
Bringing the Web 
Up to Speed with 

Webassembly

Matt Martin, Luke Hobeika, Jason Qian

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. 
Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon 

Zakai, JF Bastien

Group 13



Motivation



Motivation



Motivation

● Javascript is interpreted and not compiled
○ Initially the browser ran each line one by one

○ Now it uses a technology called just in time compilation

○ Because javascript is interpreted it is slower than compiled 

languages such as C++ and Java

■ Overhead from JIT

■ Can apply more powerful optimizations

● Developers have to learn different languages for frontend 

and backend
○ You can’t run c++ in the browser

○ NodeJS tries to fix this issue, but it has limitations



Webassembly Overview

● WebAssembly (abbreviated Wasm) is a 

binary instruction format for a stack-based 

virtual machine. Wasm is designed as a 

portable compilation target for 

programming languages, enabling 

deployment on the web for client and 

server applications.
○ You compile other languages into 

webassembly and then run it in the browser



Webassembly Overview

● Utilizes a binary code format

● Linear memory
○ The main storage of a web assembly program is a large array of bytes

○ Application developers can grow memory as needed

● Structured control flow
○ No gotos

○ Oly If then blocks, and loops

●



Execution



Stores and Instances

● A store is a record of the lists of module instances, tables and memories that have been 

allocated in it

● Tables and memories reside in the global store and are only referenced by address, since 

they can be shared between multiple instances.

● Globals are represented by the values they hold and reside in their defining instance

https://webassembly.github.io/spec/core/exec/runtime.html



Webassembly Hierarchy Representation
Global Store

Modules

Table

Memory

Memory Addresses

Table Addresses

Local Variables

Function 1

Function 2



Reduction

● Reduction: How an expression can be evaluated to its final value

● Webassembly Reduction is defined over its configuration (global store, local variables, 

and instruction sequence)

● Reduction is Stack-Based



Reduction Example

Stack

a = 5



Reduction Example - Continued

Stack

a = 5

b = 10



Reduction Example - Continued

Stack

result = 15



Validation



Validation

● Safety is VERY important on the web

● Running much untrusted code

● Need to quickly check code is safe

● Typing guards against dangerous branching and stack corruption

● Code Validation focuses on type correctness

● Can be checked very quickly in a single pass of the code



Type Safety Considerations

● All functions and instructions specify the state of the 

stack before and after they are called

● Instructions within a block cannot access any values 

pushed onto the stack outside the block

● Blocks have to clear values off the stack before 

branching unless a return value is specified

● Branches can only branch to enclosing blocks, they 

cannot branch to arbitrary lines

● Branch instructions require operands on stack to match 

join points

● Input stack of instruction must match output stack of 

preceding instruction



Example Validation Pass

Stack

log_if_not_100 ->



Example Validation Pass

Stack

i32



Example Validation Pass

Stack

i32

my_block ->



Example Validation Pass

Stack



Example Validation Pass

Stack

i32



Example Validation Pass

Stack

i32

i32



Example Validation Pass

Stack

i32

i32

i32.eq ->



Example Validation Pass

Stack

bool

if ->



Example Validation Pass

Stack

br ->



Example Validation Pass

Stack

i32



Example Validation Pass

Stack

i32

log ->



Example Validation Pass

Stack



Example Validation Pass

Stack

exit_block ->



Example Validation Pass

Stack

exit_func ->



Example Validation Pass

Stack

✅



Implementation and 
Measurements



Embedding and Interoperability

● Webassembly does not define how modules are loaded into the execution engine or how 

they perform I/O. Instead, a Webassembly implementation is embedded into an execution 

environment.
○ Javascript API

● Webassembly can link together different instances and interoperate different 

applications *



Implementation

● Webassembly Design Goal: High performance without sacrificing safety or portability
○ Fast Validation of Code

○ Optimized JIT Compiler



Measurements

● Webassembly is very competitive 

relative to native code

● Webassembly is also significantly 

faster than asm.js
○ 33.7% faster on average

● Webassembly code size is on average 

62.5% of asm.js code size and 85.3% of 

native code size



Future Work



Future Work at the Time of Paper

- Exceptions

- Threads

- SIMD instructions

- Garbage Collection



Current State 6 Years Later

- Exceptions ✅
- Threads ✅
- SIMD instructions ✅
- Garbage Collection ✅

Source: https://webassembly.org/roadmap/ 

https://webassembly.org/roadmap/


Appendix



Might be helpful

https://www.researchgate.net/figure/WebAssembly-high-level-architecture_fig1_360232889

https://www.researchgate.net/figure/WebAssembly-high-level-architecture_fig1_360232889


Threads and Atomics

Web workers are multi-process

- only way to get parallel execution in web development

Can create wasm modules that take in memory address as a parameter so now have two modules sharing a memory buffer. Commonly written in rust.

The module is the code, the instance is the process in webassembly

Exception will get thrown if the spawned web assembly ends up blocking the main code

shared array buffer has been implemented

threads still use webworkers, but shared array buffers make message passing significantly faster than provided web worker API



References

[1] https://www.devjobsscanner.com/blog/top-8-most-demanded-languages-in-2022/

[2]https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%2

0Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web

%20up%20to%20Speed%20with%20WebAssembly.pdf

https://www.devjobsscanner.com/blog/top-8-most-demanded-languages-in-2022/
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf

