
Removing Impediments to Loop Fusion Through
Code Transformations

Bob Blainey1, Christopher Barton2, and José Nelson Amaral2

1 IBM Toronto Software Laboratory, Toronto, Canada
blainey@ca.ibm.com

2 Department of Computing Science, University of Alberta, Edmonton, Canada
{cbarton, amaral}@cs.ualberta.ca

Abstract. Loop fusion is a common optimization technique that takes
several loops and combines them into a single large loop. Most of the ex-
isting work on loop fusion concentrates on the heuristics required to op-
timize an objective function, such as data reuse or creation of instruction
level parallelism opportunities. Often, however, the code provided to a
compiler has only small sets of loops that are control flow equivalent, nor-
malized, have the same iteration count, are adjacent, and have no fusion-
preventing dependences. This paper focuses on code transformations that
create more opportunities for loop fusion in the IBM®XL compiler suite
that generates code for the IBM family of PowerPC®processors. In this
compiler an objective function is used at the loop distributor to decide
which portions of a loop should remain in the same loop nest and which
portions should be redistributed. Our algorithm focuses on eliminating
conditions that prevent loop fusion. By generating maximal fusion our
algorithm increases the scope of later transformations. We tested our im-
proved code generator in an IBM pSeries™ 690 machine equipped with a
POWER4™ processor using the SPEC CPU2000 benchmark suite. Our
improvements to loop fusion resulted in three times as many loops fused
in a subset of CFP2000 benchmarks, and four times as many for a subset
of CINT2000 benchmarks.

1 Introduction

Modern microprocessors such as the POWER4 have a high degree of available
instruction level parallelism and are typically nested within a relatively slow
memory subsystem with non-uniform access times. Both of these machine char-
acteristics make the distribution of memory references within a program critical
to achieving high performance. In many scientific applications, the structure of
loop nests operating on dense data arrays is a primary determinant of overall
performance. Compilers with advanced automatic loop restructuring capabilities
have emerged to address this performance opportunity [1].

Two important and complementary transformations typically performed in
a loop restructuring compiler are loop fusion and loop distribution. Important
design decisions when implementing loop optimization include (a) the order in

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 309–328, 2005.
© Springer-Verlag Berlin Heidelberg 2005

310 B. Blainey, C. Barton, and J.N. Amaral

which these phases should be executed, and (b) whether the smartness of the
loop optimization algorithm should be placed (i) in loop fusion, (ii) in loop
distribution, or (iii) in both.

In this paper we introduce the algorithms used for loop fusion in the IBM XL
Fortran and VisualAge®for C++ for AIX compilers. In these compilers maximal
loop fusion is performed first and then selective loop distribution takes place, i.e.,
the smartness is placed in the distribution phase of the loop optimization process.
These compilers target the PowerPC architecture and have been in continuous
production use since the introduction of the POWER architecture in 1990. In this
paper we report performance results for the new IBM processor, the POWER4.
The POWER4 processor features two microprocessors running in excess of 1
GHz on a single chip along with a large shared L2 cache and control logic for an
even larger off-chip L3 cache and high bandwidth chip-to-chip communication.
Each microprocessor features 8 parallel functional units executing instructions
in an out-of-order fashion along with dedicated L1 data and instruction caches.
As in the POWER3™ processor, the POWER4 data caches include support for
automatic prefetching of linear reference streams.

The fusion of small loops to generate larger loops decreases the number of
loop branches executed, creates opportunities for data reuse, and offers more
instructions for the scheduler to balance the use of functional units. Possible
negative effects of loop fusion are increased code size, increased register pressure
within a loop, potential overcommiting of hardware resources and the forma-
tion of loops with more complex control flow. Increased code size can affect the
instruction cache performance. Higher register pressure has the potential of re-
sulting in code with undesirable spilling instructions. Architectures such as the
POWER4 achitecture contain hardware support for prefetching linear reference
streams. If a loop contains more reference streams than can be prefetched by the
hardware, one or more of the reference streams will be plagued by cache misses,
causing performance degredations. Loops with complex control flow have a longer
instruction path length and can have negative side effects on later optimizations
such as software pipelining.

The loop fusion algorithm used in this compiler scans the code to find pairs
of normalized loops that can be fused and greedily fuses them. Two loops can
be fused if they are control equivalent, have no dependences, and their bounds
conform (see Section 4). In order to be fused, there must be no intervening code
between the loops. In some situations the code that is between the loops has
no data dependences with one of the loops. In this case the code can be moved
either before the first loop or after the second loop. In this paper we describe our
implementation of this data movement operation. We also implement loop peel-
ing to allow the fusion of loops that originally had non-conforming bounds. Our
algorithm processes loops in the same nesting level in a given control flow, mov-
ing intervening code, peeling iterations, and fusing loops until no more loops can
be fused. We present experimental results comparing the loop fusion algorithm
with and without these improvements.

Removing Impediments to Loop Fusion Through Code Transformations 311

In previous work published on loop fusion, the decision to fuse a set of loops
was based on the evaluation of an objective function — usually a measurement of
data reuse and/or estimates of resource usage [4, 6, 10]. In our implementation
the decision of how the code should be aggregated into a set of loop nests is
delayed until loop distribution. Therefore, we can apply maximal loop fusion
without regard to resource usage or to the benefits of fusion. For compile time
and implementation efficiency we use a greedy algorithm and do not consider
cases in which an early fusion might prevent a later, potentially more profitable,
fusion.

