
Neurocomputing 481 (2022) 102–120
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Deep reinforcement learning in loop fusion problem
https://doi.org/10.1016/j.neucom.2022.01.032
0925-2312/� 2022 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: m.ziraksima@tabrizu.ac.ir (M. Ziraksima), shahriar_lotfi@

tabrizu.ac.ir (S. Lotfi), razmara@tabrizu.ac.ir (J. Razmara).
Mahsa Ziraksima, Shahriar Lotfi ⇑, Jafar Razmara
Department of Computer Science, Faculty of Mathematics, Statistics and Computer Science, University of Tabriz, Tabriz, Iran
a r t i c l e i n f o

Article history:
Received 12 May 2021
Revised 7 December 2021
Accepted 14 January 2022
Available online 21 January 2022
Communicated by Zidong Wang

Keywords:
Parallelizing compilers
Loop optimization
Loop fusion
Data dependence
Deep reinforcement learning
a b s t r a c t

Loops’ execution time and resource consumption are one of the interest points and vital issues in the field
of appraising complex scientific or computational algorithms. This issue caused the proposal of Loop per-
formance optimization techniques such as fusion. In the literature, loop fusion merges the loops by taking
into account a set of properties associated with the loops or the system on which the resulting code will
be executed. The number of these factors and their interactions on the one hand, and the high runtime of
available comprehensive approaches, on the other hand, reveals the need for a new method that could be
concerned for further progress in solving this NP-hard problem. For the first time, Deep Reinforcement
Learning Loop Fusion (DRLLF) advanced to be an ideal solution for the challenge in this article. For the pro-
posed framework, a particular matrix is configured as the inputs of a deep neural network based on the
information of the problem, namely data dependencies, data reuse, loops’ types, and computer system’s
register size. These randomly generated matrixes are used in the training phase by reinforcement learn-
ing to get the imperative experience on predicting a profitable distribution over loops’ various fusion
orders. In the evaluations performed, the presented algorithm was able to achieve the same or better per-
formance in terms of speedup rate, comparing with the methods under study, approximately averaged in
7.36 percent better results. The considerable improvement observed in the results, besides the low run
time, proves the comprehensiveness and superiority of this approach.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Formerly in parallelization, a programming team would first
implement the sequential code of a program, and then, an expert
team would convert it to the equivalent parallel code. Later on,
as computer architecture became more and more complex accord-
ing to Moore’s Law, it became strenuous and time-consuming to
obtain the proper performance. At this point, the use of paralleliz-
ing compiler was introduced, which automatically detects points
in sequential code that have the potential for parallelization and
converts them into equivalent parallel versions [1,2]. Another
way to say, parallelizing refers to dividing some parts of the pro-
gram that can run simultaneously into several subroutines and
run them in parallel with the aim of achieving superior speed.

With the advancement of technology and computer science, the
growing gap between processors and memory speeds has made
program execution speed more concerned with memory manage-
ment [3,4]. Researchers have addressed the issue of reducing mem-
ory latency in two fields of loop transformation and data
transformation [5]. Loop is a controlling instruction in program-
ming whose operations are repeated several times depending on
its conditions as loop index, loop bound, and its steps, forming
the iteration space of a loop. Due to the loops’ leading part in com-
puter systems’ resource consumption and their dominant impact
on performance, they are one of the most significant components
of a program and the best candidates for parallelization. Deferent
types of loop transformation can improve performance, runtime,
and power consumption by creating an equivalent program in
which data reuse and the number of memory accesses are
enhanced [6,7].

On the way to reach this goal, some problems arise that are NP-
complete or undecidable [8]. Transformations such as distribution
[6,9] or fusion [10] are some cases in point. Loop fusion is a loop
transformation in which several loops are combined to form a loop.
In contrast, loop distribution is a transformation that breaks the
body of a large loop into several smaller ones.

Locality improvement has also been studied extensively, and
methods such as blocking [11], unroll-and-jam [12,13], and loop
tiling [14,15,16] have been proposed. Amid these transformations,
the improvement of data reuse has received less attention, but
fusion focuses on this point by considering the correlation between
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loops and increasing the likelihood of finding the data in register or
cache [17,18].

In a parallel system, the execution of two loops, as in Fig. 1, is
accompanied by a synchronization between them. However, fusion
decreases the number of required synchronizations by merging
loops and thus increasing their granule size [1,19]. It is also present
at the instruction level [20]. Since synchronization is a costly oper-
ation and necessary after each parallel loop, minimizing its count is
very important [19,21]. In this way, not only fusion reduces the
loop overhead but also increases the possibility of data reuse
[22,10].

It is necessary to point out that the fusion’s objectives are not
always along the same lines. For example, fusing some loops may
cause a dependence based on loop iterations, resulting in the loss
of parallelism, or more precisely fine-grained parallelism. On the
other hand, over-increasing the code size may boost the register
pressure and elaborate the program control flow. Thereby, it could
downturn program execution speed by declining memory and sub-
sequent optimizations performance [23,24]. Apart from that, vari-
ous types of transformations in optimization compilers, involving
fusion, can affect each other’s results. Consequently, some scholars
are privileged with examining a set of these transformations in
order to achieve better results by taking their advantage collec-
tively [25–29].

This paper tackles the loop fusion problem by proposing a deep
reinforcement learning method. Accordingly, it introduced an algo-
rithm with the subsequent key contributions:

� Finding a proper order for loop fusion
� Enhancing parallelism
� Considering the system’s register size as a boundary for fusion
� For the first time, commencing to use a robust framework as
deep reinforcement learning to properly solve loop fusion prob-
lems in a short span of time.

Hereafter, various fusion studies are reviewed in the next sec-
tion. The definition of the fusion problem, its fundamental condi-
tions, and challenges are discussed more precisely in section 3.
Also, it addresses the proposed deep reinforcement learning
method. Then, section 4 describes in detail the implementation
of the proposed method’s distinctive components. Section 5 evalu-
ates the results, followed by section 6, which assesses its merits
and demerits. Section 7 concludes this scrutiny’s findings and sug-
gests further potential research questions.
2. Related work

In literature, there are numerous studies on the loop fusion
problem, including Warren’s research in 1984 [30], which intro-
duced a new structure called hierarchical dependence graph
(HDG) as an intermediate representation of codes that allows large
parts of the program to be abstracted well. He viewed fusion prob-
lem modeling via this graph as a case in point. It can be said that
they came up with an acceptable template, but unfortunately, they
did not provide any implementation or develop their work on
other transformations.
Fig. 1. A synchronization requisite between loops.
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Kennedy and McKinley [31] raised two problems in loop fusion
and offered different solutions for each. The first problem is fusing
a set of parallel and sequential loops with the aim of minimizing
the synchronization cost without losing their parallelism. To do
this, subgraphs of parallel and sequential nodes and the edges
between them are created separately, and the fusion is applied in
Breadth-first order. The second problem was fusing a set of parallel
and sequential loops to improve the locality. In this affair, after
partitioning the graph to fusible loops, conforming with the previ-
ous algorithm, it traverses the resulting graph from bottom to top
and moves some nodes between the segments. The most crucial
objective of this research is to examine these issues separately.
In [32], they presented a different solution for ordered typed fusion
problem. A definite sequence of types determines the fusion prior-
ity between different types on the Breadth-first loop order. One
impediment of this practice is its demand to delineate the types’
priority order.

