
ACCEPT Framework
ACCEPT: A Programmer-Guided Compiler Framework

for Practical Approximate Computing

Adrian Sampson André Baixo Benjamin Ransford Thierry Moreau
Joshua Yip Luis Ceze Mark Oskin

Group 10: Zhixiang Teoh, Peter Ly, Owen Goebel, Neel Shah

Motivating analogy

Sometimes, we might want to sacrifice an
image's quality to reduce its file size, provided
the image is still sufficiently high quality.

Similarly, we might want to sacrifice a
program's accuracy to boost its speed,
provided the program is still sufficiently accurate.

ACCEPT approximates at the compilation step.

(image source)

https://en.wikipedia.org/wiki/Lossy_compression

ACCEPT programming model

Framework says
what can and can't

be optimized

"Static" (programming)
Phase

"Dynamic" (testing)
Phase

Programmer says
which variables can

be approximated

Algorithm picks
configurations that
perform "best" on

sample inputs

Apply relaxations
to get candidate
configurations

ACCEPT workflow

Annotate

Programmer
annotates C++
code with APPROX
and ENDORSE
keywords

System does
precise-purity
analysis and identifies
relaxation opportunity
sites (i.e., approximate
region selection)

System identifies code
regions and safe
approximation
relaxations—e.g., loop
perforation,
synchronization elision

System vets individual
relaxations, and
conducts autotuning
search to produce
good composite
configurations

System applies
program relaxations
to generate
candidate binaries

Analyze Relax Configure Compile

RelaxAnalyze

APPROX and ENDORSE

APPROX int a = func();The value of this variable is safe
to approximate

"casts" from APPROX to precise

funcPrecise expects a precise
value, but is supplied an
APPROX value

funcPrecise(a); // illegal!

Variables are "precise" by
default

funcPrecise(ENDORSE(a)); // legal!

Annotate Relax Configure Compile

Analyze

Log Measure Quality

Annotate Configure Compile

Pointers can never be
APPROX

ACCEPT workflow

Annotate

Programmer
annotates C++
code with APPROX
and ENDORSE
keywords

System does
approx-only analysis
and identifies
relaxation opportunity
sites (i.e., approximate
region selection)

System identifies code
regions and safe
approximation
relaxations—e.g., loop
perforation,
synchronization elision

System vets individual
relaxations, and
conducts autotuning
search to produce
good composite
configurations

System applies
program relaxations
to generate
candidate binaries

Analyze Relax Configure Compile

Precise-purity Approx-only

An approx-only region:

1. Does not overwrite precise variables that may be read outside the region
2. Only calls functions that are entirely approx-only
3. Does not have unbalanced synchronization (e.g. Lock() with no Unlock())

Approx-only is the key criterion for whether program relaxations can apply

ACCEPT determines whether a region of interest is approx-only to decide
whether to apply program relaxations

Annotate Relax Configure Compile

Analyze

Log Measure Quality

Annotate Analyze Relax Configure Compile

Approx-only examples

int sensitive = 583;
APPROX int c = 483;
sensitive = c; Approx-to-precise flow unsound

for (int i = 0; i < N; i++) {
 cost += (weights[i] -
weights[0]);
}
weights[N+1] = cost;

APPROX double cost = 0;
int *weights = ...;

Stores to precise variable weights[N+1] that
may be read outside block

Annotate Analyze Relax Configure Compile

Approx-only analysis

Done conservatively via LLVM passes:

● SSA definition-use chains
● Pointer escape analysis

Initially assume not approx-only,
then attempt to prove approx-only. isPure[func] = false;

Checks approx-only conditions

Annotate Relax Configure Compile

Analyze

Log Measure Quality

Annotate Analyze Relax Configure Compile

1. No stores to outside precise variables
2. Only calls functions that are entirely

approx-only
3. No unbalanced synchronization

Approximate region selection
ACCEPT builds larger approx-only blocks with a single entrance and exit point

Why: To identify chunks of code that are amenable to approximation!

Annotate Relax Configure Compile

Analyze

Log Measure Quality

Annotate Analyze Relax Configure Compile

for (int i = 0; i < N; i++) {
 cost += (weights[i] - weights[0]);
}

weights[N+1] = cost;

APPROX double cost = 0;
int *weights = ...;

ACCEPT workflow

Annotate

Programmer
annotates C++
code with APPROX
and ENDORSE
keywords

System does
precise-purity
analysis and identifies
relaxation opportunity
sites (i.e., approximate
region selection)

System identifies code
regions and safe
approximation
relaxations—e.g., loop
perforation,
synchronization elision

System vets individual
relaxations, and
conducts autotuning
search to produce
good composite
configurations

System applies
program relaxations
to generate
candidate binaries

Analyze Relax Configure Compile

ACCEPT implements several relaxations

Only allowed in approx-only regions!

Loop perforation: Skip iterations to speed up loops

Synchronization elision: Remove thread synchronization

Neural acceleration: Replace complex code with a trained neural network approximation

for (int i = 0; i < N; i++)
{
 // approx-only body
}

for (int i = 0; i < N; i+=k)
{
 // approx-only body
}

Loop perforation

Annotate Relax Configure Compile

Analyze

Log Measure Quality

Annotate Analyze Relax Configure Compile

ACCEPT workflow

Annotate

Programmer
annotates C++
code with APPROX
and ENDORSE
keywords

System does
precise-purity
analysis and identifies
relaxation opportunity
sites (i.e., approximate
region selection)

System identifies code
regions and safe
approximation
relaxations—e.g., loop
perforation,
synchronization elision

System vets individual
relaxations, and
conducts autotuning
search to produce
good composite
configurations

System applies
program relaxations
to generate
candidate binaries

Analyze Relax Configure Compile

Autotuning search for configurations

Goal: Find optimal combinations of relaxations (balancing quality and speed)

Programmer supplies quality metric

How?

1.) Find good relaxations on test inputs
2.) Compose “good” relaxations

a.) Uses a knapsack model to compose relaxations
Maximize speed-up without exceeding error threshold

3.) Return optimal relaxations

Programmer chooses best relaxation composition

Annotate Relax Configure Compile

Analyze

Log Measure Quality

Autotuning

Q
ua

lit
y

Speed-up

Annotate Analyze Relax Configure Compile

100%

10%

1x 5x

Results: Average 2.5x speedup with under 15%* error

Benchmarks include video encoding, financial algorithms, and simulation
algorithms (and more) with manually added APPROX and ENDORSE. Multiple
runs are averaged

Average 2.5x speedup with under 15%* error (continued)

Some benchmarks are more robust to certain techniques

Future improvements

Measuring power consumption vs. accuracy

Introducing more relaxations to the framework (for example, width reduction)

Improve on the autotuning algorithm

● REACT: A Framework for Rapid Exploration of Approximate Computing Techniques

