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The Importance of Prepass Code Scheduling for 
Superscalar and Superpipelined Processors 

Pohua P. Chang, Daniel M. Lavery, Scott A. Mahlke, W illiam Y. Chen, and Wen-mei W . Hwu 

Abstract - \suwrxalar and  suueruiuel ined ~rocmrs utiliie 
parallelism to a&eve peak  perfor&&&that &I be  several t imes 
higher than that of conventional scalar processors. In order for 
this potential to be  translated idto the speedup  of real programs, 
the compiler must be  able to schedule hMruct ions so that the 
parallel hardware is effectively utilized. Previous work has  shown 
that prepass code schedul ing helps to produce a  better schedule 
for scientific programs, but the importance of preschedul lng has  
never  been  demonstrated for control-intensive non-numeric pro- 
grams. These programs are significantly different from the scien- 
tific programs because they contain frequent branches.  The  
compiler must do  global schedul ing in order to 6nd  enough  inde- 
pendent  instructions. 

In this paper,  the code optimizer and  scheduler of the 
IMPACT-I C compiler is described. W ithin this framework, we 
study the importance of prepass code schedul ing for a  set of pro- 
duct ion C programs. It is shown that, in contrast to the results 
previously obtained for scientific programs, preschedul ing is not 
important for compil ing control-intensive programs to the cur- 
rent generat ion of superscalar and  superpipel ined processors. 
However,  if some of the current restrictions on  upward code mo- 
tion can be  removed in future architectures, preschedul ing would 
substantially improve the execut ion time of this class of programs 
on  both superscalar and  superpipel ined processors. 

Index Items - Code  schedul ing, control-intensive programs, 
optimizing compiler, register allocation, superpipel ined proces- 
sors, superscalar processors. 

I. INTRODUCTION 

C URRENT high-performance processors use  hardware 
techniques to exploit instruction-level parallelism. Pipelin- 

ing is common,  and  many  designs are capable of execut ing 
nearly one  instruction per  cycle. Performance can be  boosted 
further, either by  execut ing more than one  instruction per  cycle 
or by  reducing the length of the clock cycle. Superscalar proces- 
sors fetch, decode,  and  execute more than one  instruction per  
cycle by  duplicating decode/ issue units, functional units, and  
datapaths. Superpipel ined processors divide the pipeline into 
smaller segments that have  less delay, allowing the clock cycle 
to be  shortened. In order for the full per formance to be  extracted 
tiom these parallel microarchitectures, techniques must be used 
to minimize the stalls caused by  the control and  data depend-  
ences between instructions. As the pipelining depth or the in- 

Manuscript received May  31.1991; revised October 1992. 
The authors were with the Center for Reliable and High-Performance Com- 

puting, University of Illinois, Urbana-Champaign, IL. 61801. W .W. Hwu’s e- 
mail address is hwu@crhc.uiuc.edu. The authors may  be reached through 
Dr. Hwu’s office. 

IEEECS Log Number C95003. 

struction issue rate increases, these stalls become more costly. 
Code  schedul ing is a  technique that tries to rearrange the 

instruction sequence to minimize the execut ion time. Usually 
code schedul ing is performed after register allocation 
(postpass or postscheduling). However,  the register allocator 
introduces extra dependences  whenever  it reuses registers. 
These extra dependences  restrict the ability of the code 
scheduler to move instructions to their desired positions. On  
the other hand,  if code  schedul ing is performed before register 
allocation (prepass or preschedul ing), the register lif&imes 
may be  lengthened, which may increase the amount  of spill 
code  added  by the register allocator. 

In previous work, Goodman  and  Hsu [l] showed that a  pre- 
pass scheduler can  keep track of the number  of available regis- 
ters to avoid introducing excessive spill code.  Hwu and  Chang  
[2] showed that a  preschedul ing, register allocation, post- 
schedul ing sequence extracts more performance from scientific 
benchmarks than postschedul ing alone. Both of these results 
apply to scientific programs with code schedul ing and  register 
allocation performed within large basic blocks. The  impor- 
tance of preschedul ing has  never  been  demonstrated for con- 
trol-intensive non-numeric programs. 

For the study reported in this paper,  code  schedul ing is per- 
formed before and  after register allocation. As it reorganizes 
the instructions, the prescheduler  tries to control the increase 
in the .register lifetimes, helping the register allocator to 
minimize the number  of registers used.  W e  compile a  set of 
product ion C programs using the IMPACT-I C compiler in 
order to examine the effectiveness of preschedul ing for con- 
trol-intensive non-numeric programs. It is important to evalu- 
ate preschedul ing on  this class of codes for two reasons. First, 
compared to the scientific applications studied earlier, these C 
programs have  frequent branches,  creating small basic blocks 
in which there is limited parallelism. Code  schedul ing and  
register allocation are performed globally in order to find more 
parallelism and  to reduce the register save and  restore over- 
head.  It is not clear @at the results based  on  local schedul ing 
and  register allocation for scientific codes are directly appli- 
cable here. Second,  even  with global schedul ing and  register 
allocation, these control-intensive programs have  less inherent 
parallelism than scientific applications. The  advantage of pre- 
schedul ing for programs with limited parallelism needs  to be  
demonstrated. If only a  small amount  of parallelism can be  
extracted from these C programs, the restrictions imposed by 
the register allocator may not be  significant. 

This paper  also empirically evaluates the advantages of pre- 
schedul ing for the superscalar and  superpipel ined implemen- 
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tations of current and  future architectures. W e  compile the set 
of C benchmarks to several different parallel implementations 
of a  base  architecture and  calculate the execut ion time and  the 
number  of dynamic memory references from the schedule. For 
each  case we compile once  with both preschedul ing and  post- 
schedul ing turned on  and  once  with only postschedul ing turned 
on  in order to compare the two methods. In order for these 
parallel microarchitectures to speed up  the execut ion of con- 
trol-intensive programs, the compiler must be  able to generate 
efficient code  with sufficient parallelism to utilize-them. The  
study done  in this paper  shows that for architectures that relax 
the current restrictions on  upward code motion, preschedul ing 
helps to achieve this goal. 

In other related work, Hennessy and  Gross [3] provided a  
good  description of the code schedul ing problem and  a  schedul-  
ing algorithm. Fisher [4] and  Ellis [5] descr ibed a  very effective 
global schedul ing algorithm called trace schedul ing. A paper  by  
Chaitin [6] presented the graph-color ing-based register alloca- 
tion algorithm on  which our  global register allocator is based.  

This paper  is drganized as  follows. Section II gives the nec- 
essary background on  preschedul ing and  postschedul ing, our  C 
compiler, and  its register allocator and  scheduler.  The  experi- 
mental methodology and  the results are discussed in Sec- 
tion III. The  conclusion is presented in Section IV. 

II. BACKGROUND 

A. Prepass vs. Postpass Code  Schedul ing 

The  code scheduler has  one  primary goal: to rearrange the in- 
structions so that the code sequence is executed in the smallest 
number  of cycles. For example, to avoid stalls due  to an  instruc- 
tion with a  long latency (such as  a  load or a  multiply), the 
scheduler will try to move it upward in the code so that its result 
is ready in time for use  by  a  subsequent  instruction. While reor- 
ganizing the code,  it must preserve the correctness of the original 
program with respect to the data and  control dependences.  In 
this work, it is assumed that the instructions are statically sched-  
uled. All of the instruction latencies and  the type and  number  of 
functional units are visible to the code scheduler.  

The  dependences  are expressed in the form of a  dependence  
graph. Prior to register allocation, the only data dependences  
expressed in the graph result from the operat ions necessary to 
implement the computat ion specif ied by  the source program.’ 
Because temporary variables are written only once,  the only 
dependences  related to them are flow (read-after-write) de-  
pendences.  For the user-level variables, there may be  flow, 
anti- (write-after-read), and  output (write-after-write) depend-  
ences for both registers and  memory locations. 

During register allocation, dependences  resulting from the 
reuse and  spilling of registers are added  to the dependence  
graph. When  a  register is reused, anti- and  output dependences  
are created because the last read or write of the variable cur- 

1 This assumes that the single assignment rule is used for compiler- 
generated temporaries. Depending on the amount of optimization performed 
by the compiler before code scheduling, the number of instructions used and 
the dependence pattern created may  vary. ln any case, there is some given 
dependence pattern with which the code scheduler must work. 
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rently occupying the register is fol lowed by the write of the new 
variable. When  a  register is spilled, an  ant i -dependence is cre- 
ated because the register spilled to memory will soon  be  reused. 
A flow dependence  is created because the value written to mem- 
ory will eventually be  read into a  register again. When  a  register 
is refilled, an  ant i -dependence may be  created if the memory 
from which the value is read eventually gets written again. 