The main contributions of this paper are:

– A new algorithm that eliminates conditions that prevent loop fusion and
increase the scope of later loop restructuring transformations.

– An implementation of the new fusion algorithm in the IBM production com-
pilers for the eServer pSeries, and measured performance on the eServer
pSeries 690 that is built around the new POWER4 processor.

– Experimental results that show that the algorithm increases the number of
loops fused when compared with the algorithm in the original compiler.

The rest of the paper is organized as follows: Section 2 briefly introduces the
POWER4 Architecture, which was used for the performance measurements. Sec-
tion 3 describes the general loop optimizer that is used in this compiler. Section 4
describes the loop fusion algorithm and Section 5 presents some preliminary ex-
perimental results. Section 6 reviews related work.

2 The POWER4 Architecture

The POWER4 is a new microprocessor implementation of the 64-bit PowerPC
architecture designed and manufactured by IBM for the UNIX®server market.
It features two processor cores running at speeds up to 1.3 GHz placed onto a
single die. Four of these dies are placed together to form one multi-chip module
(MCM), containing eight processor cores. Each of the two processors on the die
has a dedicated 64 KB direct mapped L1 instruction cache, a dedicated 32 KB 2-
way set associative L1 data cache and a unified 1 KB 4-way set associative TLB
supporting 4 KB and 16 MB page sizes. The two processors share a single 8-way
set associative 1.44 MB on-chip combined L2 cache. Each 4 chip (8 processor)
MCM has an attached 128 MB L3 cache and dedicated memory controller. For
the experiments presented in this paper we used a dual MCM pSeries model 690
server. This machine runs at 1.1 GHz and has 64 GB of main memory[3].

Each L1 instruction cache can support up to 3 outstanding misses and each
L1 data cache can support up to 8 outstanding misses. The L1 data cache and
the L2 and L3 shared caches include support for automatic prefetching of linear
reference streams. Each processor maintains a 12-entry prefetch address filter
queue and up to 8 concurrent active prefetch streams. The L2 cache is orga-
nized into 3 slices, each 480 KB in size and can offer more than 100 GB/s in
bandwidth [12].

312 B. Blainey, C. Barton, and J.N. Amaral

3 Overview of Loop Optimizations

In the XL compilers, most optimizing transformations are applied to each loop
nest in functions by the iterative application of several specialized passes. Loop
fusion enlarges the scope in which later optimizations are applied. Fusion cre-
ates opportunities to improve data reuse, to generate coarser grain parallelism,
to exploit the use of hardware prefetch streams, to improve the allocation of ar-
chitected register files, and to improve the scheduling for load/store or floating-
point dominated code, or for code that combines both types of operations. The
larger scope available for these later optimizations is due to the aggregation of
more code into a smaller number of loop nests. In order to reap these benefits
we implement maximal fusion first, and later redistribute the code into separate
loop nests. The distributor reaggregates code according to a set of constraints
and the optimization of an objective function. If the original loop structure is
already optimal, the distributor will usually re-create it. Thus the loop fusion
phase performs maximal fusion without concern for potential negative effects in
the code.

Figure 1 presents the sequence of transformations applied to the code, includ-
ing loop fusion and loop distribution. Starting on the left of the figure, the early
optimizations, aggressive copy propagation and dead store elimination, create
opportunities for loop interchanging and loop unroll and jam. Conventional copy
propagation algorithms do not move computations into a loop to prevent the en-
largement of the dynamic path length of the loop. Our aggressive propagation,
however, does move statements into a loop to enable the creation of perfectly
nested loops. Figure 2 illustrates the aggressive copy propagation performed in
this compiler. The original code is in Figure 2(a). After copy (and expression)
propagation the code in Figure 2(b) is obtained, and after the dead store elimina-
tion, the code in Figure 2(c) results. Although the multiplication x*y now needs
to be computed in every iteration of the inner loop, the combination of these two
optimizations generates a perfectly nested loop that can be advantageous both
for loop permutation and unroll-and-jam. Furthermore, the computation of x*y
can be moved back out of the loop after the loop optimizer has completed.

Next, maximal loop fusion is performed. The goal is to enhance the scope
for optimization in the loop distributor and not necessarily to improve perfor-
mance on its own. Working with larger portions of the code, the distributor will

Splitting
Node

and Jam
Loop UnrollLoop Fusion

Elimination
Dead Store

Propagation
Aggressive Copy

Expansion
Scalar

Distribution
Loop

Permutation
Loop

and Jam
Loop Unroll

Fig. 1. Loop Optimizations

Removing Impediments to Loop Fusion Through Code Transformations 313

Fig. 2. Example of aggressive copy propagation followed by dead store elimination

encounter more opportunities to explore data reuse, generate coarser grained
parallelism, exploit prefetch, improve the use of architected registers, and sched-
ule operations to the fix point, floating point, and load/store units.

After loop fusion, the compiler applies common-subexpression elimination,
and node splitting. In order to keep the size of the data dependence graphs
(DDGs) under control, complex statements are allowed in the code representa-
tion at this level. Each one of these statements is a node in the DDG. Because
these nodes represent complex statements, a node may participate in multiple
dependence relations. Node splitting separates a complex statement into two or
more simpler statements, each participating in a disjoint dependence relation. In
some cases node splitting allows the loop distributor to distribute two portions
of a statement into separate loop nests. For instance, such a split is profitable
when one part of the statement has self-dependences that prevent parallelization
and the other part parallelizable.

