Bringing the Web
Up to Speed with
VWebassembly

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L.
Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon
Zakai, JF Bastien

Group 13

Matt Martin, Luke Hobeika, Jason Qian

Motivation

Most D ing L in 2022

From 01-Oct-2021 to 31-Nov-2022

801,540 jobs (31.10%)

JavaScript / TypeScript
515,428 jobs (20.00%)

Python
Java 443,508 jobs (17.21%)

ot 304,892 jobs (11.83%)

226,063 jobs (8.77%)

212,503 jobs (8.24%)

T
T i ~
R meegﬁs H nw
Scala] 12,143 jobs (0.47%) S
APPLICATION THAT CAN
Swift | 5,148 jobs (0.20%)
BE WRITTEN IN JAVASCRIPT.

Lua 3,292 jobs (0.13%) ’

EVENTUALLY BE WRITTEN
Delphi/O.Pascal - 1,197 jobs (0.05%)

I IN JAVASCRIPT.”

-

Clojure - 650 jobs (0.03%)

Kotiin] 10027 jobs (0.39%)
Dart | 9,702 obs (0.38%)
Rust | 7,860 obs (0.30%)

Bash -| 2,270 jobs (0.09%)

MATLAB - 1,956 jobs (0.08%)

Perl -| 1,899 jobs (0.07%)

Objective-C | 506 obs (0.02%)
Haskell -{ 505 jobs {0.02%)
Groovy - 411 jobs (0.02%)

Erlang | 300 jobs (0.01%)
Fortran | 290 obs (0.01%)
VHDL - 266 obs (0.01%)

Julia | 87 jobs (0.00%)

o 100000 200000 300000 400000 500000 600000 700000 800000 900,000

Number of jobs

Motivation

e Javascriptisinterpreted and not compiled
o Initially the browser ran each line one by one
o Now it uses atechnology called just in time compilation
o Because javascriptis interpreted it is slower than compiled
languages such as C++ and Java
m Overhead from JIT
m Can apply more powerful optimizations
e Developers have to learn different languages for frontend

and backend

o Youcan'trunc++ in the browser
o NodelJS tries to fix this issue, but it has limitations

Webassembly Overview

e WebAssembly (abbreviated Wasm) is a
binary instruction format for a stack-based
virtual machine. Wasm is designed as a
portable compilation target for
programming languages, enabling
deployment on the web for client and
server applications.

o Youcompile other languages into
webassembly and then run it in the browser

C++, C or Rust

Webassembly Overview

e Utilizes a binary code format

e Linear memory
o The main storage of a web assembly program is a large array of bytes
o Application developers can grow memory as needed

e Structured control flow

o No gotos
o Olylfthen blocks, and loops

Execution

Stores and Instances

e Astoreisarecord of the lists of module instances, tables and memories that have been
allocated in it

e Tables and memories reside in the global store and are only referenced by address, since
they can be shared between multiple instances.

e Globals are represented by the values they hold and reside in their defining instance

store := {funcs funcinst’,

tables tableinst’,
mems meminst,
globals globalinst",
elems eleminst’,
datas datainst’ }

https://webassembly.github.io/spec/core/exec/runtime.html

Global Store
Modules

\ Webassembly Hierarchy Representation

Function 1

Function 2
Local Variables
Table Addresses

Memory Addresses

Table

Memory

Reduction

Reduction: How an expression can be evaluated to its final value

e Webassembly Reduction is defined over its configuration (global store, local variables,
and instruction sequence)

e Reductionis Stack-Based

O 00 N O

10
alil
12
13
14
15
16
17

Reduction Example

(module
(import "math callback" (func $callback))

(export "add" (func $add))
(export "subtract" (func $subtract))

(func $add (param $a i32) (param $b i32) (result i32)
local.get $a
local.get $b
i32.add

Reduction Example - Continued

(module

(import "math callback" (func $callback))

Stack
a=5
b=10

(export "add" (func $add))
(export "subtract" (func $subtract))

(func $add (param $a i32) (param $b i32) (result i32)
local.get $a
local.get $b
i32.add

Reduction Example - Continued

Stack

(module

result = 15

(import "math callback" (func $callback))

(export "add" (func $add))
(export "subtract" (func $subtract))