Singhai and McKinley submitted an ideal solution for the fusion
problem based on dynamic programming [33]. This method is
applied to a maximum spanning tree associated with the depen-
dence graph and fuses the loops based on the system’s register
size. The main shortcoming of this greedy algorithm is its applica-
tion on the Maximum Spanning Tree, owing to removed edges in
this tree which may be related to the optimal solution. Megiddo
and Sarkar [34] have presented a formulation based on Integer Pro-
gramming, which tries to derive a permissible grouping of the
loops, so that it could remove some edges. The downside of this
procedure is its demand for a predetermined order to solve the
problem. Darte in [8] examines the loop fusion problem categories
in terms of complexity and reveals how a simple graph traversing
can resolve the problem’s polynomial cases. Fraboulet et al. [35]
use fusion as a tool to mitigate memory space consumption by
reducing the temporary arrays utilization in embedded systems.

In [36], Kennedy modeled fusion problems as a graph in which
the edges are weighted with the number of memory operators that
will be lowered by merging them in comparison to the original
program. Howbeit, its solutions may not be superlative because
of giving priority to fusing nodes with high weighted edges
between. Verdoolaege et al. [37] used the distance vector instead
of dependence. In this situation, dependencies with the slightest
distance-vector take precedence. According to the presented
results, its refinement is insignificant because only localization is
considered. Ding and Kennedy [38] improved data reuse with a
two-step algorithm. In the first step, all the calculations that use
the same data are merged with the help of other transformations,
and in the second step, the data used in a loop are clustered based
on the cache space so that some arrays are merged, and some
others are divided. This method also did not properly function in
some cases. Marchal et al. [39] suggested that distinct policies
could work better in diverse situations. Therefore, three problem-
solving policies have been adopted for the most straightforward
scheme, the fastest mechanism, and the least amount of energy
consumption. The disadvantage of this method may be its different
solution for each of these goals, rather than a comprehensive
approach to improving all three. In [9], Liu et al. reveal fusion
improvement by combining it with loop distribution, but they
focused on two-level loops. Qiu et al. [40] could allow more loop
fusion via eliminating fusion preventing dependencies via a time
reset method that relocates a calculation for a specific iteration
number. It also merges nodes in topological order, which may lead
to a suboptimal result. Tian et al. [41] proposed a fusion algorithm
to improve Stream Register File (SRF) performance in three cases
that appeared by taking into account the program transfer time
and the data transfer time. The trouble with this method is no con-
sidering types for the loops and thus losing parallelism in some
cases. Mehta et al. [42] studied the fusion problem in the context
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of polyhedral compilers. However, they have not considered crite-
ria such as register pressure.

Most of the recent researches on fusion has focused on its appli-
cations [26,27,43–45], not on offering a new comprehensive
method to solve it. Acharya et al. [19] introduced a new
problem-modeling structure in polyhedral compilers that, by
applying a greedy polynomial clustering heuristic, segments the
graph via coloring it. In order to maintain parallelism, fusion has
been applied according to the method mentioned in [31]. It should
be noted that other transformations have also been considered
along in the mentioned study. Ziraksima et al. [46] introduced an
evolutionary algorithm to acquire an appropriate loop order for
fusion by considering the three influencing factors as data reuse,
the number of required synchronizations, and systems’ register
size. Thence, they have good results for different programs and
architectures. Contrastingly, fusing imperfect or multi-level loops
is not reflected. Moreover, owing to evolutionary algorithms’ high
execution time, this method may be reasonable when the response
time is not prominent [47].

In conclusion, on account of the loop fusion issue’s NP-hard nat-
ure, diverse methods have been suggested, the primary purpose of
which is minimizing execution time with the help of merging
loops. To make reviewing them easier, Table 1 summarizes their
specifications. As demonstrated, these methods could not accu-
rately provide the features of a comprehensive algorithm for the
loop fusion problem. For example, except for Articles [33] and
[46], neither of them met all three improvement factors. However,
[33] cannot support more than two types of loops. In addition,
adjusting the register size based on the number of loops is not
acceptable, and it is better to examine the number of arrays
instead. As well, the method suggested in [46] requires a lot of time
to solve the problem due to the use of the evolutionary approach,
which is not always admissible. These points indicate that more
research is still imperative in this area. As the first step in this
direction, a novel approach is presented based on deep reinforce-
ment learning, the relevant features listed in the last row of
Table 1.
3. Material and methods

The fusion problem can be modeled in different ways [8], com-
prising the Shortest Common Supersequence problem [48,49],
Scheduling problem [50,51], Traveling Salesman problem [52,53].
Besides, various conditions of this problem can affect its complex-
ity. Fusion problem with one type of loops, or two types of loops
without fusion preventing edge, also ordered typed fusion problem
can be resolved in polynomial form. The problem of maximum
fusion with fusion preventing edge, for fixed and larger or equal
to two number of loop types, also the problem of finding the max-
imum amount of fusion without fusion preventing edge, for con-
stant and larger or equal to three number of loop types are NP-
complete [8]. Moreover, fusing loops with the aim of improving
data reuse is NP-hard [31,42].

As pointed out, one of the factors causing this complexity is the
multiplicity of loops’ types. Loops can be grouped according to dif-
ferent possible diversities between them:

� They are perfect or imperfect; Nested loops are perfect if all
program instructions are in the innermost loop. Otherwise, if
there are instructions between the loops, they are called
imperfect.

� They can be different in terms of upper or lower bound or their
steps.

� The number of their levels can be different.
� Also, their execution type can be parallel or sequential.
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Another influential factor in the complexity of the loop fusion
problem is data dependence which is a constraint between pro-
gram instructions that ascertain the order in which the instruc-
tions should be executed. There is a data dependence between
program instructions if they have an executable path between
them, both access to one memory location, and at least one of
which is storage [54]. Based on the order of reading or writing in
memory, there could be three types of dependencies between pro-
gram instructions, namely true-dependence, anti-dependence,
output-dependence. Sometimes the value of a variable is read from
memory by two instructions, which is called input-dependence.

Consider the program in Fig. 2, having five loops with disparate
data dependencies between them. Regarding the subjects raised in
the previous paragraph, there are true, anti, output, input, and
fusion preventing dependencies based on array A, C, H, G, and A
between the appointed loops, respectively. Additionally, if each
loop is indicated by a circle and each dependence with an edge
between them, a data dependence graph is obtained, which is
shown on the left side of this figure. It should be underlined that
different types of loops can be represented by nodes with distinct
shapes in the dependence graph.

Dependencies may occur at different loop iterations. If a depen-
dence occurs in a fix iteration, it is called loop independent depen-
dence, and if they occur between various iterations, they are called
loop carried dependence. These two types of dependencies deter-
mine the possibility of running the loops in parallel [55,56].