The scalar expansion transformation identifies the use of scalars that induce
anti or output dependences across loop iterations. In a traditional scalar expan-
sion algorithm, each one of these scalar variables would be expanded into arrays
with as many dimensions as required to eliminate the dependences. In this com-
piler, the expansion is limited to one dimension, and the variables are marked as
expandable but the actual generation of the arrays is postponed until the code
generation phase. At that point the expansion might not be necessary because
of code aggregation done by the loop distributor or, if expansion is necessary,
the required storage could be overlaid with existing temporary storage.

It is important to strike the right balance between the multiple conflicting
goals of the loop distributor. In this compiler suite the loop distributor first
identifies the minimal segments of code that must be distributed as a unit. For
instance, if an if statement is encountered, the test along with the code that
appears in both branches, up to but not including the join node, form a unit
of code. These code units are called aggregate nodes. Aggregate and statement
nodes, which form maximal strongly connected components of the DDG are
grouped together to form π-nodes, named after the definition by Kuck [13].
Degenerate π-nodes are also formed from the remaining statement and aggre-
gate nodes that are not part of any strongly connected component. A π-node
may contain from a single statement to an arbitrarily complex portion of code.
π-nodes are the units that the distributor works with.

314 B. Blainey, C. Barton, and J.N. Amaral

Some of the characteristics of a π-node that are relevant for the loop dis-
tribution algorithm include: register requirements,1 load/store usage, number of
floating point and fixed point operations executed, and the number of prefetch-
able linear streams.2 Another important attribute taken into consideration by
the distributor is whether the code in a π-node is self-dependent or not. A
π-node that is not dependent on itself is parallelizable and should be aggregated
only with other non-self-dependent nodes.

Once the π-nodes are formed, the distributor creates an affinity graph that
is an undirected weighted graph whose nodes correspond to π-nodes and whose
weighted edges represent the affinity between the nodes. Currently the only
measure of affinity used in the compiler is the potential for data reuse between
the code in the nodes. The compiler uses a greedy algorithm in the distributor:
it attempts to aggregate nodes in decreasing order of affinity. The decision about
aggregating two π-nodes is based not only on the affinity in the graph, but also on
whether aggregation would satisfy data dependences and whether aggregation
is desirable based on node attributes. For instance, if the aggregation of two
π-nodes would exceed the use of the existing prefetching streams, the nodes are
usually not aggregated. Likewise self-dependent (non-parallelizable) nodes are
usually not aggregated with non-self-dependent (parallelizable) nodes. Decisions
about aggregating nodes are conditioned to the potential increase in data reuse.

After loop distribution, loop permutation and unroll and jam are performed.
These transformations are limited in their application to perfectly nested loops
and benefit from the loop distributor’s efforts to isolate perfect nests.

4 Loop Fusion Algorithm

In the XL compiler suite, loop normalization takes place prior to loop fusion.
In other words, whenever possible, the loop starting count, its increment, and
its direction (always increasing the index) are normalized. We divide loops into
two classes: loops that are eligible for fusion and loops that are not eligible for
fusion. Examples of loops that are non-eligible for fusion include loops that were
specified to be parallel loops by the programmer (in OpenMP for instance), loops
for which normalization fails, non-counted loops, and loops with side entrances
and side exits. In order to be fused, two loops that are eligible for fusion must
satisfy the following conditions:

– they must be conforming,
– they must be control equivalent,
– they must be adjacent, and
– there can be only forward dependences between the loop bodies.

1 Loop body size is used as an estimator for register pressure.
2 The number of prefetchable linear streams is an important characteristic for the

optimization of code for the Power4 because this architecture has a hardware stream
prefetching mechanism that is triggered by regular data accesses.

Removing Impediments to Loop Fusion Through Code Transformations 315

Fig. 3. Fortran 90 and Fortran 77 versions of the code for running example

Two normalized loops are conforming if they have the same iteration count. A set
of loops is control equivalent if, whenever one of the loops of the set is executed,
all of the other loops must be executed. We say that a loop is executed if its exit
test is executed at least once. Two loops are determined to be control equivalent
using the dominator and post-dominator properties of the loops. If loop Lj

dominates loop Lk and Lk post-dominates Lj then the two loops are control
equivalent. Two loops Lj and Lk are adjacent if there is no intervening code
between them, i.e., in the Control Flow Graph, Lk is the immediate successor
of Lj .

We use the contrived running example presented in Fortran 90 and Fortran
77 in Figure 3 to illustrate our loop fusion algorithm. This code example has
four loops accessing four different arrays, a, b, c, d. We assume that there is no
overlap between the memory locations of these arrays, i.e., there is no i and j
such that the address of x(i) overlaps with the address of y(j), where x and y
represent the arrays a, b, c, and d.