(func $add (param $a i32) (param $b i32) (result i32)
local.get $a
local.get $b
i32.add

Validation

Validation

Safety is VERY important on the web

Running much untrusted code

Need to quickly check code is safe

Typing guards against dangerous branching and stack corruption
Code Validation focuses on type correctness

Can be checked very quickly in a single pass of the code

(module

Type Safety Considerations EEEEEEE

(func $main

block $UNLESS_BLOCK
block $THEN
block $UNLESS
i32.const @ ;; unless false
br_if $THEN

e Allfunctions and instructions specify the state of the
stack before and after they are called

e Instructions within a block cannot access any values
pushed onto the stack outside the block

e Blocks have to clear values off the stack before
branching unless a return value is specified

e Branches canonly branch to enclosing blocks, they
cannot branch to arbitrary lines

e Branchinstructions require operands on stack to match

join points

Input stack of instruction must match output stack of

preceding instruction

end
;5 executed unless false
i32.const 1¢
call $log
br $UNLESS_BLOCK
end
55 executed unless true
i32.const 2¢
call $log

end

)

(start $main)

Example Validation Pass

(module
53 import the browser console object, you'll need to pass Stack
(import "console"™ "log" (func $log (param i32)))

;3 create a function that takes in a number as a param, Iog if not 100 ->
33 and logs that number if it's not equal to 10e. - - -

(func (export "log if not 100") (param $num i32)
(block $my block

33 $num is equal to 100
local.get $num
i32.const 100

13 i32.eq

15 (if
16 (then

18 ;5 branch to the end of the block
19 br $my block

21)
22)

24 35 not reachable when $num is 1e@
25 local.get $num
26 call $log

Example Validation Pass

(module
53 import the browser console object, you'll need to pass
(import "console"™ "log" (func $log (param i32)))

;3 create a function that takes in a number as a param,
33 and logs that number if it's not equal to 10e.
(func (export "log if not 100") (param $num i32)

(block $my block

33 $num is equal to 100
local.get $num
i32.const 100

i32.eq

(if
(then

;5 branch to the end of the block
br $my block

)
)

35 not reachable when $num is 100
local.get $num
call $log

Stack

132

Example Validation Pass

(module
53 import the browser console object, you'll need to pass Stack
(import "console"™ "log" (func $log (param i32)))

;3 create a function that takes in a number as a param,

33 and logs that number if it's not equal to 10e. -23:2
(func (export "log if not 100") (param $num i32) l

(block $my block
->
33 $num is equal to 100 my—bIOCk
local.get $num
i32.const 100
13 i32.eq

15 (if
16 (then

18 ;5 branch to the end of the block
19 br $my block

21)
22)

24 35 not reachable when $num is 1e@
25 local.get $num
26 call $log

Example Validation Pass

(module
53 import the browser console object, you'll need to pass
(import "console"™ "log" (func $log (param i32)))

;3 create a function that takes in a number as a param,
33 and logs that number if it's not equal to 10e.
(func (export "log if not 100") (param $num i32)

(block $my block

33 $num is equal to 100
local.get $num
i32.const 100

i32.eq

(if
(then

;5 branch to the end of the block
br $my block

)
)

35 not reachable when $num is 100
local.get $num
call $log

Stack

Example Validation Pass

(module
53 import the browser console object, you'll need to pass
(import "console"™ "log" (func $log (param i32)))

;3 create a function that takes in a number as a param,
33 and logs that number if it's not equal to 10e.
(func (export "log if not 100") (param $num i32)

(block $my block

33 $num is equal to 100
local.get $num
i32.const 100

i32.eq

(if
(then

;5 branch to the end of the block
br $my block

)
)

35 not reachable when $num is 100
local.get $num
call $log

Stack

132

Example Validation Pass

(module
53 import the browser console object, you'll need to pass
(import "console"™ "log" (func $log (param i32)))

;3 create a function that takes in a number as a param,
33 and logs that number if it's not equal to 10e.
(func (export "log if not 100") (param $num i32)

(block $my block

33 $num is equal to 100
local.get $num
i32.const 100

i32.eq

(if
(then

;5 branch to the end of the block
br $my block

)
)

35 not reachable when $num is 100
local.get $num
call $log

Stack

132

KY

Example Validation Pass

(module
53 import the browser console object, you'll need to pass Stack
(import "console"™ "log" (func $log (param i32)))