For example, since all loops in Fig. 2 have no loop carried depen-
dence, they all are parallel loops. A fusion preventing edge is a type
of data dependence that prevents a pair of loops from merging
because their fusion will create a loop carrier dependence, in view
of the fact that the loop resulting from fusing loop 1 and 5 will have
a loop carrier dependence based on array A. In this case, to make
sure that the output of the fused program is equal to the original
program’s output, the resulting loop must be executed sequen-
tially. In other words, the type of the parallel loop has changed
to sequential.

In summarizing the issues raised, an algorithm presented to
solve this problem must meet the following conditions and criteria
to obtain a correct result:

� To preserve the desired output of the original program, the
order of the two loops, which are determined by their depen-
dencies, is not mutable.

� If there is a fusion preventing edge between two loops, they are
not fusible.

� Two loops with different types, having different bound or one of
them being parallel and the other one sequential, cannot be
merged even if it does not violate any dependence.

� The dependence graph resulting from the fusion must be acyclic
to ensure a definite order between the merged loops.

Given the conditions, the challenge is to put forward a scheme
that covers all the objectives. More precisely, fusion should be
applied according to the existing dependencies so that a program
with the least number of loops is acquired. On the other hand, to
improve the actual performance of the resulting program, addi-
tional criteria must also be considered, such as advancing paral-
lelism and data reuse, optimizing the number of vital
synchronizations and the cost of examining loop bounds, along
with some features affiliated to the computer systems’ architecture
as register pressure. Considering the NP-hardness of the fusion
problem, the majority of the researchers in this field have tried
to solve it by greedy and heuristic approaches or by applying
hypotheses to reduce the complexity of the problem, allowing to
handle it by deterministic methods. State-of-the-art and influential
optimization frameworks are rarely used in this area. The evolu-



Table 1
Qualitative comparison of DRLLF with comparative works.

[Ref.] Year Paper’s goal Number
of types

Graph’s
node

Loop order Modeling method Improvement factors

parallelism data
reuse

Register
size

[30] 1984 Improving parallelism 2 Loop and
instruction

Topological order of loop
independent dependence
graph

hierarchical
dependence graph
(HDG)

✔ ✔ �

[31] 1993 Provide two distinct methods for
improving parallelism and data
reuse

2 loop Breath-first-search with the
parallel type’s priority

Directed acyclic
graph

✔ ✔ �

[32] 1994 minimizing the number of loops >2 loop Breath-first-search with the
determined type’s priority

Directed weighted
acyclic graph

✔ ✔ �

[33] 1997 Improving parallelism and data
reuse considering register size

2 loop Bottom-up order weighted tree ✔ ✔ ✔

[34] 1997 Improving data reuse with
maintaining parallelism

2 loop Topological order Directed weighted
acyclic graph

✔ ✔ �

[8] 2000 Improving parallelism and data
reuse

2 loop Topological order Directed acyclic
graph

✔ ✔ �

[35] 2001 Minimizing the use of temporary
arrays

1 loop Topological order Directed acyclic
graph

� ✔ �

[36] 2001 Improving data reuse with
maintaining parallelism

>2 loop The order of selecting the
edge with the maximum
weight

Directed weighted
acyclic graph with
undirected input
dependence

✔ ✔ �

[37] 2003 Improving data reuse >2 code Topological order with the
priority of instructions that
use the same data

Works on code � ✔ �

[38] 2004 Improving data reuse >2 instruction An order with the priority of
true-dependence that has
minimum distance vector
and maximum number of
data

Directed graph that
is not limited to
perfect and
imperfect loops

� ✔ ✔

[39] 2004 Improving data reuse considering
register size

2 loop Topological order with the
priority of removing the
edges with maximum
weight

Directed weighted
acyclic graph

� ✔ ✔

[9] 2005 Improving data reuse with
considering code size

2 loop Topological order Directed acyclic
graph

� ✔ ✔

[40] 2008 Reducing energy consumption by
fusion

>2 loop Topological order Multidimensional
loop dependence
graph (weighted,
directional)

✔ ✔ �

[41] 2012 Improving data reuse considering
register size

1 loop Based on the sorting
algorithm presented in the
article

Directed acyclic
graph

� ✔ ✔

[42] 2014 Improving data reuse with
maintaining parallelism

>2 instruction The presence sequence of
nodes in the program, taking
into account the strongly
connected components

Directed acyclic
graph

✔ ✔ �

[27] 2016 Fusion of parallel array operations – partitions Topological order obtained
by branch-and-bound search

Partition graph � � �

[44] 2017 Loop fusion for program
verification

1 Loops and
variables

Program order Works on code � � �

[26] 2018 Fusion and tile size model for
optimizing image processing
pipelines

– stages The order obtained by a
specific clustering algorithm

Pipeline graph � � �

[43] 2018 Improving image processing by
loop fusion

2 loop Topological order Works on code
considering data
dependences

� � �

[45] 2019 kernel fusion – kernels The order obtained by graph
partitioning technique with
domain-specific and
architecture knowledge

Directed acyclic
graph

� � �

[19] 2020 Improving data reuse with
maintaining parallelism

2 permutation Topological order
considering a coloring
heuristic

Fusion conflict
graph (FCG)

✔ ✔ �

[46] 2020 Improving parallelism and data
reuse considering register size

>2 loop The sequence generated by
evolutionary algorithm

Directed acyclic
graph

✔ ✔ ✔

Proposed
method
(DRLLF)

Improving parallelism considering
register size with the ability to
solve the problem in the shortest
possible time

>2 loop The sequence generated by
Deep reinforcement learning

Directed weighted
acyclic graph

✔ ✔ ✔
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Fig. 2. Individual types of data dependencies.
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tionary algorithm is first mentioned in [46], but it still needs devel-
opments to solve more intricate fusion problems. Beyond it,
machine learning has not been exploited in the matter, despite
its low execution time after training.

As an instance, [57,58] can be referred to as remonstrative
papers that take a pivotal step to introduce deep neural networks
into this field and demonstrate how to use them for acquiring
thread coarsening factor and heterogeneous mapping. Howbeit,
there are some obstacles in applying this strategy to the loop
fusion problem. The nature of the fusion problem causes its output
to be formed based on its input. On the other hand, training such
networks requires a large amount of labeled training data, which
is infeasible in this NP-hard problem. Over and above, it is not ben-
eficial to tie an algorithm’s performance to the quality of the
labeled data whereas a method like reinforcement learning needs
no labels. In reinforcement learning [59,60], the problem is intro-
duced to the agent through the Markov decision process, and then
it is deciphered by specifying the evaluation function. In fact, it is
the agent that, by trial and error, tries to find the most acceptable
policy for solving this problem by maximizing the reward pre-
scribed from the environment based on the predetermined evalu-
ation process [61,62]. In other words, the agent attempts to acquire
a goal by taking into account the entanglement with the environ-
ment and the feedback receiving from it. After each action, the
agent changes to a new state in the environment and receives a
reward premised on the action performed and the intended goal
[60,61]. The disadvantage of this approach is its demand to delin-
eate the environment for it, in other words, the problem space.
When factors such as register size and loop type are supplemented
to the circuit, the problem space increases, accordingly cannot be
defined in terms of the Markov decision process. More precisely,
two methods can be used, finding a direct mapping from state
space to action space or applying a function to measure the state’s
property for guiding the agent in its decisions [63]. For problems
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such as fusion, which has many parameters involved and therefore
a large state space, the deep neural network is indispensable to
model the problem by estimating the corresponding function. It
implies that the proposed algorithm learns how to model the prob-
lem and the policy needed to solve it with deep reinforcement
learning via deep neural networks, layers of which take the burden
of modeling the problem [64]. Particuraly, [63,65] are two influen-
tial papers that introduce deep reinforcement learning to solve the
Traveling Salesman problem. Due to the similarity of the loop
fusion and Traveling Salesman problems, this paper takes its idea
from the indicated articles and, for the first time, proposes deep
reinforcement learning for tackling the fusion problem benefiting
from the framework presented in mentioned articles.

