
Effective Partial Redundancy Elimination

Preston Briggs

Keith D. Cooper

Department of Computer Science

Rice University

Houston, Texas 77251-1892

Abstract

Partial redundancy elimination is a code optimization

with a long history of literature and implementation. In

practice, its effectiveness depends on issues of naming

and code shape. This paper shows that a combination

of global reassociation and global value numbering can

increase the effectiveness of partial redundancy elimina-

tion. By imposing a discipline on the choice of names

and the shape of expressions, we are able to expose more

redundancies,

As part of the work, we introduce a new algorithm

for global reassociation of expressions. It uses global in-

formation to reorder expressions, creating opportunities

for other optimization. The new algorithm generalizes

earlier work that ordered FORTRAN array address ex-

pressions to improve optimization ~25].

1 Introduction

Partial redundancy elimination is a powerful optimiza-

tion that has been discussed in the literature for many

years (e.g., [21, 8, 14, 12, 18]). Unfortunately, partial

redundancy elimination has two serious limitations. It

can only recognize lexically-iclentical expressions; this

makes effectiveness a function of the choice of names in

the front end. It cannot rearrange sub expressions; this

makes effectiveness a function of the shape of the code

generated by the front end. The net result is that de-

cisions made in the design of the front end dictate the

effectiveness of partial redundancy elimination.

This paper shows how an optimizer can use g~obal

reassociation (see Section 3.1) and a form of partition-

based global value numbering ~2] to improve the effec-

tiveness of partial redundancy elimination. We consider

these to be enabling transformations. They do not im-

This work has been supported by ARPA through ONR grant
NOOO14-91-.J-1989.

Permission to co without fee all or part of this material is
granted provide${ t at the copies are not made or distributed for
direct commercial acfvanta e, the ACM copyiight notice and the
titleofthepublkation and!tsdate appear, andnotice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwfse, or to republish, requires a fee
and/or specific permission,

SIGPLAN 84-6/84 Orlando, Florida USA
@ 1994 ACM O-89791-662-X184JOO06..$3.5O

prove the code directly; instead, they rearrange the code

to make other transformations more effective. The com-

bination of these transformations with partial redun-

dancy elimination results in removing more redundant

expressions, hoisting more loop-invariant expressions

(and sometimes hoisting them farther), and removing

some partially-dead expressions. By using global reas-

sociation and partition-based global value numbering to

generate the code shape and name space automatically,

the optimizer can isolate partial redundancy elimination

from the vagaries of the front end. This lets the opti-

mizer obtain good results on code generated by sources

other than a careful front end – for example, on code re-

sulting from other optimization passes or from restruct-

uring front ends.

The primary contributions of this paper are: (1) the

use of reassociation to achieve a canonical code shape for

expressions, (2) the use of partition-based global value

numbering to achieve a canonical naming, and (3) a new

technique for global reassociation of expressions. Addi-

tionally, we present experimental evidence that demon-

strates the effectiveness of partial redundancy elimina-

tion, with and without our transformations.

2 Partial Redundancy Elimination

Partial redundancy elimination (PRE) is a global op-

timization introduced by Morel and Renvoise ~21]. It

combines and extends two other techniques.

common su bexpression elimination An expression is re-

dundant at some point p if and only if it is comp-

uted along every path leading to p and none of its

constituent subexpressions has been redefined. If e

is redundant at p, the evaluation of e at p can be

replaced with a reference.

loop-invariant code motion An expression is loop in-

variant if it is computed inside a loop and its value

is identical in all the iterations of the loop. If e is

invariant in a loop, it can be computed before the

loop and referenced, rather than evaluated, inside

the loop.

PRE combines and extends these two techniques.

159

http://crossmark.crossref.org/dialog/?doi=10.1145%2F773473.178257&domain=pdf&date_stamp=1994-06-01

Code

Tree

,S’0urce code Low-1evel, three-addres:
1 i

A
Xyz

Figure 1: Alternate Code Shapes

An expression is partially redundant at point p if it

is redundant along some, but not all, paths that reach

p. PRE converts partially-redundant expressions into

redundant expressions. The basic idea is simple. First,

it uses data-flow analysis to discover where expressions

are partially redundant. Next, it solves a data-flow

problem that shows where inserting copies of a com-

putation would convert a partial redundancy into a full

redundancy. Finally, it inserts the appropriate code and

deletes the redundant copy of the expression.

A key feature of PRE is that it never lengthens an

execution path. To see this more clearly, consider the

example below. In the fragment on the left, the second

computation of ~ + y is partially redundant; it is only

available along one path from the if. Inserting an eval-

uation of C+ y on the other path makes the computation

redundant and allows it to be eliminated, as shown in

the right-hand fragment. Note that the left path stays

the same length while the right path has been shortened.

if p branch ~ if p branch ~

+ 1
Y+- . . .

+Z+y +- ‘:;+y
x+- . . . x+- . . .

+Z+y
I

G +.+-y “M

partially redundant redundant

Loop-invariant expressions are also partially redundant,

as shown in the example below. On the left, z + y is

partially redundant since it is available from one pre-

decessor (along the back edge of the loop), but not the

other. Inserting an evaluation of x + y before the loop

allows it to be eliminated from the loop body.

x+-

x+ tz+y

I ++
+Z+y

3

“w
. . .

if p branch if p branch 3

partiaJly redundant redundant

2.1 Code Shape

The optimizer in our compiler uses a low-level interme-

diate language. Most operations have three addresses:

two source operands and a target. Translating a source

expression to three-address code can introduce artificial

ordering constraints. Figure 1 shows the different pos-

sibilities for the source expression z + y + z.

Consider the case where rz = 3, rz = 2, and TV is

a variable. Only the middle shape will allow constant

propagation to transform the expression into y +5. Al-

ternatively, if rv and r, are both loop invariant, only

the rightmost shape will allow PRE to hoist the loop-

invariant sub expression. This case is quite important,

since it arises routinely in multi-dimensional array ad-

dressing computations.

The choice of expression ordering occurs with associa-

tive operations such as add, multiply, and, or, rein, and

max. In general, there are a combinatorial number of or-

derings for an associative expression having 71 operands.

Source language specifications sometimes restrict possi-

ble reordering, especially in the case of floating-point,

arithmetic where numerical precision may be affected.

The large number of possible orderings makes an ex-

haustive search for optimal solutions impractical.

2.2 Naming

Another important issue is the selection of names. Our

implementation of PRE distinguishes between variable

names and expression names. This distinction was in-

troduced by Morel and Renvoise [21, page 97]. A vari-

aMe name is the target of a copy instruction; conceptw

ally, these correspond to source-level assignments. An

expression name is the target of a computation – in

practice, an instruction other than a branch or copy.

This gives every expression (and suhexpression) a name.

Thus, the statement i = i + 1 might be represented as:

?-1’-1

Tz-T, +TI

T, ~ T2

where ri is the name of the variable i, r-l is the name

of the expression “ 1“, and r2 is the name of expression

160

‘%i + rl”. Within a single routine, lexically-icientical

expressions always receive the same name. Therefore,

whenever we see the expression rt + rl, we would expect

to see it named rz.

This naming discipline can be implemented in the

compiler’s front end by maintaining a hash table of ex-

pressions and creating a new name whenever a new ex-

pression is discovered [3]. Unfortunately, relying on the

front end limits the applicability of PRE. It is difficult to

maintain the naming rules across other optimization;

thus, PRE must be run first and only once. Further-

more, the ability of PRE to recognize identities is limited

by the programmer’s choice of variable names. Consider

the following source sequence and its corresponding in-

termediate representation:

rl-Tr/+rz
X=y+z ‘TZ - TI

a=y ra +- Tv

b=a+z 7_2GTa+Tz

T~ - T2

Obviously, T1 and r2 receive the same value (that is,

the expression named by rz is redundant). PRE can-

not discover this fact even though value numbering can

eliminate this redundancy [1 O]. Of course, this is a sim-

ple example, but its very simplicity should suggest the

large number of opportunities missed by PRE when con-

sidering an entire routine.

3 Effective PRE

To address the limitations of PRE, we propose a set of

techniques that reorder and rename expressions. Global

reassociation uses information about global code shape

to rearrange individual expressions. Global value num-

bering uses knowledge about run-time equivalence of

values to rename expressions. In combination, they

transform the program in a way that exposes more op-

portunities to PRE.

3.1 Global Reassociation

To address the code shape problems, we use a technique

called global reassociation. It uses algebraic properties

of arithmetic to rearrange the code. In broad terms, it

uses commutativity, assoc.nativity, and distributivity to

expose common subexpressions and loop-invariant ex-

pressions. The effects can be substantial; Cocke and

Markstein note that as much as 509%0of the code in some

inner loops can be eliminated as a result of reassocia-

tion [9, page 225]. Our approach has three steps:

1.

2.

3,.

Compute a rank for every expression.

Propagate expressions forward to their uses.

Reassociate expressions, sorting their operands by

ranks.

FUNCTION foo(y, Z)

~=o

X=y+z

DO 1 = X, 100

S=l+s+x

ENDDO

RETURN S

END foo

Figure 2: Source Code

The next three sections discuss these s~eps and intro-

duce several important refinements. To help clarify

the process, we provide a running example. Figure 2

shows the source code and Figure 3 shows a transla-

tion into a simple intermediate form. This translation

does not conform to the naming discipline discussed in

Section 2.2.

Computing Ranks To guide reassociation, the opti-

mizer assigns a rank to each expression and subexpres-

sion. Intuitively, we want loop-invariant expressions to

have lower ranks than loop-variant expressions, In a

deeply nested loop, we would like the rank of an ex-

pression that is invariant in the inner two loops to be

lower than the rank of an expression that is invariant

only in the innermost loop. In practice, we compute

ranks on the SSA form of the routine during a reverse-

postorder traversal of the control-flow graph; therefore,

our first step is to build the pruned SSA form of the rou-

tine [11, 7]. During the renaming step [11, Figure 12], we

remove all copies, effectively folding them into #-nodes.

This approach simplifies the intermediate code by re-

moving our dependence on the programmer’s choice of

variable names (recall Section 2.2).

Given the SSA form, we traverse the control-flow

graph in reverse postorder, assigning ranks. Each block

is given a rank as it is visited, where the first block vis-

ited is given rank 1, the second block is given rank 2,

enter(rY, TZ)

Ts+o

TX+ TY+TZ
T, + r=

if T, > 100 branch —~

I
~ ret.rn T.

Figure 3: Intermediate Form

161

I 1
‘—————— ,, + cj(,,,.,)

return r9

Figure4: Pruned SSA Form

and so forth. Each expression in a block is ranked using

three rules:

1.

2.

3.

A constant receives rank zero.

The result of a qLnode receives the rank of the

block, as do any variables modified by procedure

calls. This includes the result of a load instruction.

An expression receives a rank equal to its highest-

ranked operand. Since the code is in SSA form, each

operand will have one definition point and will have

been ranked before it is referenced.

