

An Automated End-to-End Optimizing Compiler for Deep Learning

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, Arvind Krishnamurthy

Group 14

Zhenning Yang, Reggie Hsu, Leo Wu, and Dave Yonkers

What Is TVM?

End-to-end framework for neural net compilation

- Imports trained models from *popular deep-learning frameworks* (PyTorch, Tensorflow, ONNX, Keras, etc.)
- Unifies imported models into custom IR
- Applies traditional optimization techniques
- Tunes the model for the target hardware
- **Compiles linkable output modules** ready for production deployment (C++, Java, Python, etc.)

Why use TVM?

Common operations, such as matrix multiplication, can be sped up over

Very flexible and nearly platform independent

Previously

DL frameworks implement graph-level optimizations

- High level
- Not sufficient enough to take advantage of hardware architecture

Hand-tuning was necessary for low-level optimizations

- Expensive
- Time consuming
- Not portable → portability necessary for modern, vast hardware landscape

Optimizing Computational Graph

Computational Graph (CG) vs LLVM IR

- Intermediate data are tensors
- Does not specify how each operator is implemented

Optimizing Computational Graph

CG is used to apply highest-level optimizations

- Operator fusion
- Constant folding
 - pre-computes graph parts *statically*
- Static memory planning pass
- Data layout transformations
 - Rearrange data to exploit features like *vectorization for GPUs* or even 4x4 matrix operations for a DL accelerator

Data Layout Transformation

- Converts a CG into to use *better internal data layouts*.
- Specify the **preferred data layout** for each operator given their *memory hierarchy constraints*.
- Perform the proper layout transformation between a producer and a consumer if their preferred data layouts *do not match*.

DL accelerators might exploit *n×n matrix operations*, requiring data to be tiled into *n×n chunks* to optimize for access locality.

Generating Tensor Operations

Tensor Expression and Schedule Space

- Each *tensor operation* is described in TVM's own expression language, and each operation specifies:
 - The **shape** of the output tensor
 - How to compute each individual element of the output tensor
- Use schedules to denote a specific mapping from a tensor expression to *low-level code*

Tensor expression of *M*x*K* and *K*x*N* matrix multiplication:

k = te.reduce_axis((0, K), "k") A = te.placeholder((M, K), name="A") B = te.placeholder((K, N), name="B") C = te.compute((M, N), lambda x, y: te.sum(A[x, k] * B[k, y], axis=k), name="C")

Generating Tensor Operations

Nested Parallelism	Tensorization	Explicit Memory Latency Hiding
 Each task is <i>split into subtasks</i> Subtasks are grouped to <i>exploit hardware architecture</i> (e.g. GPU thread groups) 	 Decomposes DL workloads into common tensor operators Allows for hardware compilation to take advantage of emerging tensor compute primitives 	 Overlapping memory access with computation to maximize utilization Uses hardware prefetching and simultaneous multithreading on CPUs Uses rapid context switching on GPUs Uses DAE on TPUs

Automating Optimization

Lowering tensor IR operations into machine code presents a number of different factors to consider:

Search space for large models can be in the billions

- Blackbox auto-tuning
- Predefined cost model

model to iteratively improve

computational efficiency

Automating Optimization

Evaluation: Server Class GPU

- **Tensorflow** and **MXNet** use standard operator implementations
 - cuDNN v7 for convolutional operators
 - Custom versions for *depthwise convolution*
- TVM outperforms standard operators
 - Speedups range from **1.6x to 3.8x**
 - This is because TVM automatically finds optimized operators

GPU end-to-end evaluation for *TVM*, *MXNet*, *Tensorflow*, and *Tensorflow XLA*. Tested on the NVIDIA Titan X.

Evaluation: Embedded CPU

- TVM *outperforms* standard hand-optimized operators provided by Tensorflow
- Can make workloads more CPU-friendly
 - Avoid expensive GPUs

ARM cortex A53 (quad-core 1.2Ghz) end-to-end evaluation of *TVM* and *TFLit*e.

Our Thoughts about TVM

Pros

- Fully open-source and active!
 - https://github.com/apache/tvm
 - Last commit was only *hours ago!*
 - TVM 9.3k GitHub stars
 - Accepted neural network frameworks and target platforms are constantly expanding via community contributions
- Extremely flexible
 - Due to the way Relay IR operations are flexibly constructed, optimizations are possible for any target platform

Cons

- Only optimizes for time
 - What about energy? Disk space?
 - GPT-4 is ~1 trillion params, other optimizations will need to be considered before any AGI-targeted model is useable
- Optimizations start with an untrained model
 - Production deployments require significant training time
 - CPU: 1,500 iterations
 - GPU: 3,000-4,000 iterations
 - Improvements can usually be seen within
 - ~10 iterations for small models

Generating Tensor Operations

- Tensor Expression and Schedule Space
- Each tensor operation is described in TVM's own expression language, and each operation specifies:
 - The shape of the output tensor
 - How to compute each individual element of the output tensor
- Use schedules to denote a specific mapping from a tensor expression to low-level code:
 - Build a schedule by incrementally applying basic transformations (schedule primitives) that preserve the program's logical equivalence

Automating Optimization

