
three. A query’s “code” representation is formed by con-
catenating the binary classifier predictions. The multi-class
prediction is the class label corresponding to the closest
codeword (in hamming distance) to the query’s code. Error
correcting codewords can provide better results by using
more bits than necessary to describe each label, but for
simplicity we do not use such encodings.

SVMs take longer to train than the NN algorithm (around
30 seconds for our data), but once the classifier has been
constructed, unroll factors for novel examples can be pre-
dicted quickly. For a good description of the operation of
SVMs please see [8].

6. Experiments with
Multi-Class Classification

In this section we describe the operation of a multi-class
classifier for loop unrolling. More specifically, we attempt
to classify loops into one of eight categories, corresponding



1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Unroll Factor

F
re

qu
en

cy

Figure 3. Histogram of optimal unroll factors. This figure
shows the percentage of loops for which the given unroll
factor is optimal. The histogram data was collected from
over 2,500 loops (spanning several benchmarks suites) with
software pipelining disabled.

to unroll factors one through eight. Recall that an unroll
factor of one leaves the loop rolled.

As mentioned in Section 4, we first collect the amount
of time it takes for each unroll factor to execute each un-
rollable loop in our suite of benchmarks. The unroll factor
that requires the fewest number of cycles to execute a given
loop is the label for that loop. We do not use the full set of
38 features that we extracted. Instead, as we will discuss in
Section 7, we use the most “informative” subset of features
for the classification experiments performed in this section.

We train the NN algorithm by simply populating the
database with examples, and the predicted unroll factor for
a novel loop will be the most common unroll factor of the
loops within a radius of 0.3. Note that we chose this radius
by inspecting the distances to training examples for sev-
eral queries. For the SVM, we obtained the C and Matlab
SVM implementation distributed at [13]. The toolkit con-
tains functions for tuning, training, and testing the accuracy
of an SVM.

Table 2 shows the accuracy of the learning algorithms
and ORC’s heuristic. The numbers in the table were col-
lected with software pipelining disabled. Using leave-one-
out cross validation we find that 65% of the time the SVM
finds the optimal unroll factor. A further 14% of the time
it chooses the nearly-optimal solution. The rightmost col-
umn in the table shows the cost associated with mispredict-
ing. We can conclude from the table that a full 79% of the
time, SVM classification is within 7% of the optimal per-
formance (with this dataset). The NN algorithm performs
slightly worse, achieving a 62% classification rate.

The histogram in Figure 3 shows the distribution of opti-

mal unroll factors with software pipelining disabled. An in-
teresting observation is that non-power of two unroll factors
are rarely optimal for this dataset. The figure also indicates
that no one loop unrolling factor is dominantly better than
the others.

6.1. Realizing Speedups

In this section we see if improved unrolling classifi-
cation accuracy yields program speedups. For these ex-
periments, we compile the SPEC 2000 benchmarks using
the learned classifiers to predict an unroll factor for each
loop. Note that we train algorithms with all the examples
in our training set minus the examples from the bench-
mark whose performance we are attempting to gauge. In
other words, similar to LOOCV, when compiling a bench-
mark, we exclude all examples in that benchmark from the
NN database. In this way we see how well the learned com-
piler algorithm performs on loops that it has not seen before.
We do not instrument the compiled code for the experiments
in this section. Instead we use the UNIX time command
and the median of three trials to measure whole-program
runtimes.

Figure 4 shows the performance improvement of our
method over ORC’s unrolling heuristic when software
pipelining has been disabled. The figure also shows the
speedup that the compiler could obtain if an “oracle” were
to make its unrolling decisions. The SVM achieves a
speedup on 19 of the 24 SPEC benchmarks. Overall our
technique attains a 5% average speedup on the SPECs, and
a 9% speedup when only the SPECfp benchmarks are con-
sidered. The oracle is slightly outperformed in a couple of
cases because our data collection methodology is not per-
fect. In addition to working within a generally noisy en-
vironment, we assume that the optimal unroll factor of a
particular loop does not depend on the unroll factors of the
other loops. While this assumption may not be entirely cor-
rect, it simplifies the data collection process (we can collect
the runtimes for all loops given a particular unroll factor in
the same run). The overall performance of the oracle legit-
imizes our assumptions.