Figure 4 shows the result of rewriting into pruned SSA

form (minimal SSA would have required many more @

nodes). Notice that the copy r-t + Tc has been folded

into the first @-node. The rank of r2 is O, the rank of

ro, rl, and r-3 is 1, the rank of rq,rs,. . . . ?% is 2, and the

rank of rg is 3. These ranks have the intuitive proper-

ties described above – loop-invariant expressions are of

lower rank than loop-variant expressions and the rank
of a loop-variant expression corresponds to the nesting

depth of the loop in which it changes.

Forward Propagation After ranks have been com-

puted, we copy expressions forward to their uses. For-

ward propagation is important for several reasons. It

builds large expressions from small expressions, allow-

ing more scope for reassociation. Additionally, without

forward propagation into loops, the compiler would have

to cycle between reassociation and PRE to ensure best

results with deeply-nested loops. Finally, forward prop-

agation avoids a subtle problem in PRE that arises from

the distinction between variable names and expression

names (see Section 5. 1). As a matter of correctness, the

last reason seems to require forward propagation.

We propagate each expression and subexpression as

far forward as possible, effectively building expression

trees for ~-node inputs, values used to control program

flow, parameters passed to other routines, and values

returned from the current routine. In practice, we first

remove each d-node z - ~(g, z) by inserting the copies

~ - y and z + z at the end of the appropriate pre-

decessor blocks, then trace from each copy back along

the SSA graph to construct the expression trees. (If

necessary, the entering edges are split and appropriate

predecessor blocks are created.)

Continuing our example, Figure 5 shows how q-nodes

are eliminated by inserting copies. New blocks were

required to hold the copies. Figure 6 shows the effect of

forward propagation.

It is interesting to note that forward propagation

eliminates partially-clead expressions [15, 19]. An ex-

pression is live at its definition point if its result is used

on some path to an exit. Alternatively, an expression

is dead if its result will never be used on any path. l?Jy

copying expressions to their use points, forward propa-

gation trivially ensures that every expression is used on

every path to an exit. Subsequent application of PRE

will preserve this invariant, since PRE will never place

an expression on a path where it is partially dead.

On the other hand, forward propagation is not really

an optimization. Since it duplicates code, it can expand

the size of the routine (see Section 4.3). Furthermore, it

can move code into loops, substantially increasing path

lengths. However, recall that our plan is to transform

the code so that later application of PRE will achieve

greater optimization. We expect that PRE will be able

to reverse the negative effects of forward propagation

and achieve significantly improved code as a result of

the opportunities afforded by forward propagation.

enter(ro, r_I)

T2+0
r~t?-o+?’~
if rs > 100 branch ---

+

TT+T~+Ts

T~+T~+]

if r8 < 100 branch J
1

Tg + TT Tg i-- TZ

~ ret,lrnrg
Figure 5: After Inserting Copies

162

enter(ro, rI)

T3+?’()+T1

‘f ‘3 >100 branch ~

I I
~T,+,,+]

if rs < 100 branch -J

+

Figure6: After Forward Propagation

Sorting Expressions Given ranks and expression

trees, we are almost ready to reassociate expressions.

First, though, we rewrite certain operations to expose

more opportunities for reassociation. As suggested by

Frailey [17], we rewrite expressions of the form x – y+ .z

as z + (–y) + z, since addition is associative and sub-

traction is not. We also perform similar transformations

for Boolean operations. On the other hand, we avoid

rewriting x/y as x x I/y to avoid introducing precision

problems. We rely on a later pass, a form of global peep-

hole optimization, to reconstruct the original operations

when profitable. .

To reassociate, we traverse each expression, sorting

the operands of each associative operation by rank so

that the low-ranked operands are placed together. This

allows PRE to hoist the maximum number of subex-

pressions the maximum dist ante. Furthermore, since

constants are given rank O, all the constant operands in

a sum will be sorted together. For example, the expres-

sion 1 + r~ + 2 becomes 1 + 2 + rc. Constant propagation

cannot improve the original form; it can easily turn the

reordered expression into 3 + T-m.

Figure 7 shows the result of reassociation. Notice

that the low-ranked expressions, 1, r-o, and rl, have been

sorted to the beginning of the sums.

After sorting expressions, we look for opportunities

to distribute multiplication over addition; that is, we

rewrite expressions of the form w x (x + y + z) as

w x x + w x y + w x z. This distribution is not al-

ways profitable, so we again use ranks as a guide. In

our current implementation, we distribute a low-ranked

multiplier over a higher-ranked sum. For example, if we

have an expression a + b x ((c+ d) + e)), where a, b, c,

and d have rank 1 and e has rank 2, we would distribute

partially, giving a+b x (c+d)+b x e. This allows PRE to

hoist a+ b x (c+ d) even if b x e cannot be hoisted. Note

that a complete distribution would result in extra multi-

plications without allowing any additional code motion.

It is important to re-sort sums after distribution.

3.2 Global Renaming

To address the naming problems, we use a global re-

naming scheme based on Alpern, Wegman, and Zadeck’s

algorithm for determining when two variables have the

same value [2]. We refer to their technique as “partition-

based global value numbering”. Instead of building up

complex equality relationships from simpler ones, as in

traditional value numbering, their technique works from

the “optimistic” assumption that all variables are equiv-

alent and uses the individual statements in the code to

disprove equivalences.