Code  schedul ing can be  performed either before or after 
register allocation, or both. No matter when  schedul ing is per- 
formed, the dependences  in the initial code  sequence constrain 
the reordering of instructions: If code  schedul ing is performed 
after register allocation, the scheduler is additionally restricted 
by  the extra dependences  resulting from the reuse and  spilling 
of registers descr ibed earlier. As a  consequence,  the instruc- 
tions may not be  moved around as effectively as  they could be. 

One  way around this is to perform prepass code schedul ing. 
Then  the scheduler can  move the instructions close to their de-  
sired posit ions without the h indrance of the dependences  caused 
by register recycling. However,  if the prepass code scheduler is 
not careful about  moving instructions, it can  greatly increase the 
register lifetimes. For example, in order to avoid delays due  to a  
load instruction, the code scheduler tries to insert useful opera-  
tions between the load and  the instruction which uses the value 
loaded. This increases the lifetime of the destination register of 
the load, increasing the chance that the register will have  to be  
spilled. If the scheduler inserts too many  instructions, then the 
value loaded will be  available sooner  than it needs  to be  and  will 
take up  space in the register for a  longer time than is necessary.  
The  scheduler can  also attempt to exploit more parallelism than 
the register file is capable of support ing by  producing too many  
simultaneously live values. 

The  above  are some of the d isadvantages of preschedul ing. 
The  first one  can be  minimized by  an  intelligent scheduler.  
The  prepass scheduler should insert no  more instructions than 
are necessary to avoid delays. Temporary values should be  
produced as late as  possible and  used as  early as  possible. The  
second disadvantage can be  reduced by increasing the register 
file size or more tightly integrating the code scheduler and  
register allocator as  in [ 11. W e  evaluate the performance of 
preschedul ing for various register file sizes, but do  not con- 
sider more integrated schemes in this paper.  It-is shown in 
Section III that if the preschedul ing is done  intelligently, the 
benefits of the increased code movement  flexibility outweigh 
the cost of the extra register spilling for the control-intensive 
benchmarks that we studied. It is also shown that to take full 
advantage of the parallel microarchitectures, enough  registers 
must be  provided to hold all the simultaneously live values. 

There is another d isadvantage to preschedul ing if post- 
schedul ing is not also done.  During register allocation, the 
optimized sequence of instructions is perturbed by  the spill 
code  added,  and  there is no  code motion opportunity to reduce 
the effects of this. If code  schedul ing is performed before and  
after register allocation, then the postpass scheduler can  make 
the final adjustments to account  for the extra code and  depend-  
ences added  during register allocation. Because most of the 
code motion is already completed, the postpass scheduler is 
less h indered by  the extra dependences.  

Fig. 1  shows a  code sequence (A) as  it progresses through 
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A 1 Id t1,chr 1 
2 add t2,tl,l 3  
3 st -ckQ 4 
4 Id t3,filel 5  
5 Id ww) 7 
6 add tS,t4,-1 9 
7 st W),ti 10 

RBGI!?IER 
ALLOCATION PRESCHEDULING 

B 1 Id t1,chr 1 
4 Id &file1 2 
2 add t2,tl,l 3  
3 St -chr,t2 4 
5 Id two3) 5 
6 add tS,t4,-1 7 
7 st qtm5 8 

1 Id IO&r 1 
2 add rlJo,l 3  
3 st -chm 4 
4 Id rO,filel 5  
5 Id mttO) 7 
6 add 12,&l 9 
7 st ww 10 

POSTSCHEDULING 

1 Id la,chr 1 
2 add rlJO.1 3 
4 Id rO,fdel 4  
3 St J%rJl 5  
5 Id rl,O(fl) 6  
6 add rqrl,-1 8 
7 St o(ro)s2 9 

1 
REGISTER 

ALLOCATION 

C E 1 Id ro,chr 1 
4 Id rlfilel 2  
2 add r2@,1 3 
3 St -cbQ 4 
5 Id rO,o(rl) 5  
6 add r2,rO,-1 7 
7 St o(rl)S 8 

Fig. 1. Examples of postpass and prepass code scheduling. 

register allocation (B) and  then postschedul ing (C). For each  
instruction, the first operand is the destination, and  the next 
one  or two operands are the sources, Id is a  load instruction, 
and  sf is a  store. The  base-register-plus-displacement address-  
ing mode  is similar to that of the MIPS R2000.  For example, 
the memory address for the instruction Id rl, x(rOJ is generated 
by  adding x to the contents of r0. The  number  to the right of 
each  instruction is the cycle in which the instruction is issued, 
assuming that loads have  a  latency of two cycles and  all the 
other instructions shown have  a  latency of one  cycle. 

tion one  is not available in time because of the memory access 
delay.2 The  corresponding sequence,  with preschedul ing (D) 
and  then register allocation (E), is also shown. The  post- 
scheduled version takes one  cycle longer to execute than the 
prescheduled version. Both use  the same number  of registers, 
but the average register lifetime for the prescheduled sequence 
is slightly longer. This example is extracted from the most 
frequently executed block of code  generated by  our  compiler 
for the Unix utility cmp. 

In Fig. l(C), instruction four cannot  be  moved ahead  of in- 
struction two because of the reuse of register 0  by  the register 
allocator. This results in a  stall when  the operand for instruc- 

* For this example, we assume that the set of unused registers is managed as 
a stack. It is also assumed that the register allocator tries to minimize the 
number of registers in order to reduce the procedure call overhead associated 
with saving and restoring registers. 
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The importance of preschedul ing becomes more pro- 
nounced  as the intermediate code becomes more parallel. If the 
initial dependence  graph has  very few edges,  then the majority 
of the constraints come from the edges  added  by the register 
allocator. This is why preschedul ing is so  important for scien- 
tific programs. W e  show that, using global optimization tech- 
n iques combined with the proper architectural support,  enough  
parallelism can be  extracted from control-intensive programs 
to make preschedul ing necessary.  

B. IMPACT-I C Compiler 

The  IMPACT-I C Compiler [7] is a  retargetable, optimizing 
compiler des igned to generate very efficient code  for pipelined 
and  multiple-instruction-issue processors. Code  generators 
have  been  built for the MIPS R2000  [8], the Sun SPARC [9], 
the AMD 29K [lo], the Intel i860 [ll], and  the HP PA [12] 
processors. IMPACT-I is used  to study the effectiveness of 
new code optimization techniques and  to study alternative ap-  
proaches in the design of processors that exploit instruction- 
level parallelism. The  compiler contains a  profiler to identify 
the most frequently executed program paths. This information 
is used  to guide the global code  optimization and  schedul ing. 

IMPACT-I currently performs a  wide variety of machine- 
independent  and  machine-dependent  code optimizations. The  
machine- independent  optimizations include the classic local 
and  global code  optimizations [13], inline expansion of fre- 
quently executed functions [ 141,  instruction placement optimi- 
zation [15], profi le-based classic code optimizations [16], and  
profi le-based optimizations to increase the available instruc- 
tion-level parallelism [ 171.  The  machine-dependent  optimiza- 
tions include profi le-based branch prediction [18], graph- 
color ing-based register allocation [6], and  code schedul ing. The  
results in this paper  are based  on  the IMPACT compiler imple- 
mentation. The  task of evaluating the importance of the results 
for other compiler systems is left to the reader. The  following 
sections descr ibe the global register allocator and  scheduler.  

C. Register Allocation 

The  IMPACT-I global register allocator is based  on  the 
graph-color ing algorithm descr ibed in [6]. The  algorithm con- 
structs an  interference graph in which each  node  represents a  
value. An arc is added  between two nodes  if they are ever si- 
multaneously live. Two adjacent nodes  cannot  be  al located to 
the same register. The  algorithm tries to color the graph using 
r colors, where r is the number  of available registers. If the 
graph cannot  be  colored in r colors, then a  register must be  
spilled and  the coloring attempted again. 