Figure 4 presents the LoopFusion algorithm. The algorithm operates one
nest level at a time processing the outermost nesting level first and then moving
toward the innermost level (step 1). First the algorithm partitions all the loops
that are at the same nest level into sets of loops that are control equivalent. In
step 4 all loops that are not eligible for fusion are removed from the set. Since
all the loops in a set are control flow equivalent, dominance defines a total order
over the set. Therefore, we can use the notion of moving forward and moving
in reverse order through the set. The loop fusion algorithm iterates, alternating
forward and reverse passes over the set, until it finds no more loops to be fused.
Fusions and code movements that take place during a pass through a set of
loops change the control flow graph and the dominance order between the loops.
Therefore, before each pass the control flow graphk and the dominance relations
are recomputed. The iterations processed in the while loop starting at step 7

316 B. Blainey, C. Barton, and J.N. Amaral

LoopFusion

1. foreach NestLevel Ni from outermost to innermost
2. Gather identically control dependent loops in Ni

into LoopSets
3. foreach LoopSet Si

4. Remove loops non-eligible for fusion from
Si

5. FusedLoops ← True
6. Direction ← Forward
7. while FusedLoops = True
8. if |Si| < 2
9. break
10. endif
11. Build Control Flow Graph
12. Compute Dominance Relation
13. FusedLoops =

LoopFusionPass(Si,Direction)
14. if Direction = Forward
15. Direction = Reverse
16. else
17. Direction = Forward
18. endif
19. endfor
20. end while
21. endfor

Fig. 4. Loop Fusion Algorithm

alternate between forward and reverse passes through the loop set until no loops
are fused during a pass. In the code example of Figure 3, all loops are eligible for
fusion and control equivalent, thus all four loops are in the same set, and have
the following dominance order: i1 → i2 → i3 → i4 (we will identify the loops
in the example by their index variables).

In a forward pass the LoopFusionPass algorithm presented in Figure 5 tra-
verses a set of control flow equivalent loops in dominance order, while during a
reverse pass the traversal is in post-dominance order. The function Intervening

Code(Lj , Lk) checks whether the two loops are adjacent, i.e., if there is inter-
vening code between them. We use the dominance relation to determine the
existence of intervening code. An aggregate node ax intervenes between loops
Lj and Lk if and only if Lj properly dominates ax, Lj ≺d ax, and Lk prop-
erly post-dominates ax, Lk ≺pd ax. Because the loops Lj and Lk are control
equivalent, there cannot be a side entrance or a side exit to the intervening code
between the two loops. If we find intervening code between Lj and Lk, we check
if the intervening code can be moved either before the first loop or after the
second one (step 3). Our algorithm allows for a portion of the intervening code
to be moved above the first loop while the remainder of that code is moved

Removing Impediments to Loop Fusion Through Code Transformations 317

LoopFusionPass(Si, Direction)
1. FusedLoops = False
2. foreach pair of loops Lj and Lk in Si, such that Lj

dominates Lk, in Direction
3. if InterveningCode(Lj, Lk) = True and

IsInterveningCodeMovable(Lj , Lk) = False
4. continue
5. endif
6. σ ← |κ(Lj) − κ(Lk)|
7. if Lj and Lk are non-conforming and

σ cannot be determined at compile time
8. continue
9. endif
10. if DependenceDistance(Lj , Lk) < 0
11. continue
12. endif
13. MoveInterveningCode(Lj, Lk, Direction)
14. if InterveningCode(Lj, Lk) = False
15. if Lj and Lk are non-conforming
16. Lm ← FuseWithGuard(Lj , Lk)
17. else
18. Lm ← Fuse(Lj , Lk)
19. endif
20. Si ← Si ∪ Lm − {Lj , Lk}
21. FusedLoops = True
22. else
23. continue
24. endif
25. endfor
26. return FusedLoops

Fig. 5. Loop Fusion Algorithm

after the second loop. This is necessary when a portion of the intervening code
cannot be moved down because of dependences with Lk and the remainder of
the code cannot be moved up because of dependences with Lj. The algorithm
IsInterveningCodeMovable checks for this condition.

If the two loops do not conform, i.e., if they have different iteration counts,
they could be made to conform by guarding iterations of one of the loops. We
are only considering loops that were normalized (loops for which normalization
failed were eliminated in step 4 of the LoopFusion algorithm). In step 6 we
compute the difference between the upper bound of the two loops, κ(Lj) and
κ(Lk) and store the result in σ. Observe that this is a symbolic subtraction as
the value of σ may not be known at compile time. In step 7 we abandon our
attempt to fuse the loops Lj and Lk if σ cannot be determined at compile time.

318 B. Blainey, C. Barton, and J.N. Amaral

On the other hand, if σ is a known constant, a guard is placed in the fused loop
to inhibit the extra execution of one of the loop bodies (see step 16).

Figure 9 presents the algorithm FuseWithGuard used to fuse two non-
conforming loops Lj and Lk. A new loop, Lm is created with the larger upper
bound of the two loops (step 1). A guard branch is then created at the beginning
of the loop (step 2) and the bodies of Lj and Lk are included within the guard
(steps 3 and 4). The guard branch checks to see if the current iteration count is
less than the lower upper bound of the two loops. The bodies of the original loops
are then copied into the new loop, preserving the dominance relation between
them. An else statement is then inserted to guard the second loop body (step 5).
The longer loop is inserted in the else statement (step 6). This guarded fusion
creates more code growth than an alternative technique that would simply guard
the shorter loop. However, it is preferable in this compiler because it favors a later
index set splitting transformation because it will allow the common portions of
the fused loop to remain together.

In step 10 we check if the dependence relations between the bodies of loops
Lj and Lk prevent fusion. This test is performed last because checking for de-
pendences between loop bodies is the most expensive loop fusion condition that
needs to be tested. If there is a negative dependence distance from Lj to Lk,
the loops cannot be fused. In the IBM XL compiler suite, data dependences are
computed on demand. For our algorithm, this computation is based on the SSA
data flow representation within the context of a loop. The information about
references to arrays is summarized in matrices of subscripts. These matrices are
used along with vectors representing the bounds of surrounding loops to de-
termine the dependence relation between two loop bodies, or between a loop
body and intervening code. If there are dependences, the dependence analysis
produces a dependence vector consisting of a distance or direction for each loop
surrounding the reference pair.