Figure 5 shows the performance of the predictors when
software pipelining is enabled. Software pipelining exposes
many of the benefits of loop unrolling, so in general loop
unrolling will not yield the kinds of speedups seen in Fig-
ure 4. However, there are cases when unrolling will help
the software pipeliner achieve a fractional initiation inter-
val, thus improving performance. Likewise, too much un-
rolling may cause undo register pressure, impairing perfor-
mance.

The NN classifier and the SVM outperform ORC’s
heuristic on 16 of the 24 predictors, leading to an overall
improvement of slightly over 1%. Let us remind the reader



1
6
4
.g
zi
p

1
6
8
.w
u
p
w
is
e

1
7
1
.s
w
im

1
7
3
.a
p
p
lu

1
7
5
.v
p
r 1
7
6
.g
cc

1
7
7
.m
es
a

1
7
8
.g
a
lg
el

1
7
9
.a
rt

1
8
3
.e
q
u
a
k
e

1
8
6
.c
ra
ft
y

1
8
7
.f
a
ce
re
c

1
8
8
.a
m
m
p

1
8
9
.l
u
ca
s

1
9
7
.p
a
rs
er

2
0
0
.s
ix
tr
a
ck

2
5
3
.p
er
lb
m
k

3
0
0
.t
w
o
lf

3
0
1
.a
p
si

1
7
2
.m
g
ri
d

1
8
1
.m
cf

2
5
4
.g
a
p

2
5
5
.v
o
rt
ex

2
5
6
.b
zi
p
2

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%
Im

p
ro

v
e
m

e
n

t
NN v. ORC SVM v. ORC

Oracle v. ORC

Figure 4. Realized performance on the SPEC 2000 benchmarks with SWP disabled. Both NN and an SVM achieve speedups on 19
of the 24 benchmarks. The SVM achieves a 5% speedup overall, and it boosts the performance of all SPECfp benchmarks, leading
to a 9% overall improvement. Near neighbors performs slightly worse, boosting the performance by about 4%. The rightmost bar
shows the speedup that an “oracle” would attain (7.2% average).

here that ORC is tuned with software pipelining in mind,
and that every release of ORC to date has included a differ-
ent unrolling heuristic. The current heuristic is around 200
lines of code. With that perspective in mind, the fact that
machine learning algorithms can do the same task in a mat-
ter of seconds (days including the time it takes to collect the
labels) is exciting.

Note that the training sets for 177.mesa, 181.mcf, and
186.crafty are obviously noisy since ORC’s heuristic out-
performs the oracle. Future work will consider techniques
to reduce the amount of noise in the training datasets.

7. Feature Selection

This section focuses on finding the most informative
features for discriminating unroll factors. We take two
approaches to feature selection in this section. The first
method uses information theory to score the information
content of a feature. The second method greedily chooses
features that match a given classifier for a given training set.

Rank Feature MIS

1 # floating point operations 0.19
2 # operands 0.186
3 instruction fan-in in DAG 0.175
4 live range size 0.16
5 # memory operations 0.148

Table 3. The best five features according to MIS.

7.1. Mutual Information Score

The mutual information score(MIS) measures the
reduction in uncertainly in one variable (e.g., a particular
feature f ) given information about another variable (e.g.,
the best unroll factor u) [8]. The MIS adapted for our
problem is given by,

I(f ; u) =
∑

φ∈J

∑

y∈{1...8}
P (φ, y) · log2(

P (φ,y)

P (y)Ṗ (φ)
),

where J represents the set of values that f can assume,
and for our problem u can assume values in {1, . . . , 8}.
We use the MIS to determine the extent to which knowing



