
Deep reinforcement
learning in loop fusion

problem

Group 15: Siqi Shao, Yixin Shi, Ying Yang
04/03/2023

https://doi.org/10.1016/j.neucom.2022.01.032

Introduction
Problem Statement: Loop Fusion is a loop transformation in which several loops
are combined to form a loop.

Goal:

● Reduce overhead
● Increase parallelism
● Enhance data reuse

Fig1. A synchronization requisite between loops in a
parallel system

Introduction
Problem Statement: Loop Fusion is a loop transformation in which several loops
are combined to form a loop.

Goal:

● Reduce overhead
● Increase parallelism
● Enhance data reuse

Fig1. A synchronization requisite between loops in a
parallel system

Important technique for optimizing the performance of scientific or computational algorithms that involve
repetitive operations.

Loop Fusion is a NP-hard problem

Factors to consider in
loop fusion.

● Data dependencies
● Data reuse
● Loops’ type
● Computer system’s

register size

Loop 1 and Loop 5: Loop carrier dependence based on array A.

Related Work

Hard to achieve all three improvement factors; Long time to solve the problem.

Deep Reinforcement Learning Loop Fusion

● Find a proper order for loop fusion
● Enhance parallelism
● Consider the system’s register size as a boundary for fusion
● First use deep reinforcement learning to solve loop fusion in a short span of

time.

Proposed Algorithm

● Goal: determine the best order of loops for merging
○ the runtime of the resulting loops is optimal

● Main framework

Input preprocessing
● Draw a loop dependency graph

○ Sequential loops vs Parallel loops
■ Whether it can execute multiple

iterations simultaneously
○ Dependency edges
○ Fusion preventing edges

Input preprocessing

● Create an adjacency matrix
○ n × n matrix

■ (i, j) -> loop i to loop j
○ hold floating-point numbers
○ Include features

■ Type of loops
■ Data dependencies between

loops
■ Number of arrays of loops
■ Number of arrays that can be

stored in the computer system
register

Input preprocessing
● Create an adjacency matrix

○ Main diagonal: information about the type of each loop
■ Integer part: the size of the system register

System register size

Input preprocessing

parallel (0.01) sequential (0.02)

● Create an adjacency matrix
○ Main diagonal: information about the type of each loop

■ Fractional part: number to the loop’s type

Input preprocessing
● Create an adjacency matrix

○ The other matrix elements: dependencies between the loops
■ Integer part: type of dependence

Input preprocessing

Register size for each loop

● Create an adjacency matrix
○ The other matrix elements: dependencies between the loops

■ Fractional part : the number of register units required to execute the loop i

Encoder
● Input: loop specifications generated by input preprocessing
● Output: extract a set of vectors, each of which specifies a loop

○ Characteristics of each loop
○ Correlation between loops

● Produce the action space of the decoder

Output

Encoder
● Sublayer: multi-head attention

○ Attention

○ Multi-head

■ Attend to different parts of the input matrix "V" simultaneously
■ Use multiple sets of query, key, and value vectors.
■ Increase model capacity and performance

Attention weight

Q: queries

K, V: key-value pairs

Decoder
● Input

○ Embedded loops vectors generated by encoder

● Output
○ The probability distribution of order for fusing loops

Output

Decoder
● Calculate query vector

○ State representation in every single step
○ Consider the last three added loops (actions) at time t

● Calculate the probability distribution on the remaining loops

○ pointing mechanism

ai: added loops (actions)
qt: query (state representation)
w: two attention matrix
v: attention vector
T: temperature hyper-parameter

Reward function
● Minimize

● Encourage the agent to select loop orders that

○ maintain topological order

○ have more fusible paris

○ don’t exceed the available system register size

○ decrease the dependencies

Reward function

Experiment

● Trained with a set of 1000 test cases, each with a maximum of 8
loops owing the size of the available benchmarks

● 8 * 8 matrices as input
● Compare with previous methods from two perspectives:

1. Output in terms of fusion sequence and the resulting number of
loops

2. Execution time in sequential and parallel

Result

Fewer loops

More loops

Result

Same or better!

(7.36% better in average)

Pros & Cons
● Pros

○ Effective deep reinforcement learning
○ Consider the system’s register size
○ Enhance parallelism

● Cons
○ Long training time (3 weeks for training!!)
○ May not generalize well to new datasets
○ Should consider more complex real-world dependencies

Future Work

● Explore the use of other deep learning techniques in loop fusion
optimization, such as CNN or RNN.

● Investigate the application of the proposed method to other loop
optimization problems, such as loop tiling or unrolling.

● Exploring the use of unsupervised learning methods to reduce the reliance
on labeled training data and improve the scalability of the proposed
approach.

● Investigate how this approach can be integrated into existing parallelizing
compilers and evaluate its performance on a wider range of benchmarks.

Thanks

Q & A