The intervening code between loops Lj and Lk may itself contain loops. These
loops are treated as regular code and are moved if dependences allow. During a
forward pass, the intervening code is only moved up (step 13). This restriction
on the direction of code movement during a pass is a result of an engineering
design. A collection of data structures is used to store the control flow graph,
the dominator and post-dominator trees, and the SSA data flow graph. We allow
these data structures to become inconsistent after the fusion of loops and the
movement of intervening code within a pass of the algorithm. These structures
are rebuilt at the end of each pass. It would have been possible to modify the
interface to these structures to allow them to be updated as fusion progressed,
however we do not believe our approach has a noticeable effect on running times
and it maintains the original interface. Because code is not moved down (or up)
during a forward (or reverse) pass, even if all the intervening code is movable,
the part of the code that must move down (or up), because of dependences, is
not moved in this step. In this case the two loops do not become adjacent and
cannot be fused in the same pass. Therefore, in step 14 we check once more if
the loops are adjacent before fusing the two loops in step 18 and updating the

Removing Impediments to Loop Fusion Through Code Transformations 319

Fig. 6. Completing first forward pass in running example

loop set in step 20. When all the intervening code is movable, the movement of
the portion of the intervening code that can move up in step 13 prepares the
loop set for a potential fusion in the next pass of the algorithm.

In the example of Figure 3(b) the first two loops to be compared are i1 and
i2. There are no dependences that prevent their fusion, they are adjacent, but
they are non-conforming. The test in step 15 in Figure 5 is true and the two
loops are fused using the algorithm in Figure 9. This fusion results in the loop
i5 shown in Figure 6(a).

The next comparison is between loops i5 and i3. There are no dependences
preventing fusion, and the loops are non-adjacent but the intervening code (ini-
tialization of ds) is movable to the point before i5. However, the difference
between the iteration count of the two loops cannot be determined at compile
time (we assume that n and m are not known until run time), and fusion of i5
and i3 fails.

Next i5 and i4 are compared, the two loops can be made to conform, there
are no dependences preventing fusion, and all the intervening code (which in-
cludes loop i3 and the if-then-else before i4) can be moved. Because of the
dependence on d between i5 and i3, i3 only can be moved down to the point
after i4. The dependence on c(n-2) requires the aggregate node that contains
the if-then-else to be moved up to the point before i5. The MoveInterven-

ingCode algorithm moves the intervening code that can be moved up to the
point before i5 resulting in the code shown in Figure 6(b). However, the test on
step 14 fails, and the loops cannot be fused in this pass.

The control flow graph is rebuilt and the dominance and post-dominance
relations recomputed before a reverse pass starts. In the reverse pass the loops i4
and i3 are compared, but they cannot be fused because we cannot determine the
difference in their iteration count at compile time. Next, i4 and i5 are compared.

320 B. Blainey, C. Barton, and J.N. Amaral

Fig. 7. Final reverse pass on running example

The only intervening code (loop i3) can be moved down below i4. The difference
in iteration count between i4 and i5 is 2 and there are no dependencies that
prevent fusion. The intervening code between i4 and i5 is moved down (in
step 13) resulting in the code shown in Figure 7(a). The two loops are then
fused resulting in the code in Figure 7(b) and the reverse pass terminates. The
next forward pass will result in no additional fusions and the algorithm will
terminate.

As discussed in Section 3, the code is organized into aggregate nodes. An
aggregate node is a minimum code segment that must be moved as a unit.
Examples of aggregate nodes include a single statement, a nest of loops, or
an if-then-else statement with arbitrarily complex code in each branch. The
algorithm in Figure 8 checks if all the aggregate nodes in the intervening code
found between two loops Lj and Lk can be moved to other places in the program.
In step 1 we build the set InterveningCodeSet containing all the aggregated
nodes that are intervening code between the two loops. An aggregate node ax

is intervening code between two loops Lj and Lk if Lj properly dominates ax,
Lj ≺d ax and Lk properly post-dominates ax, Lk ≺pd ax.

We cannot move aggregate nodes that might have side effects. Instances of
code that have side effects include volatile load/store, statements that perform
I/O, and unknown functions that might contain such statements. If any of the
aggregate nodes in the intervening code between two loops have or may have
side effects, the intervening code is non-movable (step 2).

When determining the direction in which an aggregate node ax can move,
we need to take into consideration the data dependences between ax and the

Removing Impediments to Loop Fusion Through Code Transformations 321

remaining aggregate nodes in the intervening code, as well as the data depen-
dence relations with the loops Lj and Lk. Thus we build a Data Dependence
Graph G for the nodes in the aggregate node set (step 4). Then we traverse G
in topological order to build the CanMoveUpSet, the set of nodes that can be
moved to the point before the loop Lj (steps 5 to 10). A node ay can move up if

IsInterveningCodeMovable(Lj , Lk)
1. InterveningCodeSet ← {ax|Lj ≺d axandLk ≺pd ax}
2. if any node in InterveningCodeSet is non-movable
3. return False
4. Build a DDG G of InterveningCodeSet
5. CanMoveUpSet ← ∅
6. foreach ay ∈ G in topological order
7. if CanMoveUp(Predecessors(ay)) and Lj � δ ay