A natural result of this algorithm is that two values which do  not 
have  overlapping live ranges (i.e., are not adjacent in the interfer- 
ence  graph) are often al located the same register. This register 
reuse introduces dependences  that prevent the code scheduler from 
overlapping otherwise independent  instructions which read or 
write the two variables. Because the algorithm does  not take into 
account  the cost of instructions that cannot  be  over lapped, it may 
allocate registers in a  way that handicaps the code scheduler.  
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D. Superblock Schedul ing 

This section descr ibes the IMPACT-I code  scheduler,  which 
is based  on  a  new variation of trace schedul ing [4], [5] that we 
call superblock schedul ing. The  idea is to select frequently 
executed paths through the code and  optimize them, perhaps at 
the expense of the less frequently executed paths. Instead of 
inserting bookkeeping instructions where two traces join, we 
duplicate part of the trace and  optimize the original copy. This 
method is especially useful for the control-intensive bench-  
marks studied in this paper  because the parallelism within a  
basic block is very limited. Superblock schedul ing provides an  
easier way to find parallelism beyond  the basic block bounda-  
ries. W e  descr ibe superblock schedul ing here because the re- 
sults presented in this paper  are based  on  this kind of global 
optimization. Superblock schedul ing is performed in the six- 
step process shown below: 

1) Trace selection 
2) Superblock formation 
3) Superblock optimization 
4) Dependence  graph construction 
5) Dependence  graph optimization 
6) List schedul ing 

When  a  program is compiled with the preschedul ing option 
turned off, steps 1  through 3  are completed, fol lowed by regis- 
ter allocation. Then  the dependence  graph is constructed and  
optimized, and  the code is scheduled. When  the preschedul ing 
option is turned on, steps 4  through 6  are also performed just 
before register allocation. The  next subsect ion descr ibes the 
program representat ion used  and  the modifications to the code 
prior to schedul ing. Later subsect ions descr ibe each  step of the 
process. The  final subsect ion comments on  some concerns that 
have  been  expressed about  the effects of superblock schedul-  
ing on  the code size and  compile time. 

D. 1. Program Representat ion, Profiling, and  Preparat ion 

In our  C compiler, a  function is represented as  a  weighted 
flow graph [ 161.  Several steps are taken to prepare the pro- 
gram for optimization and  code schedul ing. First,:the flow 

graphs are generated for each  function. Probes are then in- 
serted into all the basic blocks to collect the execut ion counts, 
and  the program is profiled several t imes with different inputs. 
The  results from all the runs are averaged and  used to assign 
weights to the nodes  and  arcs of the graphs. Frequently exe- 
cuted function calls are then inline expanded  [ 141.  

D. 2. Step I: Trace Selection 

The  goal of trace selection is to divide the function into a  
set of traces such that for each  block X, if there is a  block Y 
immediately following (preceding) X in a  trace, Y is the block 
most likely to be  executed after (before) block X. The  block 
most likely to be  executed after (before) block X is determined 
by  examining the execut ion counts of all the arcs leaving 
(entering) block X. The  trace becomes the unit in which in- 
structions are rearranged. As a  result, code  movement  across 
basic block boundar ies is automatically done  in such a  way as  
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to optimize the more frequently executed paths. When  the 
schedule a long one  path can be  improved at the expense of the 
schedule a long another path, the decision is made  in favor of 
the more frequently traveled path (i.e., the one  in the trace). 

The  algorithm and  heuristics we use for trace selection were 
first p roposed by Ellis [5] and  improved by  Chang  and  Hwu 
[ 191.  An example of the result of trace selection on  a  weighted 
flow graph can be  seen in [16]. A node  is not added  to a  trace 
unless its execut ion count  is higher than a  minimum count and  
the probability of entering it from its predecessor  or leaving it 
for its successor in the trace is greater than a  minimum probabil- 
ity.3 Once  the traces have  been  selected, the basic blocks of each  
trace are laid out sequential ly in memory [ 151.  Then  superblocks 
are formed and  optimized as  descr ibed in the next subsections. 

D. 3. Step 2: Superblock Formation 

W e  define a  side exit as  a  branch from any  block X in the 
trace, except  the last one,  to a  block Y (Y can be  in or out of 
the trace) where Y does  not immediately follow X in the trace. 
A side entrance is def ined as  a  branch from a  block X (X can 
be  in or out of the trace) to any  block Y in the trace, except  the 
first one,  where X does  not immediately precede Y in the 
trace. W e  define a  superblock As a  trace that has  no  side en-  
trances and  zero or more side exits. The  goal of superblock 
formation is to convert  a  trace that has  side entrances and  exits 
into a  superblock. The  motivation and  method for doing this is 
explained in the following paragraph.  

In the traces formed in step 1  there may be  many  side exits 
and  entrances. The  side entrances especially increase the diffl- 
culty of code  schedul ing because complex bookkeeping must 
be  done  when  code is moved above  and  below these entrances 
[4]. These complex repairs could be  avoided if side entrances 
could be  removed from the trace. One  way to do  this would be  
to not add  a  block to a  trace if it p roduces a  side entrance. 
However,  for control-intensive programs, this would limit the 
size of the traces and  the effectiveness of trace schedul ing. 
Instead, we chose to remove the side entrances using a  tech- 
n ique called tail duplication. A copy is made  of the tail port ion 
of the trace from the side entrance to the end  and  is appended  
to the end  of the function. Each block copied forms a  new su- 
perblock. Only one  copy of a  block is ever made.  All side en-  
trances into the trace are then moved to the corresponding 
duplicate basic blocks. At this point, the trace, with only a  
single entrance remaining, becomes a  superblock that can  be  
optimized with special handl ing only for the side exits. 

An example of superblock formation can be  seen in [ 161.  When  
a  block is copied, its execut ion count  in the original trace is re- 
duced  by  the weight of the side entrances removed.  lf the block 
has  multiple successors,  the proport ion of the weight that should 
be  subtracted from each  arc is not known. As an  approximation, 
we multiply the weight of each  outgoing arc by  a  fraction equal  to 
the new weight of the block divided by  the weight of the block 
before tail duplication. For the profi le-based optimizations, this 
approximate information is good  enough.  However,  for accurate 

3 In the experiments done for this pap&, the min imum count is 50 and the 
min imum probability is 60%. 

analysis of the final schedule, the transformed program must be  
repro&d after superblock optimization. 

An additional benefit of tail duplication is that code  optimiza- 
tions can be  more e&ily appl ied to superblocks than to traces 
[ 161.  The  IMPACT-I compiler uses the superblock as  a  common 
foundat ion for both optimizations and  code schedul ing. 

D. 4. Step 3: Superblock Optimization 

After superblock formation, many  classic code optimiza- 
tions are performed that take advantage of the profile informa- 
tion encoded  in the superblock structure.4 These optimizations 
are des igned to decrease the number  of instructions on  the 
frequently executed paths, perhaps at the expense of the infre- 
quently executed ones  [ 161.  They include: constant propaga-  
tion, copy propagat ion, constant combining, common subex-  
pression elimination, redundant  load and  store elimination, 
dead  code removal, loop invariant code  removal, loop induc- 
tion variable elimination, and  global variable migration. 

Next, several profi le-based code transformations are per- 
formed .that increase the available instruction-level parallelism 
of the intermediate code [ 171,  [20]. These optimizations in- 
crease the size of superblocks and  eliminate data dependences  
between instructions. They are appl ied only to the most fre- 
quently executed superblocks to control code  expansion and  
compile time. They include: branch target expansion,  loop 
peeling, loop unrolling, register renaming, induction variable 
expansion,  accumulator variable expansion,  operat ion migra- 
tion, operat ion combining, and  tree height reduction. 

D. 5. Step 4: Dependence  Graph Construction 

In this step, a  conservat ive dependence  graph is built for each  
superblock. The  dependence  graph is a  directed acyclic graph in 
which the nodes  are instructions. There is an  arc from node  X to 
node  Y if instruction Y depends  on  instruction X (i.e., nodes  in 
the graph depend  on  their parents). Data-dependence arcs are 
added  as if the superblock were a  basic block. However,  unlike 
basic blocks, superblocks may contain branches.  For each  con- 
ditional branch instruction I, we define live-out (I) as  the set of 
variables that may be  used before they are def ined when  I is 
taken. A data-dependence arc is added  from an  instruction to a  
conditional branch I below it if the instruction writes a  variable 
that is in live-out (I) or if the instruction may cause an  excep-  
tion. A contro l -dependence arc is added  from a  conditional 
branch I to an  instruction below it in the superblock if the desti- 
nat ion variable of the instruction is in live-out (I) or if the in- 
struction may cause an  exception. Memory disambiguation is 
done  and  data-dependence arcs are added  between pairs of 
memory references that cannot  be  disambiguated. 

