
Group 14

Zhenning Yang, Reggie Hsu, Leo Wu, and Dave Yonkers

An Automated End-to-End Optimizing Compiler for Deep Learning

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan,Haichen Shen, Leyuan Wang, Yuwei Hu, Luis 
Ceze, Carlos Guestrin, Arvind Krishnamurthy



 

What Is TVM?

● Imports trained models from popular 
deep-learning frameworks (PyTorch, Tensorflow, 

ONNX, Keras, etc.)

● Unifies imported models into custom IR

● Applies traditional optimization techniques

● Tunes the model for the target hardware 

● Compiles linkable output modules ready for 

production deployment (C++, Java, Python, etc.)

Unified IR

Multiple Backends

LLVM C CUDA

Portable Run Times

CPUs GPUs µCs

End-to-end framework for neural net 
compilation

2



 

Why use TVM?
Common operations, such as matrix 
multiplication, can be sped up over

Very flexible and nearly platform 

independent

18x

Unified IR

Multiple Backends

LLVM C CUDA

Portable Run Times

CPUs GPUs µCs

3



● High level
● Not sufficient enough to take 

advantage of hardware 
architecture

Previously

DL frameworks implement 
graph-level optimizations

● Expensive
● Time consuming
● Not portable → portability 

necessary for modern, vast 
hardware landscape

Hand-tuning was necessary 
for low-level optimizations

4



Computational Graph

High Level Graph Rewriting

Optimized Computational Graph

Operator-level Optimization and Code Generation

Declarative Tensor
Expressions

Hardware-Aware 
Optimization Primitives

Machine Learning Based Automated Optimizer

Optimized Low Level Loop Program

Accelerator Backend LLVM IR CUDA/Metal/OpenCL

Frameworks

Deployable Module
5



Computational Graph

High Level Graph Rewriting

Optimized Computational Graph

Operator-level Optimization and Code Generation

Declarative Tensor
Expressions

Hardware-Aware 
Optimization Primitives

Machine Learning Based Automated Optimizer

Optimized Low Level Loop Program

Accelerator Backend LLVM IR CUDA/Metal/OpenCL

Frameworks

Deployable Module
6



● Intermediate data are tensors
● Does not specify how each operator 

is implemented

Optimizing Computational Graph
Computational Graph (CG)

vs
LLVM IR

conv2d

relu

conv2d

relu

flatten

dense

softmax

data

w1

w2

w3

7



Optimizing Computational Graph

CG is used to apply highest-level optimizations

● Operator fusion
● Constant folding

○  pre-computes graph parts statically
● Static memory planning pass
● Data layout transformations

○ Rearrange data to exploit features like vectorization for GPUs or even 4x4 
matrix operations for a DL accelerator

8



Operator Fusion

Injective
Addition

Complex-out-fusable
Cov2d

Reduction
Summation

Opaque
Sort

9



 

Data Layout 
Transformation

● Converts a CG into to use better internal 
data layouts.

● Specify the preferred data layout for each 

operator given their memory hierarchy 
constraints. 

● Perform the proper layout transformation 

between a producer and a consumer if their 

preferred data layouts do not match.

DL accelerators might exploit n×n 
matrix operations, requiring data 

to be tiled into n×n chunks to 
optimize for access locality.

0 1

4 5

2 3

6 7

0

4

1

5

2 3

6 7

10



Computational Graph

High Level Graph Rewriting

Optimized Computational Graph

Operator-level Optimization and Code Generation

Declarative Tensor
Expressions

Hardware-Aware 
Optimization Primitives

Machine Learning Based Automated Optimizer

Optimized Low Level Loop Program

Accelerator Backend LLVM IR CUDA/Metal/OpenCL

Frameworks

Deployable Module
11



Computational Graph

High Level Graph Rewriting

Optimized Computational Graph

Operator-level Optimization and Code Generation

Declarative Tensor
Expressions

Hardware-Aware 
Optimization Primitives

Machine Learning Based Automated Optimizer

Optimized Low Level Loop Program

Accelerator Backend LLVM IR CUDA/Metal/OpenCL

Frameworks

Deployable Module
12



Generating Tensor 
Operations

● Each tensor operation is described in TVM’s 
own expression language, and each 
operation specifies:

