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Introduction
❏ What is MLIR?

❏ Why not LLVM?

❏ Why MLIR?

❏ How was MLIR designed?



What is MLIR?

● New (2021) general compiler framework, for building custom compilers

● "Hybrid" IR, supporting arbitrary instructions and abstraction levels
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● LLVM is at a fixed abstraction level
○ similar to C with vectors and SSA
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Why can't we just use LLVM?

● LLVM is at a fixed abstraction level
○ similar to C with vectors and SSA

● LLVM IR is not enough for low-level representation
○ In reality, most toolchains define new low level intermediate representations for hardware level 

optimizations

● LLVM IR is not enough for high-level representation
○ High level languages need to define their own intermediate IR's to do transformations that use higher 

level abstractions
○ Some optimizations, such as some based on the polyhedral representation we work on in our project, 

require taking LLVM IR backwards to higher level abstractions

optimizations

ScopInfo
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Value of MLIR

● Each IR needs to build:
○ Type system, syntax, structure, etc

○ Toolchain, pass manager, etc

● With MLIR, we can reuse aspects common to all IRs

● Rely on three design principles:
○ Use a minimal set of versatile built-in concepts to avoid complexity ("Parsimony")

■ Little buitin, everything customizable

■ SSA and regions

○ Preserve information across compiler levels ("Traceability")

■ Maintain original definitions when lowering abstraction

■ Support ability to validate code by preserving source locations

○ Support mixing abstraction levels and avoid premature lowering of abstraction ("Progressivity").



IR Structure ❏ Dialect overview

❏ The components

❏ Dialect extensibility



Dialects ~ abstraction level:
LLVM IR, Fortran FIR, Swift SIL, XLA HLO, TensorFlow Graph, 
...

Dialects can define:
Sets of defined operations 

Entirely custom type system

Operations can define:
Invariants on # operands, results, attributes, 

etc

Custom parser, printer, verifier, ...

Constant folding, canonicalization patterns, …

Dialects: families of attributes, operations, types
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IR Structure - Tree

Operation

An Operation is the basic execution unit. 

An Operation can be as simple as an 

instruction, but can also be more 

complex and can represent any 

function.



IR Structure - Tree

Region

A container attached to an operation 

that can contain other operations.



IR Structure - Tree

Block

A list of operations contained in a 

region with no control flow. The 

last operation in a block is a 

terminator that can transfer control 

flow to blocks or regions.



IR Structure - Data

Values are units of runtime data. 

They are defined and used by 

operations. Values obey static single 

assignment (SSA) rule.

Value



IR Structure - Data

Types describe compile-time 

information about a value. Each value 

has a type.

Operation specifies types of defined 

and used values.

Attributes describe compile-time 

information about an operation. They 

may be optional or mandatory as per 

operation semantics.

Type

Attribute



Dialect syntax is customizable



Dialects are easy to extend

Operations are open to customization 

while remaining high usability.

- LLVM IR intrinsics

- Integer arithmetic

- Tensorflow operations

- Affine loops and conditions

- …

Operation Type

The type system is flexible and open.

- All of LLVM IR types

- Dependently typed nD vectors

- Ranked and unranked tensors

- …

Attribute

The attribute system is open. 

- integer or string values;

- file:line:col locations;

- affine maps;

- opaque AST node pointers;

- binary blobs;

- containers of other attributes, 
...



Applications
❏ Polyhedral code generation

❏ Partial lowering and mixed 

dialects

❏ TensorFlow graphs



Applications: Polyhedral code generation

● The polyhedral model represents each dynamic instance of 

a statement in a loop nest as an integer point in a 

polyhedron

● Enabling optimizations in parallelism, locality, etc.

● Widely used in compilers for deep learning and scientific 

computing



Applications: Polyhedral code generation

● Affine dialect: MLIR’s built-in dialect 

for polyhedral compilation

● Note how the affine dialect chooses to 

represent nested loops with nested 

regions

Affine dialect representation of polynomial multiplication C(i + j) += A(i) * B(j)
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High-level abstract representation and tensor 
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Applications: Partial lowering and mixed dialects

High-level abstract representation and tensor 
transpose and and multiplication

● Progressively lowered into a mix of arith, 
memref, affine, toy dialects

● Apply affine loop fusion

● Compose dialects together and reuse passes in other dialects
● Dialect rewrite rules defined declaratively – no need to 

handwrite C++ pattern matching
● Retain high-level structure

○ It would have been harder to perform loop fusion if we 
lower to LLVM IR immediately



Applications: TensorFlow graphs

● Resources have “memory-like” 

semantics

● Tensors are SSA values ⇒ CSE, etc. 

Graph is an operation with region

Figure. SSA representations of a TensorFlow graph in MLIR.
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Evaluations ❏ Strengths

❏ Weaknesses



Strengths

● Wide industry adoption: Torch-MLIR, OpenXLA, OpenAI/Triton

● Strong expressiveness: custom syntax and type systems, custom operations and 

optimizations

● Flexible abstraction level: opportunities to further optimizations such as parallelism



Weaknesses/Challenges

● Inadequate design consideration: the creators do not compare their design choices 

or justify why they picked them over alternatives. 
○ For example, could the creators have used a (named/unnamed) region as the unit of fundamental 

execution, instead of defining the secondary abstraction of an operation?

● Too much freedom: by creating such a flexible compiler architecture, they allow too 

much freedom, and users can create internally fragmented dialects within MLIR, 

reducing its impact.



Questions?