Each f low-dependence arc has  a  length associated with it 
that is equal  to the latency of the instruction that is the source 
of the dependence.  The  anti- and  output -dependence arcs have  
length 0. W e  assume that the hardware ensures that anti- and  
output-dependent  instructions issued in the same clock cycle 

4 Traditional local and global optimizations that do not utilize profile in- 
fonation are also performed at this point [ 131. 
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are executed corre~tly.~ The side exits in the superblock are 
predicted to not, be taken, so there is no delay for a control 
dependence and the length of the arc is 0.6 

D. 6. Step 5: Dependence Graph Optimization 

In this step the dependence graph is optimized by removing 
some of the dependence arcs. During the list scheduling step 
(described in the next subsection), the instructions are reordered 
to improve the execution time within the constraints of the de- 
pendences. Instructions are moved upward and downward across 
branches. Moving instructions upward across branches is called 
speculative code motion. There are two major restrictions on 
moving an instruction upward across a branch I: 

1) The instruction must not write a variable that is in 
live-out (I). 

2) The instruction must not cause an exception that termi- 
nates the program execution. 

The first restriction can usually be eliminated with sufficient 
compiler variable renaming support. As an example of the 
second restriction, it is not safe to move a division or floating- 
point instruction above a branch because of the possibilities of 
a division by zero or a floating-point exception, respectively. It 
is also not safe to move a memory load instruction above a 
branch because of the possibility of a memory access violation. 
Page faults are not a problem because they do not cause the 
execution to terminate. However, moving loads from below to 
above branches may increase the number of page faults. 

We have implemented two different code scheduling models 
for the purpose of experimentation. The first model enforces 
both of the restrictions and is called restricted,percolution. This 
model is necessary for the current generation of commercial 
architectures where a subset of the instructions can cause traps. 
When this model is used, no additional dependence arcs are re- 
moved after memory disambiguation. The second model allows 
the second restriction to be avoided. This model is called gen- 
eral percolation. In this model, the architecture provides non- 
trapping versions of the instructions that can cause exceptions. 
Whenever an instruction is moved upward across a branch, the 
non-trapping version is used. A similar approach has been im- 
plemented in the Multiflow Trace computer [2 1 ] ? 

If an exception occurs during a non-trapping instruction, the 
exception is simply ignored (except for page faults, which are 
handled normally). An invalid value is placed in the destina- 
tion register for loads and arithmetic operations. Instructions 
that use a (possibly invalid) value generated by a non-trapping 
instruction can also be percolated. 

For programs which would never have been trapped when 
scheduled using conventional techniques, this invalid value 
does not affect the correctness of the program because the re- 

5 There are several techniques for doing this. For example, the hardware can 
do register renaming for register dependences and memory access sequence 
control for memory dependences. 

6 For the superscalar processors, multiple branches can be issued in a cycle 
and the architecture uses a squashing branch scheme [18]. 

’ The Multiflow Trace eventually detects some floating-point exceptions by 
writing NaN to the destination register of the instruction that would have 
generated an exception. 
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suits of the instructions moved above the branch are not used 
when the branch is taken (a result of restriction 1). However, 
for all other programs (e.g., undebugged code, or programs 
which rely on traps during normal operation), errors which 
would have caused a trap may now cause an exception at a 
later trapping instruction, or may cause an incorrect result. 

Smith, Lam, and Horowitz described a method called 
boosting which uses extra hardware to remove both the first 
and second restriction without ignoring exceptions [22]. We 
have shown that boosting and general percolation have similar 
performance [23]. Currently, we are investigating sentinel 
scheduling, a very promising new technique which allows the 
code scheduling flexibility of general percolation without ig- 
noring exceptions and without requiring much extra hardware 
[24]. The results achieved with general percolation in this pa- 
per confirm the importance of speculative code motion and 
show the potential of these new techniques. 

Moving a load from below to above a branch increases the 
total number of memory accesses made by the program be- 
cause the load is now always executed regardless of which 
path is taken. Because the load is moved up from the most 
frequently executed path, the number of extra references 
should be moderate. When the general percolation model is 
used, any control dependence arcs which result only from the 
second restriction can be removed. 

If an instruction is moved from above to below a condi- 
tional branch I and it writes a variable that is in live-out (I), 
the instruction must also be inserted between I and its target. 
In our compiler, for ease of implementation, code motion of 
this type is done during the code optimization phases de- 
scribed above. Therefore, the scheduler does not move an in- 
struction below a branch if it writes a variable that is in 
live-out (I). It also does not move an instruction downward 
across branches if it may cause an exception. In these cases, 
the exception is only detected when the branch is not taken. 
The ability to move such instructions .from above to below a 
branch does not improve the schedule very much. We prefer 
not to lose the exception. 

D. 7. Step 6: List Scheduling 

In this step, the dependence graph is scheduled. Because the 
code is scheduled before register allocation as well as after, the 
scheduling algorithm is careful to keep the register lifetimes to 
a minimum while trying to optimize the code for the pipeline. 
Temporary values are produced as late as possible and used as 
soon as possible, shortening the register lifetimes and reducing 
the amount of spilling. The algorithm also tries to control the 
number of simultaneously live registers to reduce spilling. The 
various factors that the scheduler takes into account are sum- 
marized in a priority which is computed for each node in the 
graph before scheduling begins. 

The general idea of the list scheduling algorithm is to pick, 
from the set of nodes in the dependence graph that are ready to 
be scheduled, the highest-priority combination of nodes to 
issue in a cycle. A node is ready if all of its parents have been 
scheduled and the result produced by each parent is available 
(i.e., since the time that the parent node was scheduled, enough 
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cycles have  passed to cover its latency). When  a  node  is ready, 
it is p laced in a  set of nodes  called the active set. There are a  
set of instruction templates for the processor that specify the 
possible combinat ions of instructions that can  be  issued in a  
cycle. For each  cycle, the scheduler finds the highest-priority 
set of nodes  from the active set to fill each  template. Then  it 
issues the highest-priority instruction template and  marks the 
nodes  in the template as  scheduled. The  priorities of all the 

. nodes  in a  template are added  together to determine the high- 
est-priority template. If there are no  nodes  in the active set, the 
scheduler does  not have  to issue no-ops. In this case, the flow 
dependences  are enforced by  the hardware interlocks. The  
scheduler simply advances the cycle count  and  checks to see if 
nodes  become ready to be  scheduled. 

The  priority computed for each  node  is the weighted sum of 
the values returned by  several heuristic functions. Each heu-  
ristic function F,(N) (where N is a  node)  returns a  priority 
value between 0  and  1. For a  given node,  one  heuristic func- 
tion may return a  high value, and  another a  low value. Each 
function is ass igned a  weight W i to resolve these kinds of 
conflicts. The  function priority(N) returns xy=, Fi(N)* W i . The  
heuristic functions used  are descr ibed below beginning with 
the highly weighted ones:  

slackness(N): This heuristic function assumes that re- 
sources are unlimited and  that the best schedule length is 
equal  to the depth of the dependence  graph. It f inds the lat- 
est time that node  N can be  issued without increasing the 
length of the best schedule and  then assigns a  priority be-  
tween 0  and  1  based  on  that. Nodes  that can  be  postponed 
without increasing the length of the schedule receive a  
lower priority. 

exec-count(N): Nodes  above  a  branch (including the branch) 
are given higher priority than nodes  below the branch. This 
is because the nodes  above  the branch are executed more 
times than the nodes  below the branch. W e  do  not want to 
move an  operat ion with a  lower execut ion count  upward 
across a  branch if it will delay the issuing of the branch. 

register-use(N): This function gives a  high priority to nodes  
that have  many  source registers because they may free regis- 
ters. It gives a  low priority to nodes  that write a  variable be-  
cause they require a  new register. This reduces the number  
of simultaneously live registers. 

uncover(N): High priority is given to nodes  that have  
many  children. Once  a  node  like this is issued, many  nodes  
are added  to the active set. Branches, loads, and  stores are 
favored by  this heuristic. 

or&order(N): If two nodes  can be  scheduled in any  order, 
the node  which appears  first in the original code  sequence 
receives a  higher priority. 