3.1. The proposed algorithm

According to the issues raised so far, loop fusion is a sequencing
problem in which the best order of loops for merging must be
determined, leading to an NP-hard problem. In this study, a generic
framework is suggested for this challenge with the primary objec-
tive of ensuring the high compatibility of efficient machine learn-
ing algorithms. In this regard, a special edition of the adjacency
matrix is created based on the information of the program and
the related computer system. These matrixes are exploited as
inputs of a deep neural network which is trained by reinforcement
learning to attain a profitable order for fusing loops. The results
manifest this approach’s comparable performance with other
existing methods. Fig. 3 illustrates its prevailing structure.

Concisely, a collection of basic information about the problem
ahead, involving the type of loops, the data dependencies between
them and the number of loop’s arrays, as well as the number of
arrays that the considered computer system’s register can store,
is prepared as a matrix which is given to the deep reinforcement
learning network as an input. At this point, the agent evaluates



Fig. 3. The framework of the proposed model.
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the quality of its results by repeating the fusion sequence estima-
tion for that input and evaluating it based on factors such as paral-
lelism advancement according to the system’s register size. Later, it
tries to procure better estimates for the successive inputs by using
these experiences. All these steps are fully described in the next
section.

4. Experimental results

As mentioned earlier, the DRLLF method is the first to introduce
deep reinforcement learning for solving the complex loop fusion
problem so that it can solve it in the shortest possible time. This
section will describe in detail how this method works and the
results obtained from it.

4.1. Experiments

In the proposed deep reinforcement learning context, the state
is a half-done sequence of fused loops, and the action is choosing
the next loop to fuse within not considered ones. During the learn-
ing process, the agent gains extensive experience in determining
the appropriate policy for obtaining the optimal solution of the
problem in question. In the continuation of this section, each com-
ponent of this framework and its implementation is described in
detail.

� The neural architecture:
Considering the loop fusion problem, the proposed algorithm
seeks to find a sequence of loops that, if they are merged as
specified by the sequence, the outcome’s execution cost is min-
imal; in other terms, the runtime of the resulting loops is opti-
mal. These performance principles are ideal when the number
of attained loops is augmented. By modeling the procedure out-
lined in [63,65], the intended method has learned the parame-
ters h of an appropriate policy for solving this problem and
finding the proper fusion order by virtue of neural network
and policy gradient. As the general encoder-decoder networks,
in the first place, the required information is mapped to a spec-
imen input matrix, owing to the use of which the output
sequence is generated gradually.

Fig. 4 offers an overview of the intended process, each section of
which is demonstrated schematically along with an example out-
put related to it in a square to the right of that step. These compo-
nents will be described in detail throughout the following sections.

� Input preprocessing:
The input of a machine learning process stays ahead in its per-
formance, especially in deep reinforcement learning, because
they are supposed to provide all the essential information.
Therefore, inputs should be able to reflect all the distinguishing
features that are going to guide the agent in the learning proce-
dure of an impeccable policy. Basically, these components are
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along the lines of the criteria settled out in Section 3. Hence, a
matrix has been designed to accommodate all of these values,
picturing in Fig. 5.

All the imperative data bound up in the problem is retained as a
matrix holding floating-point numbers. The main diagonal of the
matrix contains information about the type of each loop and the
register size of the computer system on which the loops will be
executed. More precisely, the integer part indicates the size of
the register, and the fractional part defines the corresponding
number to the loop’s type. To specify the type number of nodes,
they are labeled based on being sequential or parallel, their num-
ber of levels, and boundaries. The other matrix elements provide
details about various dependencies between the loops. In each
row, the integer part indicates the type of dependence, elaborated
in Table 2, and the fractional part implies the number of register
units required to execute that loop. According to Table 2, values
that are not in the main diagonal of the matrix are quantified based
on properties such as the topology of the graph, types of dependen-
cies, and types of loops. By way of illustration, if it is topologically
impossible to place two loops, as i and j, in the output sequence
consecutively, the integer parcel of the pertinent data in row i
and column j in the input matrix is set to 10.

Fig. 6 elucidate the formation of an input matrix. In the corre-
sponding graph, the type of each node is illustrated with a distinct
shape and the dependencies between them with an edge, also
fusion preventing dependencies by an edge with a dash. Accord-
ingly, 2.01 and 2.02 in the main diagonal of the matrix denote
the parallel (0.01) and sequential (0.02) type of the examined
loops, and the computer register size of 2 units. Moreover, 1.1 in
the first row of the third column implies a data dependence
between these two nodes of the same type, 1 and 3, beside the
one register unit requirement for executing the loop number 1.
Alternatively, number 10.1 in the fourth row and second column
points out that it is topologically incorrect for node number 2 to
come after node number 4 in the target sequence. In view of the
fact that loop number 2 is loop 40s parent in the dependence graph
and thus has to appear before 4 in the loops’ chain. Subsequently, a
pattern like 1, 2, 3, 4, 5 could be a topological sequence for this
graph. Similarly, 7.1 in the third column of the fourth row demon-
strates that loop numbers 3 and 4 are not of the same type, and
there is no data dependence between them. The pseudo-code
related to random input matrix generation steps for the deep rein-
forcement learning network is demonstrated in Algorithm 1.

It should be noted that if the maximum number of loops is set
to n during the training phase, in fusion problems with fewer loops
the rest of the matrix cells are filled with values that reveal the
absence of these nodes. In reference to the pseudo-code, during
the input generation process, first, the pertinent parameters are
valued, and then a random DAG is generated regarding them. On
those grounds, the adjacency matrix of the corresponding graph
is quantified with the desired values, in reliance on the type of
loops involved and the dependencies between them.



