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What Is TVM?

● Imports trained models from popular 
deep-learning frameworks (PyTorch, Tensorflow, 

ONNX, Keras, etc.)

● Unifies imported models into custom IR

● Applies traditional optimization techniques

● Tunes the model for the target hardware 

● Compiles linkable output modules ready for 

production deployment (C++, Java, Python, etc.)

Unified IR

Multiple Backends

LLVM C CUDA

Portable Run Times

CPUs GPUs µCs

End-to-end framework for neural net 
compilation
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Why use TVM?
Common operations, such as matrix 
multiplication, can be sped up over

Very flexible and nearly platform 

independent

18x

Unified IR

Multiple Backends

LLVM C CUDA

Portable Run Times

CPUs GPUs µCs
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● High level
● Not sufficient enough to take 

advantage of hardware 
architecture

Previously

DL frameworks implement 
graph-level optimizations

● Expensive
● Time consuming
● Not portable → portability 

necessary for modern, vast 
hardware landscape

Hand-tuning was necessary 
for low-level optimizations
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● Intermediate data are tensors
● Does not specify how each operator 

is implemented

Optimizing Computational Graph
Computational Graph (CG)

vs
LLVM IR
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Optimizing Computational Graph

CG is used to apply highest-level optimizations

● Operator fusion
● Constant folding

○  pre-computes graph parts statically
● Static memory planning pass
● Data layout transformations

○ Rearrange data to exploit features like vectorization for GPUs or even 4x4 
matrix operations for a DL accelerator
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Operator Fusion

Injective
Addition

Complex-out-fusable
Cov2d

Reduction
Summation

Opaque
Sort
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Data Layout 
Transformation

● Converts a CG into to use better internal 
data layouts.

● Specify the preferred data layout for each 

operator given their memory hierarchy 
constraints. 

● Perform the proper layout transformation 

between a producer and a consumer if their 

preferred data layouts do not match.

DL accelerators might exploit n×n 
matrix operations, requiring data 

to be tiled into n×n chunks to 
optimize for access locality.
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Generating Tensor 
Operations

● Each tensor operation is described in TVM’s 
own expression language, and each 
operation specifies:

○ The shape of the output tensor
○ How to compute each individual 

element of the output tensor
● Use schedules to denote a specific mapping 

from a tensor expression to low-level code

Tensor Expression and Schedule Space

  

k = te.reduce_axis((0, K), "k")
A = te.placeholder((M, K), name="A")
B = te.placeholder((K, N), name="B")
C = te.compute((M, N), lambda x, y: 

te.sum(A[x, k] * B[k, y], 
axis=k), name="C")

 Tensor expression of 
MxK and KxN matrix 

multiplication: 
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● Each task is split into 
subtasks

● Subtasks are grouped to 
exploit hardware 
architecture (e.g. GPU 
thread groups)

Generating Tensor Operations

Nested Parallelism

● Decomposes DL 
workloads into common 
tensor operators

● Allows for hardware 
compilation to take 
advantage of emerging 
tensor compute primitives

Tensorization

● Overlapping memory 
access with computation to 
maximize utilization

● Uses hardware prefetching 
and simultaneous 
multithreading on CPUs

● Uses rapid context switching 
on GPUs

● Uses DAE on TPUs

Explicit Memory 
Latency Hiding
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Automating Optimization

Grouping 
Instructions

Lowering tensor IR operations into machine code presents a 
number of different factors to consider:

Optimizing 
for Memory 
Hierarchy

Tiling Size Modifying 
Loop Order

Loop 
Unrolling 

Factor

Search space for large models can be in the billions 17



● Random search
● Blackbox auto-tuning
● Predefined cost model

Automating Optimization

Previous
Approach

● A schedule explorer tries out 
different optimization factors 
and update an ML-based cost 
model to iteratively improve 
computational efficiency

TVM’s
Approach
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Automating Optimization

Schedule 
Explorer 

Program Ran 
on Hardware

ML Model
(initially untrained) 

Low-Level 
Compiler

(LLVM, 
CUDA/NVCC, etc.)

Proposes 
candidates

Selects top 
candidates

Program 
compiled for 

target hardware

True 
run time 
updates 
model

Optimization 
cycle begins 

again

Final 
program

Tensor IR

A gradient tree 
boosting model 

(based on XGBoost)

ML Model

Parallel simulated 
annealing algorithm

Exploration 
Algorithm
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Automating Optimization
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GPU end-to-end evaluation for TVM, 
MXNet, Tensorflow, and Tensorflow 
XLA. Tested on the NVIDIA Titan X.

Evaluation: 
Server Class GPU

● Tensorflow and MXNet use standard 
operator implementations

○ cuDNN v7 for convolutional operators
○ Custom versions for depthwise 

convolution
● TVM outperforms standard operators

○ Speedups range from 1.6x to 3.8x
○ This is because TVM automatically finds 

optimized operators
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ARM cortex A53 (quad-core 1.2Ghz) 
end-to-end evaluation of TVM and 

TFLite.

Evaluation: 
Embedded CPU

● TVM outperforms standard 
hand-optimized operators provided 
by Tensorflow

● Can make workloads more 
CPU-friendly

○ Avoid expensive GPUs
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● Fully open-source and active!
○ https://github.com/apache/tvm 
○ Last commit was only hours ago!
○ TVM 9.3k GitHub stars 
○ Accepted neural network frameworks and 

target platforms are constantly expanding 
via community contributions

● Extremely flexible
○ Due to the way Relay IR operations are 

flexibly constructed, optimizations are 
possible for any target platform

Our Thoughts about TVM
Pros

● Only optimizes for time
○ What about energy? Disk space?
○ GPT-4 is ~1 trillion params, other 

optimizations will need to be considered 
before any AGI-targeted model is useable

● Optimizations start with an untrained 
model

○ Production deployments require significant 
training time

■ CPU: 1,500 iterations
■ GPU: 3,000-4,000 iterations

○ Improvements can usually be seen within 
~10 iterations for small models

Cons
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Q & A
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● Tensor Expression and Schedule Space
● Each tensor operation is described in TVM’s 

own expression language, and each 
operation specifies:

○ The shape of the output tensor
○ How to compute each individual element of the 

output tensor
● Use schedules to denote a specific mapping 

from a tensor expression to low-level code:
○ Build a schedule by incrementally applying basic 

transformations (schedule primitives) that preserve 
the program’s logical equivalence

Generating Tensor Operations
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Automating Optimization

Schedule 
Explorer 

Remote 
Devices

ML-Based 
Cost Model
(initially untrained) 

Low-Level 
Compiler

(LLVM, 
CUDA/NVCC, etc.)

Proposes 
candidates

Selects top 
candidates

Program 
compiled for 
target device
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Performance 
predictions

Measure 
performance and 
update ML model
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