The  weight given to each  of these heuristic functions can be  
tailored to the target architecture. For example, if the architec- 
ture has  a  small number  of registers, register-use(N) might be  
given more weight. The  uncover(N) heuristic might be  em- 
phasized for an  architecture with lots of parallelism and  a  large 
register file. In this paper,  we use the same set of weights for 
all of the experiments. 

These heuristics were developed based  on  our  exper ience with 
control-intensive programs, and  the results in this paper  are based  
upon  them. The  importance of preschedul ing may vary with dif- 
ferent heuristics. The  evaluation of the importance of preschechu-  
ing for different heuristics is beyond  the scope of this paper.  

D. 8. The  Effect of Superblock Schedul ing on  Compile Time 
and  Code  Size 

In [20], we have  measured the code expansion and  compile 
time increase due  to trace selection, superblock formation, and  
optimization for the benchmarks used  in this paper.  The  code 
size is increased by  an  average of 100%. Cache simulation 
results in [20] show that, despite the code size increase, an  
instruction cache of 16K bytes or larger performs nearly as  
well as  an  ideal cache.  Since most future processors will have  
an  instruction cache at least this large, we do  not expect  code 
expansion to be  a  problem. 

As with trace schedul ing, superblock schedul ing does  in- 
crease the compilation time. The  increase is about  140% on  
average (including profiling for one  input) in our  prototype 
compiler. However,  this extra effort is worthwhile if it can  
significantly reduce the execut ion time of important frequently 
executed programs such as  the Unix programs that make up  
part of our  benchmark  set. Currently, most microprocessor 
manufacturers are already producing superscalar processors 
with issue rates between 2  and  5. In [20], it is shown that the 
superblock techniques do  significantly improve the perform- 
ance  of important programs for these issue rates. The  increased 
compile time can be  v iewed as part of the overall workload on  
a  machine. If the time saved by  the faster execut ion of impor- 
tant programs is greater than the increased compile time, then 
there is a  net per formance gain for the whole workload. During 
program development,  when  the compile time may be  more 
critical than the run time, the compiler optimizations can be  
turned off. 

III. EXPERIMENTS 

A. Methodology 

This section presents an  empirical evaluation of the impor- 
tance of preschedul ing for the superscalar and  superpipel ined 
versions of existing and  future architectures. Each experiment 
consists of compil ing and  optimizing a  set of control-intensive, 
product ion C programs as descr ibed in Section 1I.D. In each  
experiment, the benchmarks are compiled for several different 
implementations of a  base  architecture. For each  case, we 
compile once  with both preschedul ing and  postschedul ing 
turned on  and  again with only postschedul ing turned on. For 
each  compilation, the program execut ion time and  the number  
of dynamic memory references are calculated using the 
schedule for each  superblock and  the profile information. The  
number  of dynamic references gives an  indication of the 
amount  of register spilling. It is also affected by  the number  of 
loads moved from below to above  branches.  W e  assume a  
100% cache hit rate for these experiments. 

The  time for each  execut ion of a  superblock depends  upon  
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whether or not a side exit is taken. The profile information 
indicates how many times each path is taken, and this quantity 
is multiplied by the execution time of the path to get the total 
time spent executing that path during the measured run of the 
program. The totals for all the paths are then added to get the 
total execution time for the superblock. The number of dy- 
namic memory references is calculated in a similar manner. 

As mentioned in Section II.D.3, we reprofile the program 
prior to list scheduling and register allocation. During the 
profiling process, code is generated by IMPACT for the MIPS 
R2000 processor, and the program is executed on a DECSta- 
tion 3100. For every new compilation we check the program 
output during this execution to verify the correctness of our 
compiler optimizations. After list scheduling, we can again 
generate MIPS code, execute the scheduled code sequentially, 
and produce an instruction trace. Using these traces, we have 
simulated the superscalar execution of the benchmarks in a 
previous study and found that the simulated execution time 
matches the time calculated as described above [25]. We also 
verified that the program output during this execution was cor- 
rects 

The execution time result for each compilation is reported 
as a speedup relative to the compilation for the base microar- 
chitecture. For the register spilling results, we define a metric 
called the memory reference ratio (MRR). The memory refer- 
ence ratio is the number of dynamic memory references issued 
for benchmark B running on implementation I divided by the 
number of dynamic memory accesses for the benchmark on the 
base microarchitecture. Numbers greater than one indicate that 
more memory accesses were made when the benchmark ran on 
implementation I than when it ran on the base microarchitec- 
ture. The memory reference ratio is an indication of the de- 
mands placed upon the memory system. In a real system where 
the cache hit rate is not lOO%, extra memory accesses that 
cause misses will cause the speedup reported here to be re- 
duced. Even if the extra memory references do not cause cache 
misses, the delays due to the original cache misses will become 
relatively more significant as the execution time is decreased. 
Delays due to page faults wil1 also become more significant as 
the execution time is reduced. 

B. Processor Architecture 

In addition to the benchmark, the scheduler takes as input a 
machine description file that characterizes the instruction set, 
the microarchitecture (including the issue rate and the instruc- 
tion latencies), and the code scheduling model and options 
(this is where prescheduling is turned on and off). The base 
microarchitecture is a pipelined, single-issue processor that 
supports the restricted percolation model. Loads, stores, inte- 
ger divides, and floating-point instructions can cause traps. Its 
instruction set is similar to the MIPS R2000 instruction set. 
Table I shows the instruction latencies. Instructions are issued 

’ For the code scheduled using the general percolation model, we must 
mask the exceptions produced by the trapping instructions of the R2000. 
However, because we also scheduled and executed the code with the re 
stricted percolation model, we know that the exceptions are due to general 
percolation rather than compiler optimization bugs. 

in order (there is no dynamic code scheduling). The processor 
is assumed to have interlocks for structural and read-after- 
write hazards. The microarchitecture uses a squashing branch 
scheme [ 181 and profile-based branch prediction. One branch 
slot is allocated by the compiler for each predicted-taken 
branch. The processor has 32 integer registers and 32 floating- 
point registers.g Of the 32 integer registers, eight are reserved 
as special registers (for the stack pointer, frame pointer, pa- 
rameter passing registerslO , etc.). Four registers in each register 
file are reserved as spill registers.” These 12 reserved registers 
are not available for assignment by the register allocator. All 
the speedups and memory reference ratios reported in Section 
II1.E are relative to this base microarchitecture. 

TABLE I. 
hWRUCMON lXIENCIRS. 

The superscalar version of this processor fetches multiple 
instructions into an instruction buffer and decodes them in 
parallel. The issue rate is the maximum number of instructions 
that can be fetched and issued per cycle. An instruction is held 
in the instruction unit if there is a flow dependence between it 
and a previous instruction. All the subsequent instructions are 
also held. All the instructions in the buffer do not have to be 
issued before more instructions are fetched. We assume that . 
once the fetch address is known, the required number of in- 
structions can be fetched in a single cache access. The su- 
perscalar processor also contains multiple functional units. 
Each functional unit can be a single unit, such as an ALU, or a 
group of different units, such as a cache interface, an ALU, and 
branch logic. The capabilities of the functional unitsdetermine 
how many of a particular class of instructions can be executed in 
parallel. For the processors in this paper, all the functional units 
are capable of executing any instruction. Thus there are no re- 
strictions placed on the combinations of instructions that can be 
issued in the same cycle. When the issue rate is increased, the 
number of cycles of delay due to mispredicted branches remains 
the same, but the number of instructions squashed increases. 
Since the program execution time is decreased by superscalar 
execution, the branch penalty becomes relatively larger. 

The superpipelined version of this processor has deeper 
pipelining for each functional unit. If the number of pipestages 

’ The code for these benchmarks contains very few floating point instruc- 
tions. ln the experiments, whenever we change the integer register file sire, 
we also change the floating-point register file sire by the same amount. From 
this point on, we will simply refer to the register$le size, meaning the integer 
re ‘ster tile size. 

Y ’ The parameter passing registers are used as temporary registers for leaf- 
level functions. 

‘t The four spill registers am used in a round-robin fashion to reduce de- 
pendences. 
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is increased by a factor P, the clock cycle is reduced by that 
same factor. The latency in clock cycles is longer, but in real 
time it is the same as the base microarchitecture. The through- 
put increases by up to the factor P. We refer to the factor P as 
the degree of superpipelining. The instruction fetch and de- 
code unit is also more heavily pipelined to keep the microar- 
chitecture balanced. Because of this, and the more deeply 
pipelined compare-and-branch units, the number of cycles of 
delay due to mispredicted branches and the number of instruc- 
tions squashed increases [ 181. 