;3 create a function that takes in a number as a param,

33 and logs that number if it's not equal to 10e. -23:2
(func (export "log if not 100") (param $num i32) l

(block $my block

KY

33 $num is equal to 100

local.get $num

] i32.const 100 o
13 i32.eq i32.eq ->

15 (if
16 (then

18 ;5 branch to the end of the block
19 br $my block

21)
22)

24 35 not reachable when $num is 1e@
25 local.get $num
26 call $log

Example Validation Pass

(module
53 import the browser console object, you'll need to pass
(import "console"™ "log" (func $log (param i32)))

;3 create a function that takes in a number as a param,
33 and logs that number if it's not equal to 10e.
(func (export "log if not 100") (param $num i32)

(block $my block

33 $num is equal to 100

local.get $num

i32.const 100

i32.eq

>

=
1

(if
(then

;5 branch to the end of the block
br $my block

)
)

35 not reachable when $num is 100
local.get $num
call $log

Stack

bool

Example Validation Pass

(module
53 import the browser console object, you'll need to pass
(import "console"™ "log" (func $log (param i32)))

;3 create a function that takes in a number as a param,
33 and logs that number if it's not equal to 10e.
(func (export "log if not 100") (param $num i32)

(block $my block

33 $num is equal to 100
local.get $num
i32.const 100

i32.eq

(if
th
e br ->
;5 branch to the end of the block
br $my block

)
)

35 not reachable when $num is 100
local.get $num
call $log

Stack

Example Validation Pass

(module
53 import the browser console object, you'll need to pass
(import "console"™ "log" (func $log (param i32)))

;3 create a function that takes in a number as a param,
33 and logs that number if it's not equal to 10e.
(func (export "log if not 100") (param $num i32)

(block $my block

33 $num is equal to 100
local.get $num
i32.const 100

i32.eq

(if
(then

;5 branch to the end of the block
br $my block

)
)

35 not reachable when $num is 100
local.get $num
call $log

Stack

132

Example Validation Pass

(module
53 import the browser console object, you'll need to pass Stack
(import "console"™ "log" (func $log (param i32)))

;3 create a function that takes in a number as a param,

33 and logs that number if it's not equal to 10e. -23:2
(func (export "log if not 100") (param $num i32) l

(block $my block

33 $num is equal to 100
local.get $num
i32.const 100

13 i32.eq

15 (if
16 (then

18 ;5 branch to the end of the block
19 br $my block

21)

22)

> log ->
24 35 not reachable when $num is 1e@

25 local.get $num

26 call $log

Example Validation Pass

(module
53 import the browser console object, you'll need to pass
(import "console"™ "log" (func $log (param i32)))

;3 create a function that takes in a number as a param,
33 and logs that number if it's not equal to 10e.
(func (export "log if not 100") (param $num i32)

(block $my block

33 $num is equal to 100
local.get $num
i32.const 100

i32.eq

(if
(then

;5 branch to the end of the block
br $my block

)
)

35 not reachable when $num is 100
local.get $num
call $log

Stack

Example Validation Pass

(module
53 import the browser console object, you'll need to pass Stack
(import "console"™ "log" (func $log (param i32)))

;3 create a function that takes in a number as a param,
33 and logs that number if it's not equal to 10e.
(func (export "log if not 100") (param $num i32)

(block $my block

33 $num is equal to 100
local.get $num
i32.const 100

13 i32.eq

15 (if
16 (then

18 ;5 branch to the end of the block
19 br $my block

21)
22)

24 35 not reachable when $num is 1e@
25 local.get $num
26 call $log

exit_block ->

Example Validation Pass

(module
53 import the browser console object, you'll need to pass Stack
(import "console"™ "log" (func $log (param i32)))

;3 create a function that takes in a number as a param,
33 and logs that number if it's not equal to 10e.
(func (export "log if not 100") (param $num i32)

(block $my block

33 $num is equal to 100
local.get $num
i32.const 100

13 i32.eq

15 (if
16 (then

18 ;5 branch to the end of the block
19 br $my block

21)
22)

24 35 not reachable when $num is 1e@

25 local.get $num
26 call $log

.) exit_func ->

Example Validation Pass

(module
53 import the browser console object, you'll need to pass
(import "console"™ "log" (func $log (param i32)))