Fig. 4. The architecture of deep reinforcement learning scheme.
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Algorithm 1: Random Input Generation

Input: V: maximum number of vertices; T: maximum number
of loop types; R: system maximum register size;

Output: an instance of deep reinforcement learning
algorithm’s input
1: initialize:

G = a graph with a random number of vertices, limited
to V;

D = a random number that specifies the number of the
graph’s edges;

Array T = randomly typed nodes (loops) based on the
specified number of types (T);

Array R = Required register size of each node,
determined randomly based on R;

RGSTR = system register size, determined randomly
based on R;
2: for (the specified number of edges (D))
3: edges are added to the graph (G) randomly, provided

that the resulting graph is a DAG;
4: end for
5: A = adjacency matrix related to graph G (a matrix with

0 or 1 values, the main diagonal is 0);
6: While (There is an unchecked edge in the adjacency

matrix, in other words, data values equal to 1)
7: if (the two corresponding nodes are of the same type)
8: e = randomly determine that this edge is fusion

preventing or not;
9: if (e is fusion preventing)

10: the corresponding value in the adjacency matrix
A = 5.required register size (R);

11: else
12: the corresponding value in the adjacency matrix

A = 1.required register size (R);
13: end if
14: end if
15: if (the two corresponding nodes are not of the same

type)
16: e = randomly determine that this edge is fusion

preventing or not;
17: if (e is fusion preventing)
18: the corresponding value in the adjacency matrix

A = 6.required register size (R);
19: else
20: the corresponding value in the adjacency matrix

A = 8.required register size (R);
21: end if
22: end if
23: end while
24: for (each data value in main diagonal of the adjacency

matrix A)
25: the related value in the adjacency matrix A = RGSTR.

node type (T);
26: end for
27: for (other adjacency matrix data values that are equal

to 0)
28: if (the two corresponding nodes are of the same type)
29: if (the two corresponding nodes can be topologi-

cally consecutive)
30: the corresponding value in the adjacency matrix

A = 3.required register size (R);
31: else
32: the corresponding value in the adjacency matrix

A = 10.required register size (R);
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⇑ (continued)

Algorithm 1: Random Input Generation

33: end if
34: end if
35: if (the two corresponding nodes are not of the same

type)
36: if (the two corresponding nodes can be topologi-

cally consecutive)
37: the corresponding value in the adjacency matrix

A = 7.required register size (R);
38: else
39: the corresponding value in the adjacency matrix

A = 10.required register size (R);
40: end if
41: end if
42: end for

� Encoder:
As mentioned in Fig. 4, the encoder receives loop specifica-
tions as the input, or in this case a set of embedded and
batch normalized actions [66]. It elicits an imitation form that
reflects the characteristics of each loop as well the correlation
between them. The actor and critic part of the applied
method benefited from the neural attention mechanism, as
in [63,67]. The encoder network took advantage of a two-
layer structure for n times.

Its first sublayer is a multi-head attention that collects the
resultant of applying linear transformation and then nonlinear
ReLU on each loop specifications. Put another way, entries are sets
of queries and key-value pairs, and outcomes are the new repre-
sentation of each loop. In this regard, the sets are mapped to h dif-
ferent subspaces and concatenated through a weighted sum of
them. The weights concerned in this process are obtained by
applying an affinity function between the queries and keys. In fact,
the attention mechanism is as mentioned in Eqn 1:

Attention Q ;K;Vð Þ ¼ softmax
QKTffiffiffi

d
p

 !
V ð1Þ

in which Q, K, and V are n-cell vectors. The second sublayer is a
feed-forward, comprising two position-wise linear transformations
with a ReLU activation separating them.

A normalization is applied to outputs of each sublayer, take
place by means of summing the corresponding sublayer’s output
and the output of applying the function implemented in the sub-
layer to the same output. Indeed, encoded loops produce the action
space of the decoder. As shown in the right box of the encoder
patch in Fig. 4, the outturn of this step is actually a set of vectors,
each of which properly specifies a loop. Each data value of these
vectors is quantified, relying on loops’ traits, the association
between them, and the output of the previous step.

� Decoder:
To calculate the probabilities of the sequences, a chain rule is
used as the Eqn 2 formula [65].

ph pjsð Þ ¼
Yn
t¼1

phðpðtÞjp < tð Þ:sÞ ð2Þ



Fig. 5. Designation of input Matrix.

Table 2
The notion of the input matrix data values.

Dependence type Assigned
integer

Two dependent loops with the same type 1
Two not dependent loops with the same type 3
Two same type loops with a fusion preventing edge 5
Two dependent loops with different types 6
Two not dependent loops with different types 7
Two deferent types loop with a fusion preventing edge 8
Two loops that can not be topologically sequenced in fusion order 10
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Qua discussed in the following formula [63], for anticipating the
next loop in the sequence, at each time t, there are the last three
added loops (actions) in the examination. In simple words, after
every three steps, some information will be disregarded.

qt ¼ ReLU W1ap t�1ð Þ þW2ap t�2ð Þ þW3ap t�3ð Þ
� � 2 Rd

0
ð3Þ

As mentioned in Eqn 3, at each step of erecting the complete
sequence, for identifying the distribution over the loops space, a
query vector qt is calculated based on the associated set of vectors.
More precisely, this query vector forms a state representation in
every single step. This allows the pointing mechanism to calculate
the probability distribution on the remaining loops, receiving the
Fig. 6. A sample graph and its
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encoded loops (actions) and a query (state representation), and
decide on the next loop in the sequence. Thereby, as referred to
in the below equations, each of these probabilities is computed
sequentially via the Softmax module. Through this mechanism, it
becomes feasible to address the fusion problem with a different
number of loops. Two attention matrix and an attention vector
are used to parameterize the pointing mechanism, regarding [65]:
8i 6 n:ut
i ¼

vT tanh wref ai þwqqt

� �
if i R p 0ð Þ . . .p t � 1ð Þ

�1 otherwise:

(
ð4Þ
phðpðtÞjp < tð Þ:sÞ ¼ softmaxðC tanhðut=TÞÞ ð5Þ
To guarantee the exactness of the output sequences and

absence of duplicated loops, a mask is used pursuant to [65] for
settling the probability of choosing each loop, namely setting the
likelihood of loops that have already appeared in the sequence to
�1, as highlighted in equation Eqn 4. Besides, to manage the cer-
tainty of sampling, T works as a temperature hyper-parameter dur-
ing training and inference, respectively valued with 1 and > 1 in
Eqn 5. As illustrated in Fig. 4, the result of the decoder will be a pre-
dicted fusion order, an evaluation of which is going to be used for
strengthening the proposed neural network’s expertise and thus
succeeding estimates.
associated input matrix.
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� Training the model:
As discussed earlier, reinforcement learning allows the agent to
gain the necessary experience for solving the fusion problem
and find an optimal solution by examining the different
sequences of loops on the basis of the related rewards. Accord-
ing to [65], the training phase is based on policy gradient, ben-
efiting from reinforcement learning structure and a critic for
reducing the variance of gradients. To attain this objective, a
suitable reward function for the given graph s is defined in this
paper that empowers the learning process by required informa-
tion, as follows:

r pjsð Þ¼number of topological order violations in the considered sequence

þnumber of consecutive loops in the considered sequence that are not fusiable

þnumber of times that fusible loops
0
required register size passes the system

0
s register size

þOne tenth of the total weight of the edges between nodes in the sequence

ð6Þ

In conformity with Eqn 6, a set of penalties are added to rðpjsÞ,
and for this reason, the goal of this algorithm will be minimizing
the penalties’ amount. Hence, factors such as the number of times
that the topological order in fusion sequence of loops is not
observed, the number of times that two not fusible loops are
placed consecutively, number of times that two fusible loops can-
not be merged due to insufficient system register size, and the total
weight of the edges between the loops in the fusion order which
are determined by similarity degree in reliance on the type of loops
and the type of edge across them, introduced in Table 2, affect the
value of it. Deserving attention, if one of the two consecutive loops
is not topologically ordered, they will not be merged, and the edge
weight between them will be considered equal to 10 (conforming
Table 2), even if the corresponding element in the matrix has a
value apart from 10. Be careful that the impact of all these factors
is one, except for total weights, which is one-tenth.