1
8
3
.e
q
u
a
k
e

1
8
8
.a
m
m
p

2
5
6
.b
zi
p
2

3
0
0
.t
w
o
lf

3
0
1
.a
p
si

2
0
0
.s
ix
tr
a
ck

1
6
4
.g
zi
p

1
6
8
.w
u
p
w
is
e

1
7
2
.m
g
ri
d

1
7
3
.a
p
p
lu

1
7
5
.v
p
r

1
7
6
.g
cc

1
7
9
.a
rt

1
7
8
.g
a
lg
el

2
5
5
.v
o
rt
ex

1
8
7
.f
a
ce
re
c

1
8
9
.l
u
ca
s

1
8
1
.m
cf

1
8
6
.c
ra
ft
y

1
9
7
.p
a
rs
er

2
5
3
.p
er
lb
m
k

2
5
4
.g
a
p

1
7
7
.m
es
a

1
7
1
.s
w
im

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

Im
p

ro
v

e
m

e
n

t
NN v. ORC SVM v. ORC

Oracle v. ORC

Figure 5. Realized performance on the SPEC 2000 benchmarks with SWP enabled. We attain speedups on 16 of the 24 benchmarks
in this graph, and a 1% speedup overall. The rightmost bar for each benchmark shows the speedup that a ‘perfect’ classifier would
attain (4.4% overall). Note that the training sets for 177.mesa, 181.mcf, and 186.crafty are noisy since the oracle is outperformed by
ORC.

Rank NN Error SVM Error

1 # operands 0.48 # floating point operations 0.59
2 live range size 0.06 loop nest level 0.49
3 critical path length 0.03 # operands 0.34
4 # operations 0.02 # branches 0.20
5 known tripcount 0.02 # memory operations 0.13

Table 4. The top five features chosen by greedy feature
selection for two different classifiers on our dataset. The
error numbers reported here are for the training set, hence
the low error rates for these classifiers.

the value of a loop characteristic reduces the uncertainty
about the desired loop unroll factor. Informative features
will receive higher scores than uninformative features. We
bin the values of continuous features before estimating the
probability mass functions used to compute the MIS.

Table 3 shows the five features with the highest MIS.

7.2. Greedy Feature Selection

There are several problems with MIS, most notably that
it does not tell us anything about how features interact with

each other. In addition, even though the score is a metric for
information content, it does not guarantee that the features
will be useful for a particular classifier.

Greedy feature selection identifies features that perform
well for a given classifier and a given training dataset. Given
a feature set, F = {f0 . . . fN}, the simple algorithm starts
by choosing the singlebest feature, b0 ∈ F , for discriminat-
ing the training dataset (using a particular classifier). The
algorithm proceeds by choosing a second feature, b 1 ∈ F ,
that together with b0, best discriminates the training dataset.
In each iteration of the algorithm a new feature is chosen
that minimizes the training error given the features that have
already been selected. The algorithm halts after a user-
defined number of features have been selected.

Table 4 shows the best five features for our dataset ac-
cording to greedy feature selection. Notice that the choice
of classifier affects the list of features deemed to be the most
informative. For the NN algorithm, instead of looking for
examples within a set radius, we modified the algorithm so
that it looks for the single closest point in the database to
the query and assigns a prediction accordingly.

We used the union of the features in Table 3 and Table 4
to perform the classification experiments presented in Sec-



tion 6. Whenever possible, it is preferable to use a small
number of features when training a classifier. Uninforma-
tive features can ‘confuse’ a learning algorithm or lead to
overfitting of the training data. In addition, learning al-
gorithms are generally more efficient when shorter feature
vectors are used.

Notice that the number of instructions in the loop body
appears only once in Tables 3 and 4, and relatively far down
the list. We highlight this fact because this feature is the de
facto standard when discussing unrolling heuristics. Ac-
cording to both feature selection methods applied above,
there are many other features that are more useful for dis-
criminating unroll factors. The features that are listed in
this section are not entirely surprising; arguments could be
made to support their predictive values. It would be more
difficult however, to determine why the features found by
greedy selection are jointly informative.

8. Discussion

We believe that machine learning techniques have the
potential to radically alter compiler construction methods.
Future compilers may be designed in such a way that hu-
man designers can concentrate on the correctness of pro-
gram transformations and optimizations, leaving the grunt
work of heuristic selection and tuning to machine learning
methods. However, there are still many issues that need to
be addressed before such a vision becomes reality. In this
section we describe some of the advantages and shortcom-
ings of designing heuristics with machine learning.