8. CanMoveUpSet ← CanMoveUpSet ∪{ay}
9. endif
10. endfor
11. CanMoveDownSet ← ∅
12 foreach az ∈ G in reverse topological order
13. if CanMoveDown(Successors(az)) and az � δ Lk

14. CanMoveDownSet ← CanMoveDownSet ∪{az}
15. endif
16. endfor
17. if InterveningCodeSet −

(CanMoveUpSet ∪ CanMoveUpSet) = ∅
18. return True
19. return False

Fig. 8. Algorithm to check if all intervening code can be moved

FuseWithGuard(Lj, Lk)
1. Create Lm with upper bound max(κ(Lj), κ(Lk))
2. Insert Guard Bound for min(κ(Lj), κ(Lk)) at beginning

of Lm

3. Copy body of Lj to Lm, within guard
4. Copy body of Lk to Lm, after Lj body, within guard
5. Insert else statement
6. if (κ(Lj) > κ(Lk))
7. Copy body of Lj to Lm, after else statement
8. else
9. Copy body of Lk to Lm, after else statement
10. endif

Fig. 9. Algorithm to fuse loops using a guard statement

322 B. Blainey, C. Barton, and J.N. Amaral

there are no data dependences between the preceding loop Lj and ay, Lj � δ ay,
and all the predecessors of ay in G can also move up.

Similarly, in steps 11 to 16 we traverse G in reverse topological order to build
the set of nodes that can move down, the CanMoveDownSet. In order to move
a node az down, there must be no dependences between az and the second loop
Lk, and all of az’s successors must be able to move down. The test in step 17
tests if every aggregate node in the InterveningCodeSet can be moved either up
or down.

The MoveInterveningCode called in step 13 of the LoopFusionPass

uses the sets created by the IsInterveningCodeMovable to move code. If
called during a forward pass, it simply traverses the DDG and moves any ag-
gregate node that can move up to the point before the first loop Lj . Likewise,
when called during a reverse pass, it moves all nodes that can move down to the
point after the second loop Lk.

5 Results

We implemented the algorithms presented in Section 4 in the development ver-
sion of the IBM XL compiler suite and ran benchmarks compiled with this mod-
ified compiler on an IBM eServer pSeries 690 machine built with the POWER4
processor. Figure 10 presents preliminary results for the SPEC2000 and SPEC95

Fig. 10. Number of loops fused with each version of the compiler3

Removing Impediments to Loop Fusion Through Code Transformations 323

Fig. 11. Execution times for selected SPEC benchmarks with multiple versions of the
compiler suite

benchmark suites. We only include in the figures of results the benchmarks in
which our loop fusion algorithm affects code transformations, i.e., benchmarks
in which more loops are fused as a result of our algorithm. Also, benchmarks
from SPEC95 which also occur in the SPEC2000 suite were not repeated.

We compare five versions of our algorithm with an implementation of basic
loop fusion. Figure 10 presents the number of loop fusions that occurs in each
version of the compiler. The versions of the compiler are:

Original: It is a basic loop fusion algorithm in which no code transformations
are performed to try and make loops fusible.

+MIC: Does a single forward pass of the algorithm and moves any intervening
code that can be moved up. If all of the intervening code cannot be moved
up, fusion fails.

+MPIC: Part of the intervening code is moved up. In order for fusion to benefit
from this, the iteration step must be included.

+guard: Non-conforming loops are fused using the guard branch. It does not,
however, allow intervening code between two loops to be moved.

+MIC +guard: Combines guarding and simple code motion.
+MIC +guard +iteration: Complete implementation of the iterative algo-

rithm executing as many passes as required for maximal fusion.

The results in Figure 10 indicate that each of the transformations affect
different benchmarks. The movement of intervening code (columns MIC and
MPIC) results approximately doubles the number of loops fused in fma3d, galgel,

324 B. Blainey, C. Barton, and J.N. Amaral

facerec, and mgrid. The number of loops fused with MPIC or without MIC
partial movement of intervening code is the same. This is to be expected because
moving partial intervening code (move some statements up in current pass and
the remainder down in the reverse pass) only benefits when the iteration step is
added. The more complex MPIC pass, however, does not result in performance
degredations when compared to the simpler MIC pass.

When loops are made to conform through the use of guard branches (guard),
five times as many loops are fused in sixtrack, three times as many loops are
fused in crafty and 27% more loops are fused for fma3d. Both gzip and go had
2 loops fused where none were fused in the original algorithm. However, for all
other benchmarks, no extra loops are fused.

Combining the movement of intervening code with the guard branches for
loop conformation (MIC and guard) produces a dramatic increase in the number
of fused loops for many benchmarks.

Finally, the addition of the iteration step, in combination with the MPIC
and guard options resulted in even more loops fused in several benchmarks (apsi,
facerec, fma3d, galgel and sixtrack). This demonstrates that there are cases in
which moving intervening code below the second loop (reverse pass) and splitting
intervening code to move part of the intervening code above the first loop and
the rest below the second loop can be very beneficial.