This formula, along with its relevant coefficients, has been
acquired throughout various scrutiny, and its accuracy has been
confirmed in practice. Fig. 7 represents this calculation process
for an example predicted fusion order.

Considering the presented matrix and the output sequence, it is
topologically incorrect that loop 4 appears before loop 1 in the
referred order. Beyond that, loops 2 and 4 are not fusible due to
Fig. 7. The penalty calculation process of an ex
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the presence of a fusion preventing edge across them. Till now,
two and one-tenth of the related edge’s weight, which is ten
because of wrong topological order, is considered as the penalty
(3). Loops 4 and 1 cannot be merged due to their type variety,
which is sequential and parallel, respectively, and also 4 is in the
wrong topological order. Therefore, the corresponding penalty will
be equal to one plus one-tenth of the edge’s weight between them
(2). There is a dependence edge between loops 1 and 3, having the
same type. On the other hand, since the required register size for
executing them is identical to the system’s register size, which
equals to 2, these two merged loops have only one-tenth weight
of the edge between them as a penalty (0.1). Loop 5 can also be
merged with loops 1 and 3, but since it requires an extra register
unit and the system register is full, it cannot be fused with them,
resulting in a penalty equal to one plus one-tenth of the related
edge’s weight (1.1). According to this content, the maximum and
minimum possible value for a fusion problem with n loop would
be:

ðn� 1Þ � 0:1 � rðpjsÞ � ððn� 1Þ � 3Þ þ 1 ð7Þ
As mentioned in Eqn 7, the minimum value occurs when all

loops are of the same type and connected to each other by a depen-
dence edge; in this way, all of them can be merged together. Taking
one example, consider a Skewed Binary Tree as a dependence
graph that its same typed nodes are ordered from root to leaf for
fusion. Furthermore, the size of the system’s register must be large
enough to run all the fused loops together. In the present case, the
expected value would be equal to one-tenth of the edges between
the loops’ weight sum, each of which is going to be 1. Conversely,
this value would be maximum if none of the loops are topologically
aligned; thus the across edge weight is equivalent to 10, and no
two consecutive loops can be merged. In this way, three penalties
for each pair of loops in the sequence and one penalty for the first
loop’s topology breach will be added to the relevant value. A
Skewed Binary Tree that its nodes are fused from leaf to root could
be reported as an instance. In reference to [63], the intention of
reinforcement learning practice is accurately estimating the
expected reward, which is defined as:

J hjsð Þ ¼ Ep�ph :jsð Þ r pjsð Þ½ � ð8Þ
ample fusion order and its related matrix.
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Thereby, as mentioned in Eqn 9, for distribution S:

J hð Þ ¼ Es�S J hjsð Þ½ � ð9Þ
To sort out the non-differentiability challenge of the hard-

attention mechanism, [63] offered benefiting from the reinforce-
ment learning rule of [68] and achieved an unbiased gradient as:

rhJðhjsÞ ¼ Ep�ph :jsð Þ½ðrðpjsÞ � b/ðsÞÞrh logðphðpjsÞÞ� ð10Þ
In Eqn 10, h and b/ðsÞ are the models’ parameters and the baseline
of critic, which reduces the variance of the gradients while main-
taining them unbiased. The Monte-Carlo sampling approximates
the gradient of Eqn 8 as Eqn 11 [63]:

rhJ hð Þ � 1
B

XB
k¼1

½ðrðpkjskÞ � b/ðskÞÞrh logðphðpkjskÞ� ð11Þ
Table 3
Quantification of the proposed method’s hyper-parameters.

Hyper-parameter’s list Initial values

Test set size 1000
Batch size 256
Number of loops in each input 8
Number of loops type in each input 4
Maximum number of system’s register size in each

input
10

Actor critic’s each loop embedding dimension 128
Encoder inner layer neurons 512
Self-attentive encoder’s number of stacks 3
Self-attentive encoder’s number of parallel heads 16
Self-attentive encoder’s number of hidden

dimensions
128

Decoder or pointing mechanisms query space
dimension

360

Decoder and critic attention product space 256
Critic’s feed-forward layer 256 and 1 hidden

unit
Number of steps 22,000
Critic initial baseline 7.0
Actor initial learning rate 0.001
Actor initial learning rate decay step 5000
Actor initial learning rate decay rate 0.96
Pointer initial temperature 1.0
Pointer tanh clipping [�10.0, 10.0]
Feed-forward neural network input dimension 128
Feed-forward neural network output dimension 128
Feed-forward neural network inner-layer dimension 512

Table 4
Comparing the proposed method with comparative works in terms of fusion sequence an

[Ref.] Original loops sequence

[31] |1|2|3|4|5|6|7|8|
Number of loops: 8

[32] |1|2|3|4|5|6|7|8|
Number of loops: 8

[33] |1|2|3|4|5|6|7|8|
Number of loops: 8

[8] |1|2|3|4|5|6|
Number of loops: 6

[35] |1|2|3|4|5|
Number of loops: 5

[36] |1|2|3|4|5|6|7|
Number of loops: 7

[41] |1|2|3|4|5|6|
Number of loops: 6

Ben6[41] |1|2|3|4|5|6|7|
Number of loops: 7

LL8[41] |1|2|3|4|5|6|
Number of loops: 6

LL18[41] |1|2|3|4|5|6|
Number of loops: 6
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The whole process is accomplished via considering a random
policy and gradually enhancing it in reliance on the received sam-
ples and evaluating them, assisted by reinforcement learning and
Stochastic Gradient Descent (SGD).

The critic exploited in [63] is in common with the actor’s enco-
der. The appointed glimpse vector is the weighted sum of loop’s
pointing distribution (p/ðsÞ) and action vector (a) multiplication as:

gls ¼
Xn
i¼1

p/ðsÞiai ð12Þ

A network with two fully connected layers and ReLu activations
receives the gls vector of Eqn 12 and tries to minimize the Mean
Square Error during the prediction phase and the reward calcu-
lated by the actor.

Hyper-parameters of the proposed algorithm are quantified
based on the values recorded in Table 3. The hyper-parameters
related to the input properties are determined relying on the avail-
able examples for comparison. Namely, the maximum number of
types in the papers being compared is 2; therefore, it is settled to
4 in this work to be able to compare it with them in addition to
show its ability for more types. Besides, h parameters are initialized
using the Xavier-initializer [69], ensuring that the saturation of
non-linear activation functions can be prevented and the scale of
the gradients is kept the same in all layers. Adam [70] optimizer
is used by Stochastic gradient descent in which b1 ¼ 0:9,
b2 ¼ 0:99, and e ¼ 10�9. The proposed model is implemented with
Tensorflow and trained on an HP-Spectre laptop (Intel Core i7,
16 GB Memory) for approximately three weeks.