;3 create a function that takes in a number as a param,
33 and logs that number if it's not equal to 10e.
(func (export "log if not 10@") (param $num i32)

(block $my block

33 $num is equal to 100
local.get $num
i32.const 100

i32.eq

(if
(then

;3 branch to the end of the block
br $my block

)
)

35 not reachable when $num is 1e@
local.get $num
call $log

Stack

Implementation and \
Measurements

Embedding and Interoperability

e Webassembly does not define how modules are loaded into the execution engine or how

they perform I/O. Instead, a Webassembly implementation is embedded into an execution
environment.
o Javascript API
e Webassembly can link together different instances and interoperate different
applications *

Implementation

e Webassembly Design Goal: High performance without sacrificing safety or portability
o Fast Validation of Code
o Optimized JIT Compiler

¥piderMonkey (5

Measurements

e Webassembly is very competitive e Webassembly code size is on average
relative to native code 62.5% of asm.js code size and 85.3% of
e Webassembly is also significantly native code size

faster than asm.js
o 33.7%faster on average

VM startup ——1

compilation ===

validation E===2

difference between VMs =—=1
execution mm—

o
°°
&

(lower is better)

=3
2
&

@
3
3
£
©
N
@
b3
5
=
@
3
7}
<
r]
3
=

o

N

&
o
=3
S

R
S
8
,g
o
2
®
e
o
E.
=
S
a8
3
8
g
3
o
2z
=
e

WebAssembly/asm.js
WebAssembly/native

R
RIS 1000 1500

asm.js or native size in bytes
Figure 6. Binary size of WebAssembly in comparison to

Figure 5. Relative execution time of the PolyBenchC asm.js and native code

benchmarks on WebAssembly normalized to native code

Future Work

\ Future Work at the Time of Paper

Exceptions
Threads

SIMD instructions
Garbage Collection

Current State 6 Years Later
Your G e & = ‘i' \) @ [i

browser Chrome Firefox Safari Wasmtime Wasmer Nodejs Deno wasm2c

Standardized features

JS Bigint to Wasm i64 integration 85 8 14.1

- Exceptions W
Bulk memory operations
B Th reads . Extended constant expressions
- SIMD instructions ¥ Multi-value
- Garbage Collection W Mutable globals

Reference types
-trapping float-to-int conversions
Sign-extension operations
Fixed-width SIMD
Tail calls 2 X X
In-progress proposals

Exception handling 95 100

Garbage collection (l:(

Memory64 =™
Multiple memories
Relaxed SIMD > =

Threads and atomics
Source: https://webassembly.org/roadmap/

Type reflection

https://webassembly.org/roadmap/

Appendix

Might be helpful

https://www.researchgate.net/figure/WebAssembly-high-level-architecture fie1l 360232889

Application Application

Linear Memory
mem_size

Read/Write

Exposed
Functions
Functions

Virtual Machine

0x8F00

0x91AA Wasm
: Stack W . B
2 | ox5C41 | 0x5C41 RIGE (T (o] 3 Linear Memory

Runtime (Browser, Node.js, ...)

a) WebAssembly memory model b) Design of typical application
using WebAssembl

https://www.researchgate.net/figure/WebAssembly-high-level-architecture_fig1_360232889

Threads and Atomics

Web workers are multi-process
- only way to get parallel execution in web development
Can create wasm modules that take in memory address as a parameter so now have two modules sharing a memory buffer. Commonly written in rust.
The module is the code, the instance is the process in webassembly
Exception will get thrown if the spawned web assembly ends up blocking the main code
shared array buffer has been implemented

threads still use webworkers, but shared array buffers make message passing significantly faster than provided web worker API

References

[1] https://www.devjobsscanner.com/blog/top-8-most-demanded-languages-in-2022/

[2]https://people.mpi-sws.org/~rossberg/papers/Haas, %20Rossberg,. %20Schuff,%20Titzer,%2

0Gohman,%20Wagner,%20Zakai, %20Bastien.%20Holman%20-%20Bringing%20the%20Web
%20up%20t0%20Speed%20with%20WebAssembly.pdf

https://www.devjobsscanner.com/blog/top-8-most-demanded-languages-in-2022/
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf

