
EECS 583 – Homework 2

Winter 2023

Assigned: Wed, January 25, 2023

Due: Wed, February 15, 2023 (11:59:59 pm)

Late Submission Policy
Submissions are accepted a maximum of two days after the specified deadline. For each day late, a 10%

penalty will be deducted from your score.

Frequent Path LICM
The goal of this homework is to extend the LLVM loop invariant code motion (LICM) optimization to

identify more opportunities for optimization using control flow profile information. You will go beyond

traditional LICM for instructions that are invariant along the most likely path through the loop even though

they are not invariant when considering the entire loop body. Such instructions cannot be hoisted because

traditional LICM must ensure that execution is correct regardless of the path taken through the loop body.

However, by considering just a single path, one can be more aggressive and hoist additional instructions.

This optimization is a form of compile time speculation in that you are guessing the frequent path is

followed. Whenever another path is taken, you must handle the mis-speculation and ensure correct

execution. With frequent path LICM, mis-speculation handling can be accomplished by simply redoing the

code that was speculatively hoisted.

Implementation (Correctness)
Implement an FPLICM pass to perform speculative hoisting of "almost invariant" instructions from the

loop body. An instruction is said to be "almost invariant" when its source operands are invariant along the

frequent (most likely) path of the loop, but may be variant along other infrequent paths. To simplify your

code, you do not need to worry about pointers (i.e. assume there is no pointer aliasing), you just need to

worry about explicit modification of source operands along infrequent paths. Since this is a compiler

speculation, we need to add a repair mechanism to handle mis-speculations. For LICM, the repair

mechanism involves repeating the hoisted instructions along the infrequent path. Your pass should perform

three steps:

1. Identify the "most likely" path through the loop body. This is done by starting at the loop header

and repeatedly choosing the >=80% branch until the backedge is taken. Such a frequent path exists

in all of our test cases. Anything not on the frequent path is said to be infrequent.

2. Identify load instructions on the frequent path that are "almost invariant" and hoist them. (For the

correctness part, you only need to hoist "almost invariant" load instructions)

3. Create and insert the repair code in the infrequent paths to handle mis-speculation.

Bonus Implementation (Performance)
After hoisting the load instructions, a number of dependent instructions may become invariant and can also

be speculatively hoisted. For bonus points, extend your baseline implementation to hoist these dependent

instructions whilst ensuring program correctness. You can further create a heuristic to decide if hoisting is

profitable and do so only when it is. Profit can be estimated by the reduction in the dynamic instruction

count after applying your pass. The bonus implementation is not required to score 100% on this homework,

but those who successfully get it working will receive up to an additional 20% on the homework score and

bragging rights for a job well done.

Example
The following example demonstrates the basic and bonus versions of frequent path LICM. The leftmost

column is the original code that contains a for loop with an infrequently taken if statement. Variable ‘j’ is

only modified on an infrequent path, thus the load of j is a good target for frequent path LICM. The middle

column shows the code after applying frequent path LICM to the load of j including the repair code to fix

up loop execution when the infrequent path is taken. Note the repair code only needs to be executed on

infrequent paths where j is modified. Finally, removing the load of j enables other dependent instructions

to be hoisted including the load of A[j] and the multiplication by 23. This optimization is the optional part

of this homework referred to as the Bonus Implementation. The final result in shown in the rightmost

column of the table below including the updated repair code.

Original Code First load hoisted First load and uses hoisted

int A[100], B[100], i, j = 99; int A[100], B[100], i, j = 99; int A[100], B[100], i, j = 99;

 int temp = A[j]; /* hoisted load */ int temp = A[j] * 23; /* hoisted load and uses */

for (i=0; i<100; i++) { for (i=0; i<100; i++) { for (i=0; i<100; i++) {

 /* Frequent path */

 B[i] = A[j] * 23 + i;

 /* Frequent path */

 B[i] = temp * 23 + i;

 /* Frequent path */

 B[i] = temp + i;

 if (i%32 == 0) if (i%32 == 0) { if (i%32 == 0) {

 j = i; j = i; j = i;

} temp = A[j]; /* repair code */ temp = A[j] * 23; /* repair code */

 } }

 } }

Contest
For the purposes of fun only, the person with the fastest average execution time across the benchmarks will

be crowned EECS 583 Winter 2023 Optimization Champ and be awarded a fabulous prize. Note: correct

execution results are required to qualify for the contest.

Submission
You should submit a single .tgz (gzipped tar) file into the directory /hw2_submissions on

eecs583a.eecs.umich.edu via scp. Please name your tar file uniquename_hw2.tgz. Your tar file should

contain:

1. Source code for your LLVM optimization pass. Please include all your code in the file

HW2PASS.cpp. This should include your implementation of the baseline optimization and

optionally your bonus implementation if you attempted this portion.

2. For each benchmark (both performance and correctness) provide bitcode files after performing

your frequent path LICM optimization. Provide the bitcode files with just the baseline

optimization (e.g., hw2correct1_base.bc, hw2correct2_base.bc, etc.) and optionally the bonus

optimization (e.g., hw2correct1_bonus.bc, …, hw2perf1_bonus.bc, ...) if you attempted the bonus

portion of the assignment. Note you need to rename the output files generated by run.sh, i.e., from

hw2correct1.fplicm.bc (generated from run.sh) to hw2correct1_base.bc for submission.

3. README that summarizes the status of your implementation, i.e., what works or any other

information you would like to provide about your implementation.

Use the following directory organization for your submitted tar file:
 uniquename_hw2/

 HW2PASS.cpp (assuming you use the template)

 benchmarks/

 hw2correct1_base.bc, hw2correct2_base.bc, … (required)

hw2correct1_bonus.bc, hw2correct2_bonus.bc, … (optional)

 hw2perf1_bonus.bc, hw2perf2_bonus.bc, … (optional)

 README