4.2. Results

For performance deliberation, this section compared the pro-
posedmethod with investigations concerning the loop fusion prob-
lem. Toward that end, the proposed network is trained with a set of
1000 test cases, each member of which is a program with a maxi-
mum of 8 loops owing to the size of the available benchmarks for
comparison. This means that several 8 � 8 matrices are randomly
generated as input. After training the network, its capabilities are
evaluated based on comparing its results with samples of related
articles. It should be noted that the proposed method focuses on
ameliorating loop fusion and therefore provides a comprehensive
method for it, but recent articles in this field pay more attention
to fusion’s application or consider it along with other loop transfor-
d the resulted loops.

Referred paper’s result DRLLF’s result

|1-2|3-4|5-6|7-8|
Number of loops: 4

|1-2|3-4|5-6|7-8|
Number of loops: 4

|1-3|2-4-6|5-8|7|
Number of loops: 4

|1-3|2-4-6|5-8|7|
Number of loops: 4

|1-2-8|3-4-5-6|7|
Number of loops: 3

|1-2-3-8|7-4-5-6|
Number of loops: 2

|2|1-3|4-5|6|
Number of loops: 4

|2|1-3|4-5|6|
Number of loops: 4

|1|2|3-4-5|
Number of loops: 3

|1-2|3-4-5|
Number of loops: 2

|1-2-3–4-6|7|5|
Number of loops: 3

|1-2|7|3-4-5-6|
Number of loops: 3

|1-2-4|3-5-6|
Number of loops: 2

|1-2-4|3-5-6|
Number of loops: 2

|1-3|4-7|2-6|5|
Number of loops: 4

|1-3|4-7|2-6|5|
Number of loops: 4

|1-2-3–4-5-6|
Number of loops: 1

|1-2-3|4-5-6|
Number of loops: 2

|1-2|4-3-5-6|
Number of loops: 2

|1-2|4-3-5-6|
Number of loops: 2



M. Ziraksima, S. Lotfi and J. Razmara Neurocomputing 481 (2022) 102–120
mations which will affect its result. Therefore, the number of arti-
cles whose results can be compared with the presented method is
limited to Table 4 and Table 5, collecting the benchmarks and some
examples from the cited papers with their features in terms of the
number of loops and execution time. The loop dependence graphs
of these samples are illustrated in Table A1, given in Appendix.

In the following tables, the results of the research are evaluated
from two different perspectives. Table 4 assesses the output in
terms of fusion sequence obtained from the compared methods
and the resulting number of loops. In addition, Table 5 measures
their execution time in sequential and parallel. It is worth men-
tioning that the main goal in this algorithm is improving the paral-
lel runtime, but knowing the sequential execution time and
comparing it with the parallel execution time, considering differ-
Table 5
Comparing the proposed method with comparative works in terms of parallelism and exe

[Ref.] Number of
processors

Original code Referred pap

sequential
execution time

parallel
execution
time

speedup sequential
execution ti

[31] 2 11,038 9811 1.12 10,220
3 9703 1.13
4 9703 1.13
5 9703 1.13

[32] 2 11,038 9715 1.13 11,420
3 9605 1.14
4 9601 1.14
5 9601 1.14

[33] 2 29,342 16,651 1.76 28,317
3 12,314 2.38
4 10,421 2.81
5 9421 3.11

[8] 2 10,632 6372 1.66 10,222
3 5622 1.89
4 5571 1.90
5 5571 1.90

[35] 2 6827 4835 1.41 6417
3 4615 1.47
4 4615 1.47
5 4621 1.47

[36] 2 41,137 22,561 1.82 40,317
3 16,781 2.45
4 14,231 2.89
5 12,671 3.24

[41] 2 10,454 5881 1.77 9534
3 4221 2.47
4 3271 3.19
5 2641 3.95

Ben6 [41] 2 10,037 6801
1.47

1.80
3 6464 1.55 5665
4 6464 1.55 4561

5 6464
1.55

4001 3.61 4001

LL8 [41] 2 24,929 21,927
1.13

1.14
3 20,807 1.19 23,799
4 20,117 1.23 23,799

5 19,807
1.25

23,799 1 19,107

LL18 [41] 2 10,812 6441
1.67

2.01
3 4431 2.44 3491
4 3331 3.24 2651

5 2771
3.90

2161 4.72 2161
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ent number of processors, reveals the better parallelization per-
formed. More precisely, the speedup improvement is a measure
of the performed parallelization’s quality, which must always be
greater than one in order to make it admissible. The authors have
to mention that [41] applied its method to Ben6, LL8, and LL18
benchmarks, which are available at [71,72]; therefore, the men-
tioned method’s output for these samples has been compared with
the results of the presented approach. The rest of the recorded
instances are from the cited articles and their findings.

As recorded in Table 4, each loop is marked with its specified
number in the column related to the fusion sequence, in particular,
the original state contains separate loops, marked with a ‘‘|”
between them, but after fusing them on the basis of the article
understudy or the method presented in this article, some of them
cution time.

er’s result DRLLF’s result

me
parallel
execution
time

speedup sequential
execution time

parallel
execution
time

speedup

8552 1.19 10,220 8552 1.19
7412 1.34 7412 1.34
7476 1.36 7476 1.36
7476 1.36 7476 1.36
8869 1.28 11,420 8869 1.28
8359 1.36 8359 1.36
8300 1.37 8300 1.37
8287 1.37 8287 1.37
14,341 1.97 28,112 14,371 1.95
10,141 2.79 10,121 2.77
8303 3.41 8121 3.46
7203 3.93 6871 4.09
5412 1.88 10,222 5412 1.88
4211 2.42 4211 2.42
3831 2.66 3831 2.66
3751 2.72 3751 2.72
4361 1.47 6212 3451 1.80
3511 1.82 2591 2.39
3111 2.06 2201 2.82
2891 2.21 1981 3.13
19,881 2.02 40,317 19,871 2.02
14,041 2.87 14,031 2.87
11,321 3.56 11,311 3.56
9621 4.19 9621 4.19
5081 1.87 9534 5081 1.87
3451 2.76 3451 2.76
2641 3.60 2641 3.60
2111 4.51 2111 4.51
14,465 8025 1.80 14,465 8025

2.55 5665 2.55
3.17 4561 3.17

3.61
23,799 23,799 1 24,029 21,017

1 19,937 1.20
1 19,407 1.23

1.25
10,204 5071 2.01 10,204 5071

2.92 3491 2.92
3.84 2651 3.84

4.72



Fig. 9. A sample from the training phase to evaluate the performance in programs with four types of loops.

Fig. 8. The mean of speedup improvement rate.
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are merged, which is marked with a ‘‘-” sign between them. The
resulted number of loops is mentioned below them.

This table compares the number of resulted loops based on the
fusion sequences obtained. As demonstrated, by finding a better
fusion order for the loops, the proposed method was able to obtain
fewer loops in comparison to [33] and [35]. Only in LL8, the num-
ber of loops is more than the compared method, which is due to
the fact that the loop’s type is not considered in the mentioned
article. In the proposed method, loops are fused according to their
type, because merging two loops with different types will increase
the execution time in the resulting code, which is not desirable.
Considering LL8, fusing loops with different types may have
reduced the final number of loops, but the execution time of DRLLF
is better than [41], as stated in Table 5. In the other cases, the same
results are obtained that due to the optimality of these answers,
the algorithm’s performance can be confirmed.