We use a straightforward version of their algorithm

to discover when two names have the same value and

then rename all values to reflect these equivalences. Re-

naming encodes the value equivalences into the name

space; this exposes new opportunities to PRE. It also

constructs the name space required by PRE (recall Sec-

tion 2.2). Each lexically-identical expression will have

the same name; copies inserted during reassociation will

only target variable names. Of course, the “variables”

named at this point do not necessarily correspond to

source variables; instead, they correspond to the @

nodes introduced during conversion to SSA form, The

names are the only things changed during this phase;

no instructions are added, deleted, or moved.

enter(ro, rI)

rs+ro+r~

if T3 > 100 branch \

LT8!T4+I

if T8 < 100 branch J

Tc +--To+]
T~i--Tc +7’]

l’7+’T~+T5 rz+o
T~+ r~ T9 +- T2

~ re~/rnT9

Figure 7: After Reassociation

163

I

I I
~~,+r,+l

if rg <100 branch J

I

r~+r7+r5

T]o - T8

T

7-2+0

TIO+ rz

Figure8: After Value Numbering

Figure 8 shows a naming that might be discovered by

global value numbering. In this case, none of the ex-

posed redundancies are particularly surprising, since we

created them during forward propagation. However, it

is important to note that the code now conforms with

the naming requirements stated in Section 2.2. Expres-

sions are named uniquely by r., rl ~P2, r3, ?’G,T7, rs, and

rg. The remaining names, r~, r5, and rl o, are defined

exclusively by copies and serve as variable names.

Finishing the Example Applying partial redun-

dancy elimination to the code in Figure 8 produces the

code in Figure 9. The invariant expressions ?’Gand r7

have been hoisted from the loop and the redundant com-

putations of r3, rfj, and ?’T have been removed. Finally,

the coalescing phase of a Chaitin-style global register al-

locator will remove unnecessary copy instructions [6]. In

this example, coalescing is able to remove all the copies

(as shown in Figure 10), though this will not always be

possible.

Taken together, the sequence of transformations re-

duced the length of the loop by 1 operation without

increasing the length of any path through the routine.

However, it is worth noting that the final code is not

optimal. If the expressions rfj and r7 had been arranged

differently, we would have been able to take advantage

of the fact that r. + rl had already been computed. As

noted in Section 2.2, finding the optimal solution would

require examination of a combinatorial number of cases.

We use a fast heuristic that produces good, though not

optimal, results.

enter(ro, 9_I)
T~tTo+T]

if r’ >100 branch

+

T2+0
r~ + r~
r~ * T2

7

r8+rj. +r5

r~4--.T0+l T4 - T9

r~+r6+rl T5 t T8
T

L-,,:,,+l
if rg < 100 branch -J

+
r8+-r7+r5 r2+0

TIo + ra TIo t TZ

Figure 9: After Partial Redundancy Elimination

enter(ro, rl)

r~tr~+r]

‘f “ >100 branch ~

I
I

r~+r6+rl ‘r~+r~+T.5

L-T4!r4+l7if T4 < 100 branch

1
TIO + T? + T5 rlo +- O

Figure 10: After Coalescing

164

4 Experimental Study

To test the effectiveness of our techniques, we have im-

plemented versions of global reassociation, global value

numbering, and partial redundancy elimination in the

context of an experimental FORTRAN compiler. The

compiler is structured as a front end that consumes

FORTRAN and produces lLOC (our intermediate lan-

guage), an optimizer that consumes and produces lLOC,

and a back end that consumes ILOC and produces C.

The generated C code is instrumented to accumulate

dynamic counts of ILOC operations. Thus, we are able

to compile individual FORTRAN routines, perhaps se-

lected from a large program, and test the effectiveness

of different optimizations on the routine in the context

of its complete program.

The optimizer is structured as a sequence of passes,

where each pass is a Unix filter that consumes and pro-

duces ILOC. Each pass performs a single optimiza-

tion, including all the required control-flow and data-

flow analyses. While this approach is not suitable for

production compilers, its flexibility makes it ideal for

experimentation.

Our implementation of PRE uses a variation described

by Drechsler and Stadel [14]. Their formulation sup-

ports edge placement for enhanced optimization and

simplifies the data-flow equations that must be solved,

avoiding the bidirectional equations typical of some

other approaches [13]. Our implementation of global

value numbering uses the simplest variation described

by Alpern, Wegman, and Zadeck, possibly missing some

opportunities discovered by their more powerful ap-

proaches [2, Sections 3 and 4].

4.1 Results

We ran several versions of the optimizer on a suite of

test routines. Each version adds new passes to the pre-

vious one. Our test suite consists of 50 routines, drawn

from the Spec benchmark suite and from Forsythe, Mal-

colm, and Moler’s book on numerical methods [16]. The

results are given in Table 1. We report results for four

different levels of optimization:

baseline This column provides the dynamic operation

count, including branches, for each routine when

optimized using a sequence of global constant prop-

agation [26], global peephole optimization, global

dead code elimination [11, Section 7.1], coalescing,

and a final pass to eliminate empty basic blocks. 1

partial The left column gives the operation counts for

routines optimized with PRE, followed by the se-

quence of optimizations used to establish the base-
line. The right column gives the percentage im-

provement over the baseline.

1The sizes of the test cases for mat rix300 and tomcat v have been
reduced to ease testing.

reassociation The left column provides the operation

counts for routines optimized using global reasso-

ciation (witfiout distribution of multiplication over

addition) and global value numbering before PRE

and the other optimizations. The right column

gives the percentage improvements over partial.

distribution The left column gives the operation counts

for routines optimized using global reassociation

(including distribution of multiplication over addi-

tion) and global value numbering before PRE and

the other optimizations. The right column gives

the percentage improvements over reassociation.

The total column gives the percentage improvements

achieved over the baseline by the entire set of optimiza-

tion, while the new column gives the improvement over

partial contributed by the combination of reassociation

and distribution with global value numbering.

Empty entries indicate no improvement, whereas en-

tries of O?ZOand –070 indicate very small improvements

and degradations.