○ The shape of the output tensor
○ How to compute each individual 

element of the output tensor
● Use schedules to denote a specific mapping 

from a tensor expression to low-level code

Tensor Expression and Schedule Space

  

k = te.reduce_axis((0, K), "k")
A = te.placeholder((M, K), name="A")
B = te.placeholder((K, N), name="B")
C = te.compute((M, N), lambda x, y: 

te.sum(A[x, k] * B[k, y], 
axis=k), name="C")

 Tensor expression of 
MxK and KxN matrix 

multiplication: 

13

https://tvm.apache.org/docs/reference/api/python/tir.html#tvm.tir.IterVar
https://tvm.apache.org/docs/reference/api/python/te.html#tvm.te.reduce_axis
https://docs.python.org/3/library/functions.html#int
https://tvm.apache.org/docs/reference/api/python/te.html#tvm.te.Tensor
https://tvm.apache.org/docs/reference/api/python/te.html#tvm.te.placeholder
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://tvm.apache.org/docs/reference/api/python/te.html#tvm.te.Tensor
https://tvm.apache.org/docs/reference/api/python/te.html#tvm.te.placeholder
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://tvm.apache.org/docs/reference/api/python/te.html#tvm.te.Tensor
https://tvm.apache.org/docs/reference/api/python/te.html#tvm.te.compute
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://tvm.apache.org/docs/reference/api/python/tir.html#tvm.tir.IterVar
https://tvm.apache.org/docs/reference/api/python/tir.html#tvm.tir.IterVar
https://tvm.apache.org/docs/reference/api/python/te.html#tvm.te.sum
https://tvm.apache.org/docs/reference/api/python/te.html#tvm.te.sum
https://tvm.apache.org/docs/reference/api/python/te.html#tvm.te.Tensor
https://tvm.apache.org/docs/reference/api/python/tir.html#tvm.tir.IterVar
https://tvm.apache.org/docs/reference/api/python/tir.html#tvm.tir.IterVar
https://tvm.apache.org/docs/reference/api/python/te.html#tvm.te.Tensor
https://tvm.apache.org/docs/reference/api/python/tir.html#tvm.tir.IterVar
https://tvm.apache.org/docs/reference/api/python/tir.html#tvm.tir.IterVar
https://tvm.apache.org/docs/reference/api/python/tir.html#tvm.tir.IterVar


● Each task is split into 
subtasks

● Subtasks are grouped to 
exploit hardware 
architecture (e.g. GPU 
thread groups)

Generating Tensor Operations

Nested Parallelism

● Decomposes DL 
workloads into common 
tensor operators

● Allows for hardware 
compilation to take 
advantage of emerging 
tensor compute primitives

Tensorization

● Overlapping memory 
access with computation to 
maximize utilization

● Uses hardware prefetching 
and simultaneous 
multithreading on CPUs

● Uses rapid context switching 
on GPUs

● Uses DAE on TPUs

Explicit Memory 
Latency Hiding

14



Computational Graph

High Level Graph Rewriting

Optimized Computational Graph

Operator-level Optimization and Code Generation

Declarative Tensor
Expressions

Hardware-Aware 
Optimization Primitives

Machine Learning Based Automated Optimizer

Optimized Low Level Loop Program

Accelerator Backend LLVM IR CUDA/Metal/OpenCL

Frameworks

Deployable Module
15



Computational Graph

High Level Graph Rewriting

Optimized Computational Graph

Operator-level Optimization and Code Generation

Declarative Tensor
Expressions

Hardware-Aware 
Optimization Primitives

Machine Learning Based Automated Optimizer

Optimized Low Level Loop Program

Accelerator Backend LLVM IR CUDA/Metal/OpenCL

Frameworks

Deployable Module
16



Automating Optimization

Grouping 
Instructions

Lowering tensor IR operations into machine code presents a 
number of different factors to consider:

Optimizing 
for Memory 
Hierarchy

Tiling Size Modifying 
Loop Order

Loop 
Unrolling 

Factor

Search space for large models can be in the billions 17



● Random search
● Blackbox auto-tuning
● Predefined cost model

Automating Optimization

Previous
Approach

● A schedule explorer tries out 
different optimization factors 
and update an ML-based cost 
model to iteratively improve 
computational efficiency

TVM’s
Approach

18



Automating Optimization

Schedule 
Explorer 

Program Ran 
on Hardware

ML Model
(initially untrained) 

Low-Level 
Compiler

(LLVM, 
CUDA/NVCC, etc.)