For a better inference, Table 5 compared the original program
with the fusion result of the corresponding method and proposed
fusion strategy in terms of their parallel or sequential execution
time, given a system with 2 to 5 processors. Besides, the average
speedup progression rate of the values listed in Table 5 is summa-
rized in Fig. 8. The provided timing measurements are deliberated
via a Multi-Pascal compiler (MPWinV.2.) which simulates the per-
formance of the submitted code on a real multiprocessor system to
produce its sequential and parallel execution time in microseconds
[73]. Note that the calculated speedup is the ratio of serial execu-
tion time to parallel execution time as the Eqn 13 formula:
speedup ¼ sequential execution time
parallel execution time

ð13Þ

As stated in Table 5, the proposed method touched the same
performance track of [8,31,32,41], Ben6 and LL18.Looking at the
details, it could achieve a slight improvement in [36]. Though,
the presented algorithm attains remarkable supremacy in
[35,33], and LL8, marked by bolding the relevant row.
Fig. 10. Runtime evaluation in terms of sequentia
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Demonstrated performance is the consequence of paying atten-
tion to concepts such as data dependence and fusion preventing
edge that reduces runtime by raising data reuse, as well as consid-
ering diverse types for loops and not allowing to merge non-
heterogeneous nodes. As an example, [41] has made the results
of LL8 worse in terms of execution time because of assuming the
existing nodes’ type to be the same, in other words, not considering
types for loops. This causes the diminution in the ability of parallel
execution, and as specified in the relevant row of Table 5, the
speedup is 1, implying that the run time of the program is equal
in parallel and sequential mode. It is worth mentioning that given
[33], the execution time results related to the two processor sys-
tem of the proposed method slightly drop behind this article, but
considering more processors makes it able to overtake the referred
study with distance. This could owe to its lower accuracy in calcu-
lating data reuse because the relevant article examined the arrays
inside the loops in this calculation. Account the fact that in 3 pro-
cessors, the parallel and serial runtime of the proposed algorithm is
better than the one compared, and the lower speedup is only
because of its calculation method.

Fig. 8 affirms that in all test cases, the proposed algorithm was
able to achieve the same or better performance in terms of average
speedup rate, comparing with the methods under study, which is
approximately averaged in 7.36 percent better results. This feature
is calculated by dividing the speedup difference between the orig-
inal code and the examined method to the original code speedup
and finally obtaining the average of these values relating to the dif-
ferent number of processors.

To expose the capabilities of this algorithm in fusion problems
with more than two number of loop types, a sample as one in
Fig. 9 has been prepared, which is a random instance generated
in the method training phase. In this manner, Fig. 10 reveals the
progress rate obtained in the designed example, comparing the
proposed algorithm with [32,36], and [46]. These articles have
been selected due to the resemblance of the fusion problem sort
under their study and taking into account more than two types
l and parallel execution, as well as speedup.



Fig. 11. Convergence diagram.
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of loops. However, the slight absence of some features created the
compulsion to design a new example for this purpose.

In more detail, the program under consideration includes four
types of loops, mentioned in the Fig. 9 with their relative code.

In addition, it contains distinct kinds of dependencies, including
fusion preventing edges. For this comparison, all the mentioned
three methods have been implemented in Java and their outputs
have been assessed.

The fusion order obtained for this sample in all cases is 1–2-3–
4-5–6-7–8, as a result of which the following loops are merged, 1
with 2, 3 with 4, 5 with 6, and 7 with 8. By evaluating the graph
and the result acquired, it can be concluded that this output is
the optimal one for the examined problem. That is why, according
to the assessment done via Multi-Pascal, the results have proven
its superiority in terms of execution time.

4.2.1. Convergence and Stability
One of the critical factors in measuring the performance of dis-

tinct algorithms is the convergence assessment of results towards
the optimal solution during the learning process. Fig. 11 depicts
the convergence diagram of the proposed method, bringing to light
that it has this feature. In this figure, the prediction indicates the
average of the estimates made about the reward of each sample,
and the reward implies the average actual reward of each of them.
The trend of changes in these two factors throughout the learning
process, and their values closeness to each other can be the conse-
quence of the algorithm’s convergence. Apart from it, considering
that in repeating all the performed tests the algorithm has always
been able to obtain the recorded results, the stability of this
method can also be concluded. All these promising results support
the reliability of the proposed method.

4.3. Discussion

Due to the fact that the loop fusion problem is a complex prob-
lem, the available methods have reduced its complexity by apply-
ing some assumptions to the problem, and thereby, they have
succeeded in solving it in a short time. Actually, they have failed
to address the main fusion problem. Some other papers have
resorted to methods such as evolutionary algorithm, but their algo-
rithms need a lot of time to find a suitable solution. In this paper, a
new approach was presented for solving the fusion problem that,
with the help of deep reinforcement learning, was able to solve this
complex problem in the shortest possible time without applying
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any assumptions limiting the problem space. In addition to the
quick response time of this method, the obtained results are also
superior and confirm its performance. In most samples, the pro-
posed method has been able to get the same results as the com-
pared methods, and due to the optimality of these answers, the
algorithm’s performance can be confirmed. In other cases, the pro-
posed method was able to achieve better performance than the
compared methods, approximately averaged in 7.36 percent better
results. The considerable improvement observed in the results,
besides the low run time, proves the comprehensiveness and supe-
riority of this approach.

5. Conclusion

Relying on the content raised so far, introducing deep reinforce-
ment learning for the first time to this area brought a set of pro-
gression to the proposed algorithm. The capability of solving
fusion problem with its complexities such as the number of loops’
types, the variety of dependencies between them, and the charac-
teristics of the system on which the loops are to be run as the reg-
ister size, and beyond all this, finding the solution in the shortest
time, are very few influential strengths that this method has been
able to achieve. In contrast, this method has some shortcomings,
namely not considering the arrays inside the loops to improve
the evaluation of the fusion priority between the loops or not tak-
ing into account other loop transformations along with fusion to
improve the results. Despite all the strengths and weaknesses of
the proposed method, it could be a cornerstone in this area, owing
to its abilities that are not limited to the mentioned ones, regarding
its high development aptitudes that can be researched. For
instance, this framework has a solid base for further progression
in the following areas:

� More accurate calculation of data reuse by considering arrays of
loops and their size.

� Taking into account other loop transformations, such as loop
shifting and loop splitting, can increase the rate of improvement
by removing some barriers to fusing loops.

� Including other transformations raises new issues in this prob-
lem, in particular, the order of applying these transformations,
which can either be considered as a fixed order or the optimal
order can be obtained. This question is referred to as a valuable
research field.
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� The outcomes of deep reinforcement learning methods depend
on their evaluation function. According to the discussed results,
the presented evaluation function can be improved. For
instance, the execution time of a program can be the best and
most comprehensive criterion for this work because it includes
many other criteria implicitly. On the other hand, the primary
goal of all the existing methods is to improve the execution
time. Although it is necessary to point out that estimating this
value is also a field of research.
Table A1
Loop dependence graph of the represented results in Table 4.

[Ref.] Original dependence graph

[31]

[32]

[33]

[8]
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