One argument against using machine learning is that the
compiler writer must extract the features with which the
learning algorithms are trained. However, most of the fea-
tures that we used in this paper were readily available from
the ORC infrastructure. In the future, if these techniques
are proven to be widely accepted, compiler passes will pro-
vide ‘feature extraction’ tools, much like compiler infras-
tructures provide generic data flow analysis packages.

Another potential reason for not using machine learn-
ing to optimize compiler heuristics is that extracting fea-
tures and labels takes time. While the actual training of the
classifiers takes less than a few seconds, it does take time
to acquire the labels. However, collecting the labels was
a completely unsupervised process, and in our opinion, re-
quired far less effort than constructing an unrolling heuristic
by hand. Again, in the future, compiler infrastructures may
export generalized timers to aid in label extraction.

In terms of the ability to model a system, learned heuris-
tic predictions are confined to the limits of the labels with
which they were trained (e.g., our learned classifiers will
never predict unroll factors greater than eight). While this
limitation may prevent the technique from being used for
some compiler optimizations, the vast majority of optimiza-

tions already have imposed constraints. For our experi-
ments, we set our limits to the greatest unroll factor for
which all of the loops in our training set compile correctly.
That said, future work will consider regression, which can
predict values outside the range of the labels with which the
learning algorithm is trained.

Finally noise presents a challenge to automatically learn-
ing compiler heuristics. The finer the granularity at which
execution is measured, the noisier the measurements be-
come. Modern architectures are helping our cause by in-
cluding several user-readable performance counters. How-
ever, it will never be possible to eliminate noise in a multi-
workload environment. Future research will explore ways
to reduce noisy measurements.

9. Related Work

This section discusses relevant related work. Because
our research focuses on applying learning techniques to
compilation, we emphasize related work in this area.

Monsifrot et al. use a classifier based on “Boosted” de-
cision tree learning to determine which loops to unroll [16].
While the methodology we present in this paper is similar,
our work differs in several important ways. Whereas our ex-
periments employ multi-class classification to determine the
optimal unroll factor, their work only considers binary clas-
sification, leaving the choice of unroll factor up to a com-
piler heuristic. Doing so, their learned classifier correctly
predicts 86% of the loops in their benchmark suite. Judg-
ing by the histogram in Figure 3, simply unrolling all the
time will achieve 77% accuracy, and while unrolling may
be better than not unrolling for a given example, Table 2
shows that choosing the wrong unroll factor can severely
limit performance.

Calder et al. used neural networks and decision trees,
both of which are supervised learning techniques, to fine-
tune static branch prediction heuristics [1]. While their
technique is effective, branch prediction is a binary prob-
lem that is simpler than the multi-class problem this paper
considers. Finally, their problem has the benefit that instru-
mentation code to determine branch direction will not affect
the direction to which branches are resolved. They were
therefore able to work with a noiseless dataset. We must
deal with noisy datasets; we measure execution time, but
the instrumentation counters we insert have an effect on the
measurement.

Cavazos and Moss use supervised learning to improve
the compilation speed of a Java JIT compiler [4]. They
train a learning algorithm to recognize when the compiler
can forgo scheduling a basic block without sacrificing much
performance. The resulting JIT compiles code faster while
retaining 90% of the performance of scheduling every ba-
sic block. While their problem is interesting, again, it is a



binary problem.
Moss et al. [17] and McGovern et al. [15] focused on

scheduling straight line code. Moss used machine learn-
ing to discover a preference for scheduling instructions in
a ready worklist, and McGovern built upon that work. Be-
cause of the combinatorial blowup of measuring all permu-
tations of instructions, it is unclear whether a supervised
approach applies to this problem.

In previous work we used genetic programming to fine-
tune compiler priority functions [22]. The reinforcement
learning framework used for that work suited the problem
well. However, supervised learning of the form presented
in this paper is more efficient whenever a labeled train-
ing dataset can be created. Our reinforcement learning ap-
proach requires weeks to train, while most supervised learn-
ing algorithms require minutes or seconds (once the fea-
tures and labels have been collected). In addition, genetic
programming is a random process where back-to-back runs
yield different results.

Cooper et al. [5], Puppin et al. [19], and Kulkarni et
al. [11] use genetic algorithms to search for effective com-
piler phase orderings. Genetic algorithms are well-suited
to their task, but genetic algorithms can be unstable and
their fixed-length representation precludes their use in many
problems.