For the superscalar processor, the additional datapaths, 
functional units, and instruction unit logic may increase the 
cycle time. For the superpipelined processor, the cycle time is 
actually reduced by less than the factor P because of the latch 
delays. This paper reports speedups based on ideal cycle times 
and leaves the reader with the task of scaling the speedups to 
account for the above effects. 

C. Benchmarks 

The benchmarks used are shown in Table II along with the 
inputs with which each one is profiled prior to optimization. 
We have attempted to use diverse input data for profiling in 
order to optimize each program for a wide range of possible 
inputs. The SIZE column specifies the size of each program in 
number of lines of code. After superblock formation and op- 
timization, each benchmark is profiled again with a single in- 
put that is not in the set shown in Table II. Recall that, after 
superblock formation, the profile information is only approxi- 
mate. The benchmarks must be reprofiled in order to accu- 
rately measure the execution time and the number of dynamic 
memory references. In most cases, a compiled production pro- 
gram will not be run with exactly the same inputs with which it 
is profiled. By using an input which is not in the set that was 
used for optimization, we get a more realistic estimate of how 
well the benchmark was optimized for general inputs. 

Table III shows the dynamic frequencies of different classes 
of control instructions for before/after superblock formation 
and optimization. For example, the BRANCHES TAKEN column 
shows the percentage of taken branches among all instructions. 
A minus means that the program had less than 0.1% instruc- 
tions of that type. Before superblock optimization, one out of 
every three or four instructions is a control instruction. Super- 
block formation and optimization may decrease or increase the 
total percentage of control instructions. The percentage of 
taken branches decreases and the percentage not taken in- 
creases. The formation of superblocks places frequently exe- 
cuted blocks in a sequence and adjusts the appropriate branch 
target addresses. As a result, the branches in a superblock are 
usually’ not taken. One of the superblock optimizations reduces 
the number of indirect jumps. If there is a favored target for 
the jump, a branch is added to test specifically for that target, 
avoiding the indirect jump for most cases. Superblock optimi- 
zations do not change the number of function calls. However, 
the total number of instructions executed may increase or de- 
crease, causing the percentage of function calls and returns to 
vary. As a whole, the programs are just about as control- 
intensive after superblock formation as before. 

D. Compiler Calibration 

It is important to measure the effectiveness of prescheduling 
using a compiler that produces highly optimized code prior to 
code scheduling. Code that is not well optimized can contain 
redundant instructions that change the dependence pattern and 
allow the prescheduler to produce deceptively parallel code. 
On the other hand, some dependences may not be removed by 
a poor optimizer, restricting the ability of the prescheduler to 

move code. To calibrate the quality of the code generated by 
IMPACT-I, the execution time of its output code has been 
compared to that of the commercial MIPS C compiler12, which 
is well known for its excellent code optimization capabilities. 
For the benchmarks described earlier, the performance of 
IMPACT-I is slightly better than that of the MIPS C compiler 
[ 161. Thus, the evaluation of prescheduling reported in this 
paper is based on well-optimized sequential code. 

E. Results 

E. 1. The Importance of Prescheduling for Existing Architec- 
tures 

In this section, two experiments are performed to investigate 
the effect of prescheduling on the performance of superscalar 
and superpipelined implementations of the current generation 
of commercial architectures. The goal is to, find out whether or 
not these processors require prescheduling in order to exploit 
the instruction-level parallelism in the C benchmarks. Some 
instructions in these architectures can cause traps, so all the 
compilations for these two experiments adhere to the restricted 
percolation code scheduling model. 

In the first experiment, the benchmarks are compiled for su- 
perscalar processors with issue rates from one to eight instruc- 
tions per cycle. These processors all have 32 registers and the 
instruction. latencies given in Section 1II.B. For each case, the 
benchmarks are compiled once with prescheduling and once 
without it. The speedups and memory reference ratios are cal- 
culated with respect to the single-issue base architecture de- 
scribed in Section 1II.B. Prescheduling is turned off for the 32- 
register base architecture. The changes in the amount of mem- 
ory references for this experiment are purely due to spilling 
because loads cannot be moved above branches. 

The individual results for each benchmark are shown in 
Fig. 2. The gray bars in the charts show the performance and 
number of memory references, without prescheduling, com- 
pared to the base processor for issue rates 2, 4, and 8. The 
black bars in the speedup chart show the speedup including 
prescheduling. In the MRR chart, the black bars show the total 
MRR with prescheduling. The separate bars are used because 
prescheduling does not always produce an increase in the 
MRR. 

Prescheduling extracts little or no extra performance for most 
of the benchmarks. compress is the only benchmark that shows 
a really marked improvement. For issue rate 4, the average 
speedup with prescheduling is less than 4% higher than without 
it. Performance for a single-issue processor (not shown) is also 

l2 MIPS Release 2.1 using the (-04) option. 
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TABLE II. 
THEBENCHMARKS.  

BENCHMARK 1 SIZE 1 BENCHMARK DESCRIPTION .I INPUT DESCRIPTION 

BENCHMARK BRANCHES BRANCHES UNCOND. INDIRECT FUNCTION TOTAL 
TAKEN NOT TAKEN JUMPS JUMPS CALLS 

improved very slightly for each  benchmark.  The  performance 
increase is limited by  the restricted percolation code schedul ing 
model. W e  have  observed that loads are often in the critical path. 
This was illustrated in the code segment  that was shown in Fig. 
1. However,  with the restricted percolation model, loads cannot  
be  moved from below to above  branches,  limiting the ability of 
the prescheduler  to optimize the critical path. 

The  memory reference ratio is always 1  without preschedul-  
ing. This means  that there are no  more memory references than 
for the single-issue base  architecture. The  reason for this is that 
the register allocation algorithm assigns registers in the same 
way regardless of the issue rate. For issue rate 2, there are of- 
ten less memory references with preschedul ing than without it. 
Before code schedul ing, the instruction sequence is not opti- 
mized. Some temporaries are produced too early, resulting in 
register lifetimes that are longer than they have  to be. Pre- 

schedul ing has  the chance to rearrange the code to shorten the 
register lifetimes and  reduce spilling. 

As the issue rate increases, the prescheduler  tries to take ad-  
vantage of the parallelism. More values are simultaneously live, 
demanding more registers and  increasing the amount  of spilling. 
For eqn  and  qsort there are 10  to 18% more memory references 
as  a  result of preschedul ing and  little additional performance. In 
these cases, the improvements in the schedule made  before regis- 
ter allocation are offset by  extra spills. For compress,  the num- 
ber  of memory references is reduced or only slightly increased 
even though there are large gains in performance. The  average 
MRR is only 2% higher with preschedul ing. 

In the second experiment, the benchmarks are compiled for 
superpipel ined processors with the degree of superpipcl ining 
varied from two to three. W e  refer to these as  2X-, and  3X- 
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Fig. 2. The perfommce of prescheduling for the superscalar versions of existing architectures. The base architecture is the single-issue processor with no pre- 
scheduling. All the processors have 32 registers. 

superpipel ined processors, respectively. These processors have  
32  registers. For each  case, the benchmarks are compiled once  
with preschedul ing and  once  without it. The  speedups  and  
memory reference ratios are calculated with respect to the 
same single-issue base  architecture as  for the first experiment. 

The  results are shown in Fig. 3. Processors 2  and  3  are sin- 
gle-issue, 2X- and  3X-superpipel ined microarchitectures, re- 
spectively. Processors 4  and  6  are dual-issue, 2X- and  3X- 
superpipel ined microarchitectures. In the previous experiment, 
there was often a  large’ gap  in per formance between the pro- 
cessors with issue rates 2  and  4. The  single-issue 3X- 
superpipel ined microarchitecture tills that gap.  Again, pre- 
schedul ing has  only a  small advantage in speedup  for most of 
the benchmarks and  only compress is improved dramatically. 
The  MRR results are also similar to the previous experiment. 

The  results of this section show that preschedul ing is not 
important for compil ing control-intensive programs to today’s 
architectures. For the restricted percolation model, the frequent 
branches in the C benchmarks hinder the code scheduler so  
much that the extra dependences  added  by register allocation 
don’t have  much effect. In order to exploit more instruction- 
level parallelism in these benchmarks,  some way must be  
found to eliminate the restrictions imposed by trapping in- 
structions. The  next subsect ion presents the results obtained by  
doing just that. It is shown that once  this restriction is re- 

moved,  preschedul ing becomes critical to exploiting the newly 
obtained code movement  opportunit ies. 