Limitations of the Optimizer Our optimizer is not

complete. In particular, we are currently missing passes

for strength reduction and hash-based value numbering,

Nevertheless, we believe our results are still valid indi-

cations of the importance of reassociation. Indeed, it

may be that our results understate the eventual ben-

efits - strength reduction should reduce non-essential

overhead and hash-based value numbering should also

benefit from reassociation.

4.2 Code Degradation

The results in Table 1 reveal several cases where our

“improvements” slowed down the code. Since we are us-

ing heuristic approaches to difficult problems, we should

not be surprised by occasional losses, annoying as they

are. Examination of the code revealed three sources of

difficulty; each is discussed in the sections below.

Reassociation Sometimes reassociation can disguise

common sub expressions. Recall our example from Fig-

ures 2 though 10. The final arrangement of the code,

r~+r~+r~

and

~fj-ro+l
r~t~G+?_]

hid the fact that r. + rl was being recomputed. We

found that this sort of problem occurred quite often in

the routines of our test suite. Fortunately, the effect

is usually dominated by the improved motion of loop

invariants.

165

ro u tine baseline partial reassociation distribution new total

fmin 4,817 3,807 20% 1,908 49% 1,908 49% 60%

gamgen 462,285 180,260 61yo 143,065 20% 107,031 25~o 40% 76%

fmtset 705 538 23% 460 14% 397 13~o 26% 43%

rkf 45 62 62 58 6~0 46 20% 25% 25%

sgemv 1,496 1,341 10% 1,241 7% 1,003 19% 25% 32%

saxp y 867 667 23% 667 525 21?70 21% 39%

iniset 75,289 56,912 24% 56,766 o% 47,426 16yo 16% 37%

spline 1,659 961 42% 885 7% 802 9% 16% 51%

t omcatv 858,364,988 250,343,458 70% 251,509,201 –o% 213,985,244 14% 14~o 75%

debico 6,645 3,234 51% 2,946 8% 2,802 4% 13% 57%

seval 105 98 6% 87 11% 86 170 12% 18%

sgemm 1,393 1,095 21% 1,096 –070 954 12% 12% 31%

cardeb 1,716 989 42% 999 –1% 889 11% 10% 48%

hmoy 47 28 40% 27 3% 25 7% 10% 46%

orgpar 188 135 28% 135 121 10% 10% 35%

repvid 4,270 3,042 28% 3,038 070 2,762 9% 9% 35%

drepvi 409 321 21% 303 5% 294 2% 8% 28%

heat 229 201 12% 190 5% 184 3% 8% 19%

svd 6,834

X21V21 403 258 I 35% 258 239 7~o 7% 40yo

inideb 1,733 888 48% 954 –7% 829 13% 6% 52%

past em 6,353 4,070 35% 3,941 3% 3,821 3% 6% 39%

si 206 176 14% 177 –o% 165 6% 6% 1970

deseco 33,873 14,430 57% 13,864 3% 13,707 1% 5% 59%

fmtgen 236 207 1270 202 2% 195 3% 5% 17%

f pppp 7,767 5,838 24% 5,514 5% 5,514 5% 29%

yeh 160 139 13% 132 5% 132 5% 17%

paroi 7,489 3,724 50% 3,677 1% 3,571 2% 4% 52%

tuldrv 122,220,766 90,895,146 25% 86,945,328 4% 87,122,050 –o% 4% 28%

debflu 8,066 5,170 35% 5,156 o% 4,965 3% 3% 38%

colbur 152 126 17% 121 3% 123 –1% 2% 19%

de c omp 876 635 27% 641 –o% 617 370 2% 29%

inithx 5,918 3.086 47% 3.067 0% 3.018 1% 2% 49%
II II 1 11 ! !1 I II 11

coeray 117 105 I 10% 104 o% 104 o% 11%

rkfs 456 298 I 34% 297 o% 297 0% 34%
!

int egr 5,803 2,424 58% 2,436 –o% 2,447 –o% –o% 57%

subb 704 632 10% 636 –o% 636 –o% 9%

Supp 906 813 10% 814 –o% 814 –o% 10%

urand 221 220 o% 221 –o% 222 –o% –o% –o%

zeroin 1,020 739 27% 743 –o% 743 –OYO 27yo

f ehl 785 510 35% 510 517 –1% –1% 34%

ihbt r 513 453 11% 452 o% 458 –170 –1% 10%

saxurr 322 318 1% 323 –1% 323 –1% -o%

169 24% 168 o% 172 –2% –1% 22%

R97 9C!Z R.KA _2v. !.?AK 1w. —CIT. 9KO%

!1 II

solve 223

drigl

prophy

efill

E

II

’161

=
baseline

— ---
I

-.. .
II

-=.
I

-,.
II

---- ,. II ---- “,0

160 12% 165 –3% 16,5 I –39?0 Ii 9’%

h

0

. . . .,.
3,355 67% 3,447 –2% 3,509 –1% –4~o 65%

113 29% 126 –11% 125 o% –lo% 22%

3,904 74% 4,016 –2% 4)351 –8!70 –1170 72%

205 9% 230 –12% 230 –12% –1%

partial reassociation distribution new total

Table 1: Experimental Results

166

Distribution Similarly, distribution of multiplication

over addition can cause problems in some cases. Con-

siderthe following pair of expressions arising from a pair

ofarray accesses, onetoasingle-precision array and the

other to a double-precision array:

4X(T,–1)
8x(r, –1)

Distribution of the multiplies would yield:

4xrt–4xl
8X?’, -8X1

and eventually, via constant folding:

‘lxr, -4
8X T,–8

llnfortunately, this version is slightly worse than the

original code since the original allowed commoning of

the subexpression ri – 1. Despite disappointments of

this sort, it isclear from theresults in Table 1 that dis-

tribution is quite important. We believe that some of

the problems of distribution can be avoided by employ-

ing a slightly more sophisticated approach, though this

is a topic for further study.