Several compiler researchers have created model-based
systems to automatically compute unroll factors [20, 3, 2].
In particular Sarkar [20] used in-depth, hand-made system
models to create a cost function that ranks unroll factors ac-
cording to estimated performance improvement. His tech-
nique improved a highly optimized, industry-strength com-
piler by 8% on seven of the SPEC95fp benchmarks. While
our test infrastructures are different (and probably not com-
parable), it is worth noting that we achieved an 9% improve-
ment on the SPECfp benchmarks.

10. Conclusions and Future Work

Compilers rely on models to make informed decisions.
While humans can generate highly effective models, the
number of person hours required to create them may be
prohibitive. This research experimented with the automatic
creation of compiler heuristics using supervised machine
learning techniques. We used empirical evidence to teach a
simple machine learning algorithm how to make informed
loop unrolling decisions.

The learned classifiers predict loop unrolling factors with
good precision. Using leave-one-out cross-validation to find
the generalization ability of the classifier, the algorithm is
able to predict the optimal unroll factor for a given loop
65% of the time. Furthermore it predicts the optimal, or
the nearly optimal solution 79% of the time. We translate
these results into speedups on a real machine. Using the

Open Research Compiler and targeting the Itanium 2 archi-
tecture, we find that the learning algorithms improve the
performance of 19 of the 24 benchmarks in the SPEC 2000
benchmark set. When we focus solely on loop unrolling we
achieve a 5% improvement on the SPEC benchmarks, while
improving the SPECfp benchmarks by 9%. With software
pipelining enabled, the machine-learned heuristics slightly
outperform ORC’s heuristic.

In this research, apart from extracting features that we
think might be pertinent, we purposefully thought little
about designing an unrolling heuristic. Furthermore, al-
most no time went into tweaking the machine learning algo-
rithms. Therefore, while the performance results are satisfy-
ing, we are more excited about the complexity ramifications
of our research. We believe our method requires less effort
than traditional trial-and-error heuristic tuning. And now
that our infrastructure is in place, we are in the position to
quickly improve many other loop optimizations (e.g., loop
tiling, strip mining, hyperblock formation in loops, etc.),
some of which future work will consider.

We believe that engineers and system modelers can ben-
efit from machine learning tools that distill the most im-
portant characteristics of an optimization. We used feature
selection to identify the most salient features for predict-
ing unroll factors. Furthermore, we improved the predic-
tion and runtime performance of our learning algorithms by
using a reduced feature set size for classification. Our even-
tual goal is to distribute machine-learning-based tools that
automatically identify the most important characteristics of
a given optimization.

Compiler writers are forced to spend a large portion of
their time designing heuristics. The results presented in this
paper lead us to believe that machine-learning techniques
can create certain heuristics well, and at the very least, can
help point engineers in the right direction.

11. Acknowledgments

We thank the reviewers of this paper who provided us
with excellent and detailed feedback. Thanks to Sam Larsen
who helped write Section 3, and to Rodric Rabbah and Kris-
ten Grauman who have read multiple drafts of this paper.
Thanks to Una-May O’Reilly and Leslie Kaelbling for var-
ious helpful discussions. This research was partially sup-
ported by DARPA grant F29601-03-2-0065.

References

[1] B. Calder, D. G. ad Michael Jones, D. Lindsay, J. Mar-
tin, M. Mozer, and B. Zorn. Evidence-Based Static
Branch Prediction Using Machine Learning. In ACM
Transactions on Programming Languages and Sys-
tems (ToPLaS-19), volume 19, 1997.



[2] S. Carr and Y. Guan. Unroll and Jam using Uni-
formly Generated Sets. In Proceedings of the 30th An-
nual International Symposium on Microarchitecture
(MICRO-30), December 1997.

[3] S. Carr and K. Kennedy. Improving the Ratio of
Memory Operations to Floating-Point Operations in
Loops. In ACM Transactions on Programming Lan-
guages and Systems (ToPLaS-16), November 1994.