E. 2. The  Importance of Preschedul ing for Future Architec- 
tures 

In this section, two experiments are performed to study the 
effect of preschedul ing on  the performance of the superscalar 
and  superpipel ined implementations of an  architecture that 
supports the general  percolation code schedul ing model. The  
goal is to demonstrate that these processors require pre- 
schedul ing in order to exploit the extra parallelism in the C 
benchmarks made  available by  general  percolation. 

In the first experiment, the benchmarks are again compiled for 
superscalar processors with issue rates from one  to eight instruc- 
tions per  cycle. These processors have  32  registers and  the in- 
struction latencies given in Section RIB. For each  case the 
benchmarks are compiled once  with preschedul ing and  once  
without it. This time the compiler makes use  of the general  per- 
colation model. The  speedups  and  memory reference ratios are 
calculated with respect to the single-issue base  architecture de-  
scribed in Section RIB. Preschedul ing is turned off and  re- 
stricted percolation is used  for this 32-register base  architecture. 
Therefore, the speedup  and  change  in memory references, due  to 
both preschedul ing and  the general  code  percolation model, are 
shown. The  change  in memory references is due  to both spilling 
and  to loads that are moved from below to above  branches.  



364 IEEE TRANSACTIONS ON COMPUTERS,  VOL. 44, NO. 3, MARCH 1995 

1 
2346 2346 2346 2346 2346 2346 2346 2346 2346 2346 2346 2346 2346 

cccp cmp comprers ecpl ecpaoo =P== VP lex li qsoB tbl W C  w= 

0.9 
2346 2346 2346 2346 2346 2346 2346 2346 2346 2346 2346 2346 2346 

cccp aP -P=s eQn #pltoo =P=- m  ICX li q- tbl WC Y= 

Fig. 3. The performance of prescheduling for the superpipelined versions of existing architectures. The base architecture is the single-issue processor with no 
prescheduling. 2 and 3 are single-issue, 2X- and 3X-superpipelined processors, respectively. 4 and 6 are dual-issue, 2X- and 3X-superpipelined processors, 
respectively. All the processors have 32 registers. 

The results are shown in Fig. 4. The  performance advantage 
of preschedul ing is now much more pronounced.  For issue 
rate 4, preschedul ing improves the speedup  by more than 10% 
for every benchmark  except  eqntott and  qsort. For issue rate 8, 
the speedups  of cmp, lex, and  tbl are improved by  more than 
95%. The  average speedup  is increased by  26% for issue rate 4. 
W ithout preschedul ing, the register allocation algorithm pro- 
vides the same number  of registers for all issue rates even  though 
that may not be  enough  to support  the parallelism available in 
the hardware.  Note that without preschedul ing, the speedup  with 
general  percolation is not much better than for restricted perco- 
lation (in Section III.E.l). The  hardware that supports the gen-  
eral percolation model  provides richer opportunit ies for parallel- 
ism, but preschedul ing is required to take advantage of them. 

The  memory reference ratio is no  longer constant without 
preschedul ing. The  increase over the’base microarchitecture is 
due  only to loads that are moved from below to above  
branches.  Preschedul ing now increases the number  of memory 
references in almost every case as  it exploits the opportunit ies 
provided by  the general  percolation model. The  increase in 
memory references is usually small when  the issue rate is low. 
The  scheduler moves instructions only enough  to satisfy the 
pipeline constraints and  exploit the available parallelism. This 
keeps the register lifetimes to a  minimum, reducing the spill- 
ing. As the issue rate increases, the scheduler takes advantage 

of the opportunit ies to issue instructions in parallel and  as  a  
result is forced to increase the number  of registers used.  The  
speedup  with preschedul ing increases faster than without it in 
spite of the MRR, which also increases faster with preschedul-  
ing. At the high issue rates, there are more unused  instruction 
slots to hide spill code  and  the extra parallelism exploited 
overcomes any  loss due  to spill code  that cannot  be  hidden. 
Preschedul ing increases the average MRR by 11%. 

The  speedups  for compress and  qsort are very slightly lower 
with preschedul ing (which cannot  be  seen in Fig. 4) for issue 
rate 2. There are more memory references for compress with 
preschedul ing. When  the issue rate is 2  it is more difficult to find 
empty instruction slots in which to hide spill code.  For qsort, the 
MRR is very slightly improved, indicating that some temporaries 
may have  been  produced too early in the original optimized 
code.  For issue rate 1  (not shown),  the speedup  is slightly lower 
with preschedul ing than without for about  half of the bench-  
marks. In these cases, the MRR is usually slightly higher. For 
some of the benchmarks,  particularly cccp and  yacc, at issue rate 
8, the increase in the MRR with preschedul ing is quite a  bit 
higher than the increase in the speedup.  The  above  results indi- 
cate that per formance may be  further improved by  more tightly 
integrating the code scheduler and  register allocator. 

In the second experiment, the benchmarks are compiled for 
superpipel ined processors with the degree of superpipel ining 
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Fig. 4. The performance of prescheduling for the superscalar versions of architectum that support general percolation. The base architecture is a single-issue 
processor with no prescheduling and restricted percolation. All the processors have 32 registers. 

varied from two to three. These processors have  32  registers. For 
each  case, the benchmarks are compiled once  with preschedul ing 
and  once  without it. Again, the compiler uses the general  perco- 
lation model. The  speedups  and  memory reference ratios are 
calculated with respect to the familiar single-issue base  architec- 
ture with 32  registers. Preschedul ing is turned off and  the re- 
stricted percolation model  is used  for the base  processor.  

The  results are shown in Fig. 5. The  increases in per formance 
for preschedul ing with the general  percolation model  are similar 
to those descr ibed for the superscalar processors. The  MRR re- 
sults are also similar. Preschedul ing can exploit both the su- 
perscalar and  superpipel ined microarchitectures very well. Note 
that for the 3X-superpipel ined processors, the single-issue ver- 
sion with preschedul ing often outperforms the dual- issue version 
that does  not have  preschedul ing. Also note that the speedups  for 
the dual- issue superscalar machine (in the previous experiment) 
and  the single-issue, 2X-superpipel ined machine are similar. The  
same is true for the superscalar machine with issue rate 4  and  the 
dual-issue, 2X-superpipel ined machine. This matches results that 
have  been  previously reported in the literature [26]. 

This section demonstrates that for control-intensive bench-  
marks, the general  percolation code schedul ing model  provides 
more code motion opportunit ies, but these opportunit ies have  
to be  taken advantage of before register allocation. Once  the 
restrictions imposed by trapping instructions are removed,  the 

dependences  added  during register allocation become the major 
impediment to reorganizing the code.  W ithout preschedul ing, 
the added  dependences  prevent the code scheduler from taking 
advantage of the general  percolation model  to the point that 
there is little or no  advantage to providing non-trapping instruc- 
tions. Both general  percolation and  preschedul ing are required to 
obtain good  speedup  from control-intensive programs. 

Between the time that we submitted the first version of this 
paper  for review and  the time of the final draft, we cont inued 
to add  optimizations to our  compiler that increased the avail- 
able instruction-level parallelism of the intermediate code.  For 
this final draft, we repeated our  experiments and  found that the 
advantage of preschedul ing was greater for the more parallel 
code.  W e  predict the importance of preschedul ing will con- 
t inue to increase in the future as  improved compiler optimiza- 
tion techniques find more parallelism. 

E. 3. The  Effect of Register File Size on  the Pegormance of 
Preschedul ing 

In this section, an  experiment is performed to study how the 
advantage of preschedul ing varies with the register file size. 
W e  also want to see the extent to which larger register file 
sizes decrease the extra memory referencing that results from 
preschedul ing. For the experiment, we pick a  middle-of-the- 
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Fig. 5. The perfonuance of prescheduling for the superpipelined versions of architectures that support general percolation. The base architecture is a single- 
issue processor with no prescheduling and restricted percolation. 2 and 3 are single-issue, 2X- and 3X-superpipelined processors, respectively. 4 and 6 are dual- 
issue, 2X- and 3X-superpipelined processors, respectively. All the processors have 32 registers. 

road superscalar processor with issue rate 4, and  vary its regis- 
ter file size from 24  to 64  registers (recall that 12  of these reg- 
isters are reserved). W e  use the general  percolation code 
schedul ing model  since it represents the class of architectures 
for which preschedul ing is important. For each  case, the 
benchmarks are compiled once  with preschedul ing and  once  
without it. The  speedups  and  memory reference ratios are cal- 
culated with respect to the single-issue base  architecture with 
32  registers. Preschedul ing is turned off and  the restricted per- 
colation model  is used  for the base  processor.  The  speedup  
and  memory reference ratio numbers  show the combined effect 
of the four-instruction issue rate, the general  percolation 
model, and  the register file size. For this experiment, the 
change  in the number  of memory references between register 
file sizes is due  purely to register spilling. 