Forward Propagation Earlier, we mentioned that

forward propagation eliminates partially-dead expres-

sions. However, forward propagation can also result in

code degradation if expressions are moved into loops

where they will be invariant but PRE will be unable to

hoist them. For an example, consider the (simplified)

code below, where the left and right fragments show the

same code before and after forward propagation:

lbtj+k

2 +-0

i+i+l —

if i = m branch ~

+
iti+n

J
iti+l -’J
if z < 100 branch —

if i = m branch

J

n+-j+k

ita+n

/

i-i+l—

if i < 100 branch —

In this case, the computation of n ~ j + k has been

pushed into the loop, ~otentially shortening some paths

through the program. However, since we expect the

loop to execute many times, the code on the right is

potentially much slower (of course, the actual tradeoff is

undecidable, as it depends on the values of j, k, and m).
Recalling from Section 2 that PRE will never lengthen

a path through the code, we realize that PRE will not

be able to hoist the evaluation of j + k out of the loop

without lengthing the path around the use of n.

4,3 Code Expansion

The speed and space requirements of our approach are

primarily dependent on the amount of code expansion

introduced by forward propagation. In the worst case,

this expansion can be exponential in the size of the rou-

tine. To see how bad the expansion is likely to be in

practice, we measured the the effect of forward propa-

gation on the routines in our test suite. Table 2 shows

the results of these tests. The entries in the before and

after columns represent static counts of the number of

ILOC operations-in

expansion indicates

ward propagation.

5 Discussion

each routine. The column labeled

the code growth factor due to for-

In implementing these techniques, we encountered sev-

eral issues that merit further attention.

5.1 Forward Propagation and Correctness

If an expression name is live across a basic. block bound-

ary, PRE will sometimes hoist an expression past a use

of its name. Consider the example below:

rIO + sqrt(rg) rIO +- sqrt(rg)

if p branch ~ if p branch ~

L
1

7-9 + ?-1000

+

7’20 + ?-10

before PRE after PRE

The problem is that the fragment on the left violates

a requirement for correct behavior of PRE; namely, an

expression defined in one basic block may not be ref-

erenced in another basic block. z Forward propaga-

tion satisfies this rule by moving the computation of

rl o * sqrt (rg) directly before its use, relying on the re-

naming introduced by SSA to preserve the correct ver-

sion of rg. We note that Chow also mentions using for-

ward propagation [8]; we conjecture that it helped him

avoid the same difficulty with PRE.

An alternative approach to ensuring that no expres-
sion name is live across a basic block boundary is to in-

sert copies to newly created variable names and rewrite

later references so that they refer to the variable name

rather than the expression name. While it is possible

that this approach could be used to avoid some of the

negative effects of forward propagation, it may detract
from the effectiveness of reassociation. This remains a

topic for future research.

zwe nave ~lever ~~ell this reqtirelnent stated in tbe literature and

believe it to be a source of confusion in the community.

167

5.2 Il~teraction with Other Optimization

ro u tin e before aft er ?xpansion

bilan 2,000 2,357 1.179

cardeb 916 1,024 1.118

coeray 280 397 1.418

colbur 659 1,155 1.753

dcoera 422 1,050 2.488

ddef lu 4,040 7,089 1.755

debflu 3,767 4,822 1.280

debico 2,728 2,984 1.094

decomD 941 1.144 1.216. , I

deseco 11,545 13:537 1.173, I I

drepvi 1:750 2:262 1.293

dri~l 565 667 1.181

t efill 1,257 1,996 1.588

f ehl 552 581 1.053

fmin 372 661 1.777

fmtgen 588 696 1.184

f mt set 551 600 1.089

f pppp 20,147 27,358 1.358

gamgen 842 1,070 1.271

heat 925 1<817 1.964

hmo y 153 ’168 1.098

ihbt r 772 790 1.023

inideb 1,064 1,200 1.128

iniset 6,566 6,747 1.028

lnithx 2,378 2,539 1.068

int egr 812 967 1.191

orgpar 1,352 1,641 1.214

paroi 4,300 4,921 1.144

pastern 2,567 2,794 1.088

prophy 2,695 3,473 1.289

repvid 1,584 1,922 1.213

rkf45 164 228 1.390

rkfs 881 1,180 1.339

saturr 1.524 2.131 1.398
1 I I

s axpy 95] ’102 1.074

seval 167 190 1.138

sgemm 677 976 1.442

sgemv 293 340 1.160

si 178 202 1.135

solve 319 375 1.176

sDline 1.173 1.220 1.040

subb 1,199 1,199 1.0001

Supp 1,589 2,075 1.306

svd 2,563 3,984 1.554

t omcatv 2,645 3,610 1.365

tvldrv 13,405 15,870 1.184

urand 189 212 1.122

x21y2i 70 75 1.071

yeh 929 1,628 1.752

zeroin 276 400 1.449

totals 107,475 136,377 1.269 1

Table 2: Code Expansion from Forward Propagation

Some optimization interact poorly with our technique.

For example, many compilers replace an integer mu-

tiply with one constant argument by a series of shifts,

adds, and subtracts [4]. Since shifts are not associative,

this optimization should not, be performed until after

global reassociation. For example, if ((z x y) x 2) x z is

prematurely converted into ((x x y) << 1)x z, we lose the

opportunity to group z with either z or y. This effect

is measurable; indeed, we have accidentally measured it

more than once.