Proposes 
candidates

Selects top 
candidates

Program 
compiled for 

target hardware

True 
run time 
updates 
model

Optimization 
cycle begins 

again

Final 
program

Tensor IR

A gradient tree 
boosting model 

(based on XGBoost)

ML Model

Parallel simulated 
annealing algorithm

Exploration 
Algorithm

19



20

Automating Optimization



Computational Graph

High Level Graph Rewriting

Optimized Computational Graph

Operator-level Optimization and Code Generation

Declarative Tensor
Expressions

Hardware-Aware 
Optimization Primitives

Machine Learning Based Automated Optimizer

Optimized Low Level Loop Program

Accelerator Backend LLVM IR CUDA/Metal/OpenCL

Frameworks

Deployable Module
21



Computational Graph

High Level Graph Rewriting

Optimized Computational Graph

Operator-level Optimization and Code Generation

Declarative Tensor
Expressions

Hardware-Aware 
Optimization Primitives

Machine Learning Based Automated Optimizer

Optimized Low Level Loop Program

Accelerator Backend LLVM IR CUDA/Metal/OpenCL

Frameworks

🎉 Deployable Module 🎉
22



GPU end-to-end evaluation for TVM, 
MXNet, Tensorflow, and Tensorflow 
XLA. Tested on the NVIDIA Titan X.

Evaluation: 
Server Class GPU

● Tensorflow and MXNet use standard 
operator implementations

○ cuDNN v7 for convolutional operators
○ Custom versions for depthwise 

convolution
● TVM outperforms standard operators

○ Speedups range from 1.6x to 3.8x
○ This is because TVM automatically finds 

optimized operators

23



ARM cortex A53 (quad-core 1.2Ghz) 
end-to-end evaluation of TVM and 

TFLite.

Evaluation: 
Embedded CPU

● TVM outperforms standard 
hand-optimized operators provided 
by Tensorflow

● Can make workloads more 
CPU-friendly

○ Avoid expensive GPUs

24



● Fully open-source and active!
○ https://github.com/apache/tvm 
○ Last commit was only hours ago!
○ TVM 9.3k GitHub stars 
○ Accepted neural network frameworks and 

target platforms are constantly expanding 
via community contributions

● Extremely flexible
○ Due to the way Relay IR operations are 

flexibly constructed, optimizations are 
possible for any target platform

Our Thoughts about TVM
Pros

● Only optimizes for time
○ What about energy? Disk space?
○ GPT-4 is ~1 trillion params, other 

optimizations will need to be considered 
before any AGI-targeted model is useable

● Optimizations start with an untrained 
model

○ Production deployments require significant 
training time

■ CPU: 1,500 iterations
■ GPU: 3,000-4,000 iterations

○ Improvements can usually be seen within 
~10 iterations for small models

Cons

25

https://github.com/apache/tvm


Q & A

26



● Tensor Expression and Schedule Space
● Each tensor operation is described in TVM’s 

own expression language, and each 
operation specifies:

○ The shape of the output tensor
○ How to compute each individual element of the 

output tensor
● Use schedules to denote a specific mapping 

from a tensor expression to low-level code:
○ Build a schedule by incrementally applying basic 

transformations (schedule primitives) that preserve 
the program’s logical equivalence

Generating Tensor Operations

27



Automating Optimization

Schedule 
Explorer 

Remote 
Devices

ML-Based 
Cost Model
(initially untrained) 

Low-Level 
Compiler

(LLVM, 
CUDA/NVCC, etc.)

Proposes 
candidates

Selects top 
candidates

Program 
compiled for 
target device

28

Performance 
predictions

Measure 
performance and 
update ML model

28