The technique to generate more fusion that we report in this paper is an
enabling technology for optimizations that take place later in this compiler
framework. We are now addressing some of those optimizations and finding
ways in which they will benefit from the larger scope provided by our im-
proved fusion. Nonetheless, a paper reporting advancement of compiler tech-
nology would not be complete without run times for SPEC benchmarks. There-
fore, we present the running times for the different versions of the compiler in
Figure 11. In the current version of the compiler, the impact of the increased
fusion in the running times is modest. The most significant performance change
is in wave5, where tripling the number of loops fused resulted in an improve-
ment of 5.1% in the running time. The other significant performance change is
in mgrid, where doubling the number of loops fused resulted in an improvement
of 3.6% in the running time. We are in the process of obtaining run-time mea-
surements using hardware counters in the POWER4 (performance of caches,
load/stores completed, etc.,) to offer better explanations for the performance
changes.

When non-conforming loops are fused as a result of adding guard statements,
control flow is introduced into the loop body. The insertion of control flow into
a loop might inhibit software pipelining. Thus, we would expect to see a degra-
dation in performance in this case. We are currently investigating several of
the benchmarks (crafty, fma3d and sixtrack) to determine if there were benefits
to loop fusion (i.e., data reuse) which offset the negative effects of introducing
control flow. We are also working on a variation of index set splitting that will
be able to identify branches within a loop and peel or split the loop to remove
control flow splits.

Removing Impediments to Loop Fusion Through Code Transformations 325

6 Related Work

In this paper we presented improvements to the maximal loop fusion algorithms
in the IBM XL Fortran and VisualAge for C compilers. Scant work has been
published on maximal loop fusion followed by a loop distributor. In contrast,
there has been extensive studies and experimentation with weighted loop fusion.
Weighted loop fusion associates non-negative weights with each pair of loop
nests. These weights are a measurement of the gains that are expected if the two
loops were fused. Examples of gains represented in weighted loop graphs include
potential for array contraction, improved data reuse, and improved local register
allocation. Given such a weighted graph representing potential fusions, the goal
of weighted loop fusion is to group the loop nests into clusters in a way that
minimizes the total weight of edges that cross cluster boundaries [14].

In Gao et al., a Loop Dependence Graph (LDG) provides a measure for the
number of arrays that can be contracted when two loops are fused. Contracted
arrays can be represented by a small number of scalar variables, thus removing
memory instructions through the elimination of multiple load/stores of the same
array. Their solution for this modified weighted loop fusion problem is based on
the max-flow/min-cut algorithm [6]. The LDG based solution for loop fusion fo-
cuses on solving the problem of moving data between the cache and the registers,
while our approach also takes into consideration the data cache performance.

Kennedy and McKinley used a polynomial reduction of the Multiway Cut
problem to prove that solving the weighted loop fusion problem to maximize data
reuse is NP-Hard. They also provide a greedy algorithm and a variation of the
max-flow/min-cut algorithm to find approximated solutions for loop fusion [10].
Megiddo and Sarkar propose an integer linear programming solution for weighted
loop fusion based on the Loop Dependence Graph (LDG) [14].

In [11] Kennedy and McKinley introduce the concept of loop type. In their
experiments they used two types of loops: parallel loops are loops that have no
loop-carried dependences, and sequential loops are loops that have at least one
loop-carried dependence. In order to be fused, two loops must be of the same
type, and must be conformable at level k, i.e. they are at the same level of perfect
nests and all their outer loops are conformable. Two loops are conformable if they
have the same iteration count. When performing Unordered Typed Fusion they
try to produce the fewest loops without giving priority to any loop type. Through
a reduction of the Vertex Cover problem they show that the Unordered Typed
Fusion problem is NP-Hard. On the other hand, the Ordered Typed Fusion
exercises a preference for fusing loops of a given type. For instance, parallel
loops should be fused first — and thus potentially prevent some later fusion of
sequential loops — when data reuse is not a concern. They propose a greedy
algorithm to solve the Ordered Typed Fusion problem.

Loop distribution was introduced in Muraoka’s Ph.D. thesis to improve par-
allelism [15]. Kuck introduced the idea of using a portion of the dependence
graphs in the loop distribution algorithm, and defined of a π-block as a strong

3 Measurements were not done using the official SPEC tools.

326 B. Blainey, C. Barton, and J.N. Amaral

connected component of the data dependence graph [13]. Kennedy and McKin-
ley designed a loop distribution algorithm for loops with complex control flow
that does not replicate statements or conditions [9]. Hsieh, Hind, and Cytron
extend the algorithm to allow the distribution of loops with multiple exits [8].
A comprehensive discussion of loop transformations is found in Bacon et al. [2].

In addition to improving data locality and reducing loop overhead, loop fu-
sion can increase the granularity of parallelism and minimize loop synchroniza-
tion. Some research on loop fusion focuses on multi-processor architectures and
programs that can run in parallel. Singhai and McKinley developed a heuristic
to fuse loops, taking into account both data locality and parallelism subject to
register pressure [16].

Gupta and Bodik introduce a technique for loop transformations, including
loop fusion, to be decided at run time instead of compile time [7]. Kennedy
and McKinley provided an algorithm for fusing a collection of parallel and se-
quential loops that minimizes parallel loop synchronizations while maximizing
parallelism [10].

7 Final Remarks

Many papers address the problem of optimizing the set of loops that should
be fused to increase data reuse through graph partition and related techniques.
However, there has been scant documentation of the actual process of combining
code motion with fusion to enable maximal loop fusion and allow the redistri-
bution of these loops at a later phase. Thus the description of the maximal loop
fusion algorithms in this paper is an important contribution. Our algorithm is
fast — there are no noticeable changes in the compile time when the fusion
algorithm is implemented — and easy to implement and debug.