We expect that strength reduction will improve the

code beyond the results shown in this paper. Reassoci-

ation should let strength reduction introduce fewer dis-

tinct induction variables, particularly in code with corrl-

plex subscripts like that produced by cache and register

blocking [5, 27]. Of course, some particularly sophisti-

cated approaches to strength reduction include a form

of reassociation [20]; we believe that a separate pass of

reassociation will significantly simplify the implementat-

ion of strength reduction. Additionally, implementing

global reassociation as a separate pass provides benefits

to other optimization, even in loop-free code.

5.3 CommoII Subexpression Elin~i~~aticm

The experiments described in Section 4 show that PRE

is a powerful component of an optimizing compiler. A

natural question is: “How does it compare to other ap-

proaches?” To answer this, we will consider three differ-

ent approaches. Assume for each that we have used the

techniques described in Sections 3.1 and 3.2 to encode

value equivalence into the name space,

1. Alpern, Wegman, and Zadeck suggest the following

scheme: If a value z is computed at two points, p

and q, and p dominates q, then the computation at,

q is redundant and may be deleted ~2, page 2].

2. The classic approach to global common subexpres-

sion elimination is to calculate the set of expressions

available at each point in a routine. If z is available

on every path reaching p, then any computation of

x at p is redundant and may be deleted.

3. Partial redundancy elimination, as described in

Section 2.

These methods form a hierarchy. The first method re-

moves only a subset of the redundancies in the code.

For instance, it cannot remove the redundancy shown

in the first example of Section 2 where z + y occurs in

each clause of an if-then-else and again in the block that

follows. The second method, based on available expres-

sions, will handle this case; it removes all redundancies.

PRE is stronger yet – it removes all redundancies and

many partial redundancies as well.

168

6 Related Work

While there have been many papers discussing par-

tial redundancy elimination (e.g., ~21, 14, 12, 18]),

none mention the deficiencies discussed in Sections 2.2

and 2.3. Rosen etal. recognize the naming problem and

propose a complex alternative to PRE; however, they do

not consider reordering complex expressions [X].

The idea of exploiting associativity and distributivity

to rearrange expressions is well known [17, 1]; however,

early work concentrated on simplifying individual ex-

pressions. We know of two prior approaches to reasso-

ciation with the goal of exposing loop-invariant expres-

sions, both discovered within IBM and published the

same year. Scarborough and Kolsky describe a front-

end discipline for generating an array address expression

as a sum of products and associating the sum to expose

the loop-invariant parts [25]. Cocke and Markstein also

mention the idea of reassociation, this time within the

optimizer instead of the front end [9].

In a chapter for an upcoming book, Markstein et al.

describe a sophisticated algorithm for strength reduc-

tion that includes a form of reassociation ~20]. Their

algorithm attacks the problem on a loop-by-loop basis,

working from inner to outer loops. In each loop, they

perform some forward propagation and sort srrbexpres-

sions into loop-variant and loop-invariant parts, hoist-

ing the invariant parts. We presume their approach is

a development of earlier work within IBM. Other work

by O’Brien et al. and Santhanam briefly describe what

are apparently further development,s of the Cocke and

Markstein approach [22, 24].

It is difficult to compare our approach directly to

these earlier methods. We were motivated by a desire to

separate concerns. We already had solutions to hoist-

ing loop invariants and strength reduction; therefore,

we looked for a way to reassociate expressions. We also

prefer our global approach to loop-by-loop alternatives

since it can make improvements in loop-free code and

may admit simpler implementation.

Recent work by Feigen et al. and by Knoop et al.

describe alternative approaches to the problem of elim-

inating partially-dead expressions [15, 19]. While an

adequate comparison of the alternatives would require

trial implementations and empirical measurements, it

is clear that they solve a similar class of problems in

radically different ways. In our case, the elimination of

some partially-dead expressions is an unexpected bene-

fit of forward propagation.

7 Summary

In this paper, we show how to use global reassociation

and global value numbering to reshape code in a way

that improves the effectiveness and applicability of par-

tial redundancy elimination. The effect of these trans-

formations is to expose new opportunities for optimizat-

ion. In particular, more expressions are shown to be

redundant or loop-invariant; partial redundancy elimi-

nation optimizes these newly exposed cases. Addition-

ally, some partially-dead expressions are eliminated.

We showed experimental results that demonstrate the

effectiveness of partial redundancy elimination. The

data also shows that applying our transformations be-

fore partial redundancy elimination can produce signif-

icant further improvements.

We introduced an algorithm for global reassociation.

It efficiently reorders the operands of associative opera-

tions to expose loop-invariant expressions. Its simplicity

should make it easy to add to an existing compiler.

Acknowledgements

We owe a debt of gratitude to our colleagues on the

compiler project: Tim Harvey, Rob Shillingsburg, Tay-

lor Simpson, Lisa Thomas, and Linda Torczon. With-

out their support and implementation efforts, this work

would have been

thorough reviews

they significantly

of this paper.

References

impossible. We also appreciate the

provided by the program committee;

improved both the form and content

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Unman.

Compilers, Principles, Techniques and Tools. Addison-

Wesley, Reading, MA, 1986.

Bowen Alpern, Mark N. Wegman, and F. Kenneth

Zadeck. Detecting equality of variables in programs. In

Conference Record of the Ftfteenth Annual ACM Synl-

poswrn on Principles of Programming Languages, pages

1-11, San Diego, California, January 1988.

Marc A. Auslander and Martin E. Hopkins. An

overview of the PL.8 compiler. SIGPLA N Notices,

17(6):22-31, June 1982. Proceedings of the ACM SI(7-

PLAN ’82 Symposium on Contpiler Construction.

