
Optimizing Loop Fusion

Paper: Removing Impediments to Loop Fusion Through Code Transformations
Group 11: Alec Korotney, Vijairam, Viroshan Narayan, Ibrahim Abouarabi



Intro to Loop Fusion
● Loop Fusion: method of code optimization via combining 

multiple loops into one
● Previous methods:

○ Objective function optimization
○ Emphasis on new data reuse or parallelism opportunities

● Issues?
○ Mismatched loops

■ Different trip counts
■ Not control flow equivalent
■ Etc.

○ Control dependencies



Intro to Loop Fusion
Benefits*

+ Fewer loop branch executions
+ Data reuse
+ Opportunities for parallelism 

(specific to hardware)

* Dependent on nature of the loop fusion performed

Drawbacks*

- Increased code size
- Higher register pressure
- Overutilization of hardware 

resources
- Complex control flow



What this paper implements
● Method for eliminating loop 

fusion hindrances first
● Maximal loop fusion

○ Greedy algorithm for selecting 
most profitable fusions

● Code aggregation
● Note: Specific to IBM XL 

compiler suite



Outline
● Initial code elimination
● Loop Fusion Pass
● Fusing Loops
● Results & Conclusions



Key Idea
● Eliminate hindrances early on, then fuse aggressively
● Delay actual code aggregation until loop distribution



AGGressive COPY PROPAGATION AND DEAD STORE ELIMINATION 
Conventional copy propagation algorithms do not move computations 
into a loop to prevent the enlargement of the dynamic path length of 
the loop. Our aggressive propagation,however, does move statements 
into a loop to enable the creation of perfectly nested loops.



Loop Distribution
loop-distribution is useful in isolating parts of the 
loop that can be parallelized.

Before Loop Distribution After Loop Distribution



Loop Fusion Pass



Loop Fusion Pass



Loop Fusion Pass



Loop Fusion Pass
● Code is split into aggregate 

nodes, which are minimum code 
segments that must be moved as a 
unit

● An aggregate node is intervening 
if it is dominated by the 
preceding loop and post dominated 
by the following loop

● An aggregate node is non-movable 
if it has side effects (ex. 
volatile load/store, I/O)

● Aggregate nodes can be moved up 
or down if there are no data 
dependencies between the loop and 
adjacent intervening code



Loop Fusion Pass
● Attempt symbolic subtraction 

between the upper bounds of the 
normalized loops

● Stop if the difference can't be 
computed at compile time or there 
are negative distance dependencies 
between the loops

● Move any intervening code 
identified in the previous step



Loop Fusion Pass
Fuse the loops if all 
requirements are met:

1. Fuse the code into a 
single loop

2. Update our set of loops, Si

How do we fuse the code?



Fusing Conforming Loops
● Loops are conforming if they have identical trip counts
● Fusion is just combining the contents into a single loop



Fusing Non-Conforming Loops
● Need to be able to statically determine difference in 

trip count
● Merge the loops with a guard - FuseWithGuard



Fusing Non-Conforming Loops

Creates more code-growth than simply guarding the second 
loop, but it lets the fused-loop contents stay together 
(better for later potential optimizations)

Guarding One Loop (Alternative) Guarding Both Loops (Proposed)



Results
MIC - Single pass w/ moving 
intervening code

guard - fuse non-conforming 
loops

MPIC - move partial 
intervening code

iteration - keep doing algo 
until you can’t anymore



Results
MIC - Single pass w/ moving 
intervening code

guard - fuse non-conforming 
loops

MPIC - move partial 
intervening code

iteration - keep doing algo 
until you can’t anymore



Results
● Only fusing non-conforming loops (+guard) yielded little 

benefit (if any)
● The algorithm generally led to performance improvement, 

and losses were very low if it didn’t
● In some cases, the algorithm led to performance gains in 

the range of 1-5%!



Conclusion
Pros

● General performance increases
● Fuses more loops -> fewer overall loop branches
● Increased parallelism
● More optimization can happen in later compilation stages

Cons

● Can result in some performance loss
● May inhibit software pipelining (guard adds control flow)
● Increased code size



Q&A