[4] J. Cavazos and E. Moss. Inducing heuristics to decide
whether to schedule. In Proceedings of the ACM SIG-
PLAN 2004 Conference on Programming Language
Design and Implementation 2004. ACM, 2004.

[5] K. Cooper, P. Scheilke, and D. Subramanian. Opti-
mizing for Reduced Code Space using Genetic Algo-
rithms. In Languages, Compilers, Tools for Embedded
Systems, pages 1–9, 1999.

[6] J. W. Davidson and S. Jinturkar. Memory Access
Coalescing: A Technique for Eliminating Redundant
Memory Accesses. In Proceedings of the SIGPLAN
’94 Conference on Programming Language Design
and Implementation, pages 186–195, Orlando, FL,
June 1994.

[7] T. Dietterich and G. Bakiri. Solving Multiclass Learn-
ing Problems via Error-Correcting Output Codes.
Journal of Artificial Intelligence Research, 2:263–286,
1995.

[8] R. Duda, P. Hart, and D. Stork. Pattern Classification.
Wiley-Interscience, 2001.

[9] J. R. Ellis. Bulldog: A Compiler for VLIW Architec-
tures. The MIT Press, Cambridge, MA, 1985.

[10] A. Gionis, P. Indyk, and R. Motwani. Similarity
Search in High Dimensions via Hashing. In Proceed-
ings of the 25th Conference on Very Large Data Bases,
pages 518–529, February 1999.

[11] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whal-
ley, J. Davidson, M. Bailey, Y. Paek, and K. Gallivan.
Finding effective optimization phase sequences. In In
Languages, Compilers, and Tools for Embedded Sys-
tems (LCTES ’03). ACM, 2003.

[12] S. Larsen and S. Amarasinghe. Exploiting Superword
Level Parallelism with Multimedia Instruction Sets.
In Proceedings of the SIGPLAN ’00 Conference on
Programming Language Design and Implementation,
pages 145–156, Vancouver, BC, June 2000.

[13] Least Squared Support Vector Machines (LSSVM).
http://www.esat.kuleuven.ac.be/sista/lssvmlab/.

[14] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank,
and R. A. Bringmann. Effective Compiler Support for
Predicated Execution Using the Hyperblock. In Proc.
25th Annual International Symposium on Microarchi-
tecture, pages 45–54, Portland, OR, December 1992.

[15] A. McGovern and E. Moss. Scheduling straight-line
code using reinforcement learning and rollouts. In
Proceedings of Neural Information Processing Sym-
posium, 1998.

[16] A. Monsifrot, F. Bodin, and R. Quiniou. A Machine
Learning Approach to Automatic Production of Com-
piler Heuristics. In Artificial Intelligence: Methodol-
ogy, Systems, Applications, pages 41–50, 2002.

[17] E. Moss, P. Utgoff, J. Cavazos, D. Precup, D. Ste-
fanovi, C. Brodley, and D. Scheeff. Learning to sched-
ule straight-line code. In Proceedings of Neural Infor-
mation Processing Symposium, 1997.

[18] Open Research Compiler. http://ipf-
orc.sourceforge.net.

[19] D. Puppin, M. Stephenson, S. Amarasinghe, M. Mar-
tin, and U.-M. O’Reilly. Adapting Convergent
Scheduling Using Machine Learning. In Proceedings
of the ’03 Workshop on Languages and Compilers for
Parallel Computing, College Station, TX, 2003.

[20] V. Sarkar. Optimized Unrolling of Nested Loops. In
Proceedings of the 14th Internatin Conference on Su-
percomputing, Santa Fe, NM, 2000.

[21] SPEC.org. http://www.spec.org.

[22] M. Stephenson, M. Martin, U.-M. O’Reilly, and
S. Amarasinghe. Meta Optimization: Improving
Compiler Heuristics with Machine Learning. In Pro-
ceedings of the SIGPLAN ’03 Conference on Pro-
gramming Language Design and Implementation, San
Diego, CA, June 2003.

[23] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong,
M. Garzaran, D. Padua, and K. Pingali. A comparison
of empirical and model-driven optimization. In In Pro-
ceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation
2003, San Diego, California, USA, June 9-11, 2003,
pages 63–76. ACM, 2003.