The  results are shown in Fig. 6. Machines a, b, c, and  d  have  a  
register file size of 24, 32, 48, and  64, respectively. The  execu-  
tion time decreases as  the number  of registers increases, because 
there is less spill code  and  fewer dependences  due  to the reuse of 
registers. When  the register file size is 24, there is still an  advan-  
tage to preschedul ing. However,  there is quite a  bit of extra 
spilling. cccp and  qsort show very slight per formance decreases 
with preschedul ing because of this. More registers are probably 
needed  to fully exploit the parallelism. W e  also obtained results 
for 16  registers (of which 12  are reserved). Four  allocatable reg- 

isters is simply not enough.  Many  of the benchmarks ran 
slower with preschedul ing than without, and  preschedul ing 
greatly increased the number  of memory references. Thirty- 
two registers is a  reasonable number  for these benchmarks.  
There is only a  small increase in per formance when  moving to 
48  or 64  registers, and  the MRR increase is fairly Tow. The  
processors with 48  and  64  registers perform equivalently. 

F’reschedul ing’s advantage does  not diminish as  the register 
file size increases because the register allocator reuses regis- 
ters in a  similar way regardless of the number  of available 
registers. Note that without preschedul ing, little advantage is 
taken of the increasing register file size. The  small increase in 
per formance is due  to a  decrease in spills. The  code scheduler 
cannot  take advantage of the larger register file size to increase 
performance further. As the number  of registers is increased, 
the register allocator may still al locate the same register to two 
nodes  that are not adjacent when  it might be  able to use  a  dif- 
ferent register to avoid adding a  dependence.  The  average in- 
crease in per formance due  to preschedul ing is at least 26% for 
.register file sizes of 32  or greater. As the register file size in- 
creases, the difference in MRR with and  without preschedul ing 
diminishes because the register set has  more space to support  
the longer register lifetimes. For register file sizes 32  and  
larger, the difference is less than 11%. 



CHANG ET AL.: THE IMPORTANCE OF PREPASS CODE SCHEDULING FOR SUPERSCALAR AND SUPERPIPELINED PROCESSORS 361 

abed abed l bcd abed abed abed abed abed abed abed abed abed abed 

cccp cmp -P-s e+ acpnat espuuro m  lex li qsort tbl W C  Y= 

Fig. 6. The performance of prescheduling for processors with various register file sizes. Processors a, b, c, and d have 24.32.48, and 64 registers, respectively. 
All the processors, except the base architecture, have issue rate 4 and support the general percolation model. The base architecture is a single-issue processor 
with no prescheduling, restricted percolation, and 32 registers 

E. 4. The  Effect of Register Allocation on  Code  Schedul ing 

In this section, an  experiment is performed to study how 
much the extra dependences  added  during register allocation 
hinder the code scheduler given an  ideal architecture. This 
gives an  indication of how much register allocation changes  
the dependence  graph for control-intensive programs. The  
effects of the hardware constraints are minimized as  much as 
possible. W e  model  a  processor that has  an  unlimited issue 
rate for all instructions, and  unit instruction latencies. Unit 
instruction latencies were chosen so that each  dependence  pro- 
duces the same delay and  has  a  similar effect on  the results. 
The  processor supports the general  percolation code schedul-  
ing model. W e  vary the register file size from 24  to 64  because 
this has  a  direct effect on  the amount  of register recycling and  
the extra dependences  added.  For each  case, the benchmarks 
are compiled once  with preschedul ing and  once  without it. The  
speedups  and  memory reference ratios are calculated with re- 
spect to the single-issue base  architecture with 32  registers. 
The  base  architecture has  the latencies shown in Table I. Pre- 
schedul ing is turned off and  the restricted percolation model  is 
used  for the base  processor.  The  speedup  and  memory refer- 
ence  ratio numbers  show the combined effect of the,unlimited 
issue rate, the unit latencies, the general  percolation model, 

and  the register file size. 
The  results are shown in Fig. 7  and  are similar to the those 

for the previous experiment. The  speedup  over the base  single- 
issue processor is higher due  to the unlimited issue rate and  
unit latencies. Preschedul ing’s performance advantage for the 
larger register sizes increases to approximately 43% on  aver- 
age  because the hardware can exploit more parallelism. The  
difference in the memory reference ratio is also larger because 
the scheduler moves instructions more to take advantage of the 
unlimited issue rate. For register file sizes of 32  and  larger, the 
register allocator clearly handicaps the code scheduler by  
adding dependences.  The  register allocator reuses registers 
without regard for the effeet on  the final schedule. There is 
now a  more pronounced difference in spilling between 32  and  
48  registers. This is because exploiting more parallelism re- 
quires more registers. For 48  or more registers, there is less 
than 11% more spilling with preschedul ing. 

IV. CONCLUSION 

This paper  studied the interaction between register allocation 
and  code schedul ing and  the importance of performing prepass,  
as  well as  postpass, code  schedul ing. The  register allocator in- 
t roduces extra dependences  between the instructions whenever  it 
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Fig. 7. The performance of prescheduling for au ideal processor with various register tile sizes. The ideal processor has an unlimited issue rate, unit instruction 
latencies, and supports the general percolation model. Processors a, b, c, and d have 24, 32.48, and 64 registers, respectively. The base architecture is a single- 
issue processor with no prescheduling, restricted percolation, and 32 registers. 

reuses registers and  adds  spill code.  If code  schedul ing is per- 
formed only after register allocation, these extra dependences  
restrict the ability of the code scheduler to move instructions to 
their desired positions. On  the other hand,  if code  schedul ing is 
done  only before register allocation, the register lifetimes may 
be  lengthened, increasing the amount  of spill code  added  by 
the register allocator. There is also no  opportunity to optimize 
the code added  by the register allocator. If both prepass and  
postpass schedul ing are performed, and  the prescheduler  is 
careful to minimize the use  of registers by  moving code only 
as  much as necessary to minimize delays, better per formance 
can be  achieved and  spilling can be  controlled. 

The  IMPACT-I C compiler’s code scheduler was descr ibed 
in detail. It is used  for both preschedul ing and  postschedul ing. 
It f inds the most frequently executed paths in the functions and  
lays the basic blocks of the paths out sequential ly in memory.  
Code  movement  and  register allocation are done  across basic 
block boundar ies in order to find more instruction-level paral- 
lelism. This is especially useful for the non-numeric C pro- 
grams studied in this paper  because they have  frequent 
branches.  

Experimental results showed that preschedul ing is not im- 
portant for compil ing control-intensive programs to today’s 
architectures. Preschedul ing extracts slightly more perfor- 
mance  from each  processor studied, but the frequent branches in 

the C programs we used,  combined with the inability to move 
loads above  branches,  hinder the code scheduler so  much that 
the extra dependences  added  by register allocation do  not cre- 
ate too many  additional problems. This is in contrast to the 
results previously obtained for scientific codes.  In those pro- 
grams branches are less frequent, making the restrictions on  
code percolation less problematic and  increasing the impor- 
tance of preschedul ing. 

If the restrictions imposed by trapping instructions are re- 
moved,  but preschedul ing is not used,  per formance does  not 
improve much for the benchmarks we looked at. The  depend-  
ences added  during register allocation become the major hin- 
drance when  reorganizing the code.  In order to obtain more 
speedup  from these benchmarks using processors that exploit 
instruction-level parallelism, both general  code  percolation 
and  preschedul ing must be  used.  Using an  intelligent sched-  
uler, we have  shown experimentally that preschedul ing, corn- 
b ined with the general  percolation code schedul ing model, can  
substantially improve the execut ion time of control-intensive 
programs on  both superscalar and  superpipel ined processors. 
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