Our next line of study will include removing the restriction that all the loops
that are fused must be control equivalent. We will investigate techniques similar
to the ones described by Chen and Kennedy [5] that allow the critical path of a
loop to be increased when there is a potential for benefits due to increased data
reuse.

The loop distributor is also being enhanced in light of the new loop fusion
implementation. Larger loop nests are being created, which are providing new
scenarios for the loop distributor to to evaluate and deal with.

Loop alignment is another well known loop transformation which we are also
working on. Performing loop alignment on loops that have a known distance
negative dependence will allow even more loops to be fused.

A form of Index Set-Splitting is currently being developed that will analyze
the guard branches generated by the FuseWithGuard algorithm and create new
loops (through loop peeling or loop splitting) that do not contain the guards.
This optimization will eliminate the control flow splits introduced during fusion,
which should increase opportunities for later optimizations, such as software
pipelining.

Removing Impediments to Loop Fusion Through Code Transformations 327

We believe this work provides an excellent framework to enhance the number
of loops which are fused in a program. This loop fusion enables other optimiza-
tions, such as loop distribution, to make better decisions on how to organize
loops to increase performance. While the runtime results presented do not indi-
cate this work had any improvement on overall performance, we are confident
that it does create more opportunities for other optimizations and work is cur-
rently underway to enhance these optimizations to benefit from these fusion
results.

Acknowledgements

The work reported in this paper uses the infrastructure built by many hands. We
thank the Toronto Portable Optimizer (TPO) and Toronto Optimizing Backend
(TOBEY) teams for building this infrastructure. Special thanks to Jim McInnes,
Ryan Weedon, and Roch Archambault for extensive and fruitful discussions.
This research is supported by an IBM Centre for Advanced Studies (CAS) fel-
lowship and by grants from the National Sciences and Engineering Council of
Canada (NSERC), including a grant from the Collaborative Research Develop-
ment (CRD) Grants program.

Trademarks

The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both:
IBM, PowerPC, POWER3, POWER4, pSeries, VisualAge.

UNIX is a registered trademark of The Open Group in the United States
and other countries.

References

1. A. W. Lim an S.-W. Liao and M. S. Lam. Blocking and array contraction across
arbitrarily nested loops using affine partitioning. In Proceedings of the ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, pages 103–
112, June 2001.

2. D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for high-
performance computing. ACM Computing Surveys, 26(4):345–420, 1994.

3. Steve Behling, Ron Bell, Peter Farrell, Holger Holthoff, Frank O’Connell, and Will
Weir. The power4 processor introduction and tuning guide. Technical Report
SG24-7041-00, IBM, November 2001.

4. C. Ding and K. Kennedy. The memory bandwidth bottleneck and its amelioration
by a compiler. In 2000 International Parallel and Distributed Processing Sympo-
sium, pages 181–189, Cancun, Mexico, May 2000.

5. C. Ding and K. Kennedy. Improving effective bandwidth through compiler en-
hancement of global cache reuse. In International Parallel and Distribute Process-
ing Symposium, San Francisco, CA, April 2001.

328 B. Blainey, C. Barton, and J.N. Amaral

6. Guang R. Gao, Russ Olsen, Vivek Sarkar, and Radhika Thekkath. Collective loop
fusion for array contraction. In 1992 Workshop on Languages and Compilers for
Parallel Computing, pages 281–295, New Haven, Conn., 1992. Berlin: Springer Ver-
lag.

7. R. Gupta and R. Bodik. Adaptive loop transformations for scientific programs.
In IEEE Symposium on Parallel and Distributed Processing, pages 368–375, San
Antonio, Texas, October 1995.

8. B.-M. Hsieh, M. Hind, and R. Cytron. Loop distribution with multiple exits. In
Proceedings of Supercomputing, pages 204–213, November 1992.

9. K. Kennedy and K. S. McKinley. Loop distribution with arbitrary control flow.
In Proceedings of Supercomputing, pages 407–417. IEEE Computer Society Press,
November 1990.

10. K. Kennedy and K. S. McKinley. Typed fusion with applications to parallel and
sequential code generation. Technical Report CRPC-TR94646, Rice University,
Center for Research on Parallel Computation, 1994.

11. Ken Kennedy and Kathryn S. McKinley. Maximizing loop parallelism and improv-
ing data locality via loop fusion and distribution. In 1993 Workshop on Languages
and Compilers for Parallel Computing, pages 301–320, Portland, Ore., 1993. Berlin:
Springer Verlag.

12. Kevin Krewell. Ibm’s power4 unveiling continues: New details revealed at micro-
processor forum 2000. In Microprocessor Report: The Insider’s Guide to Micropro-
cessor Hardware, November 2000.

13. D. J. Kuck. A survey of parallel machine organization and programming. ACM
Computing Surveys, 9(1):29–59, March 1977.

14. Nimrod Megiddo and Vivek Sarkar. Optimal weighted loop fusion for parallel
programs. In ACM Symposium on Parallel Algorithms and Architectures, pages
282–291, 1997.

15. Y. Muraoka. Parallelism Exposure and Exploitation in Programs. PhD thesis,
University of Illinois at Urbana Champaign, Dept. of Computer Science, February
1971. Report No. 71-424.

16. S. Singhai and K. McKinley. A parameterized loop fusion algorithm for improving
parallelism and cache locality. The Computer Journal, 40(6):340–355, 1997.

	Introduction
	The POWER4 Architecture
	Overview of Loop Optimizations
	Loop Fusion Algorithm
	Results
	Related Work
	Final Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