Robert L. Bernstein. Multiplication by integer con-

stants. Software – Practice and Experience, 16(7) :641–

652, July 1986.

Steve Carr and Ken Kennedy. Blocking linear algebra

codes for memory hierarchies. In Jack Dongarra, Paul

Messina, Danny C. Sorensen, and Robert C;. Voight,

editors, Proceedings of the Fourth SIAM Conference

on Parallel Processing for Scientific Computing, pages

400-405, 1990.

Gregory J. Chaitin, Marc A. Auslander, Ashok K.

Chandra, John Cocke, Martin E. Hopkins, and Pe-

ter W. Markstein. Register allocation via coloring.

Conlputer Languages, 6:47-57, January 1981.

Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante.

Automatic construction of sparse data flow evaluation

graphs. In Conference Record of the Eighteenth Annual

ACM Syrnposiurn on Principles oj Programming Lan-

guages, pages 55–66, Orlando, Florida, January 1991.

169

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Fred C. Chow. A Portable Mczchme-Independent Global

Opttmazer - Design and Measurements. PhD thesis,

Stanford University, December 1983.

John Cocke and Peter W. Markstein. Measurement of

program improvement algorithms. In Proceedings oj

In~ormatzon Processing 80. North Holland Publishing

Company, 1980.

John Cocke and Jacob T. Schwartz. Programming lan-

guages and their compilers: Preliminary notes. Techni-

cal report, Courant Institute of Mathematical Sciences,

New York University, 1970.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.

Wegman, and F. Kenneth Zadeck. Efficiently comput-

ing static single assignment form and the control de-

pendence graph. ACM i“ransactions on Programming

Languages and Systems, 13(4):451-490, October 1991.

Dhananjay M. Dhamdhere. Practical adaptation of

the global optimization algorithm of Morel and Ren-

voise. ACM Transactions on Programming Languages

and Sgstents, 13(2):291–294, April 1991.

Dhananjay M. Dhamdhere and Uday P. Khedker. Comp-

lexity of bidirectional data flow analysis. In Confer-

ence Record of the Twentieth Annual ACM SIGPLAN-

SIGA CT Symposium on Principles of Prograrnmzng

Languages, pages 397–408, Charleston, South Carolinaj

January 1993.

Karl-Heinz Drechsler and Manfred P. Stadel. A solution

to a problem with Morel and Renvoise’s “Global opti-

mization by suppression of partial redundancies”. ACM

Transactions on Programming Languages and Systems,

10(4):635-640, October 1988.

Lawrence Feigen, David Klappholz, Robert Casazza,

and Xing Xue. The revival transformation. In Con-

ference Record of POPL ‘9.4: 21st ACM SIGPLAN-

SIGA CT Sympostum on Principles of Programrntng

Languages, pages 421-434, Portland, Oregon, January

1994.

George E. Forsythe, Michael A. Malcolm, and Cleve B.

Moler. C’omputer Methods for Mathematical Compu-

tations. Prentice-Hall, Englewood Cliffs, New Jersey,

1977.

Dennis J. Frailey. Expression optimization using unary

complement operators. SIGPLA N Notices, 5(7):67-85,

July 1970. Proceedings of a Symposium on Comp$ier

Optimization.

Jens Knoop, Oliver Ruthing, and Bernhard Steffen.

Lazy code motion. SIGPLAN Nott.e., 27(7):224-234,

July 1992. Proceedings of the ACM SIGPLA N ’92 Con-

ference on Programming Language Design and Imple-

mentation.

Jens Knoop, Oliver Riithing, and Bernhard Steffen.

Partial dead code elimination. SIGPLA N Notices,

29(6), June 1994. Proceedings of the ACM SIGPLAN

’94 Conference on Programming Language Design and

]mp~ementation.

Peter W. Markstein, Victoria Markstein, and F. Ken-

neth Zadeck. Reassociation and strength reduction. In

Optimization in Compilers. ACM Press, to appear.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Etienne Morel and Claude Renvoise. Global optin~iza-

tion by suppression of partial redundancies. C;’omn~unt-

cations of the ACM, 22(2):96–103, February 1979.

Kevin O’ Brien, Bill Hay, Joanne Minish, Hart mann

Schaffer, Bob Schloss, Arvin Shepherd, and Matthew

ZaJeski. Advanced compiler technology for the RISC;

System/6000 architecture. In IBM RISC Sgstem/6’000

?’ethnology. IBM Corporation, Armonk, New York,

1990.

Barry K. Rosen, Mark N. Wegrnan, and F. Kenneth

Zadeck. Global value numbers and redundant compu-

tations. In Conference Record of the Fifteenth Annual

ACM Symposium on Principles of Programmmg Lari-

guages, pages 12–27, San Diego, California, Jannary

1988.

Vatsa Santhanam. Register reassociation in PA-RISC:

compilers. Hewlett-Packard Journal, pages 33–38, June

1992.

Randolph G. Scarborough and Harwood G. Kolsky.

Improved optimization of FORTRAN object programs.

IBM Journal of Research and Development, pages 660-

676, November 1980.

Mark N. Wegman and F. Kenneth Zadeck. (.;on-

stant propagation with conditional branches. ACM

Transactions on Programming Languages and Systems,

13(2):181-210, April 1991.

Michael E. Wolf and Monica S. Lam. A data local-

ity optimizing algorithm. SIGPLA N Notices, 26(6):30–

44, June 1991. Proceedings of the ACM SIGPLAN ’91

Conference on Programming Language Design and Im-

plementation.

170

