
IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 3, MARCH 1995 353

The Importance of Prepass Code Scheduling for
Superscalar and Superpipelined Processors

Pohua P. Chang, Daniel M. Lavery, Scott A. Mahlke, W illiam Y. Chen, and Wen-mei W . Hwu

Abstract - \suwrxalar and suueruiuel ined ~rocmrs utiliie
parallelism to a&eve peak perfor&&&that &I be several t imes
higher than that of conventional scalar processors. In order for
this potential to be translated idto the speedup of real programs,
the compiler must be able to schedule hMruct ions so that the
parallel hardware is effectively utilized. Previous work has shown
that prepass code schedul ing helps to produce a better schedule
for scientific programs, but the importance of preschedul lng has
never been demonstrated for control-intensive non-numeric pro-
grams. These programs are significantly different from the scien-
tific programs because they contain frequent branches. The
compiler must do global schedul ing in order to 6nd enough inde-
pendent instructions.

In this paper, the code optimizer and scheduler of the
IMPACT-I C compiler is described. W ithin this framework, we
study the importance of prepass code schedul ing for a set of pro-
duct ion C programs. It is shown that, in contrast to the results
previously obtained for scientific programs, preschedul ing is not
important for compil ing control-intensive programs to the cur-
rent generat ion of superscalar and superpipel ined processors.
However, if some of the current restrictions on upward code mo-
tion can be removed in future architectures, preschedul ing would
substantially improve the execut ion time of this class of programs
on both superscalar and superpipel ined processors.

Index Items - Code schedul ing, control-intensive programs,
optimizing compiler, register allocation, superpipel ined proces-
sors, superscalar processors.

I. INTRODUCTION

C URRENT high-performance processors use hardware
techniques to exploit instruction-level parallelism. Pipelin-

ing is common, and many designs are capable of execut ing
nearly one instruction per cycle. Performance can be boosted
further, either by execut ing more than one instruction per cycle
or by reducing the length of the clock cycle. Superscalar proces-
sors fetch, decode, and execute more than one instruction per
cycle by duplicating decode/ issue units, functional units, and
datapaths. Superpipel ined processors divide the pipeline into
smaller segments that have less delay, allowing the clock cycle
to be shortened. In order for the full per formance to be extracted
tiom these parallel microarchitectures, techniques must be used
to minimize the stalls caused by the control and data depend-
ences between instructions. As the pipelining depth or the in-

Manuscript received May 31.1991; revised October 1992.
The authors were with the Center for Reliable and High-Performance Com-

puting, University of Illinois, Urbana-Champaign, IL. 61801. W .W. Hwu’s e-
mail address is hwu@crhc.uiuc.edu. The authors may be reached through
Dr. Hwu’s office.

IEEECS Log Number C95003.

struction issue rate increases, these stalls become more costly.
Code schedul ing is a technique that tries to rearrange the

instruction sequence to minimize the execut ion time. Usually
code schedul ing is performed after register allocation
(postpass or postscheduling). However, the register allocator
introduces extra dependences whenever it reuses registers.
These extra dependences restrict the ability of the code
scheduler to move instructions to their desired positions. On
the other hand, if code schedul ing is performed before register
allocation (prepass or preschedul ing), the register lif&imes
may be lengthened, which may increase the amount of spill
code added by the register allocator.

In previous work, Goodman and Hsu [l] showed that a pre-
pass scheduler can keep track of the number of available regis-
ters to avoid introducing excessive spill code. Hwu and Chang
[2] showed that a preschedul ing, register allocation, post-
schedul ing sequence extracts more performance from scientific
benchmarks than postschedul ing alone. Both of these results
apply to scientific programs with code schedul ing and register
allocation performed within large basic blocks. The impor-
tance of preschedul ing has never been demonstrated for con-
trol-intensive non-numeric programs.

For the study reported in this paper, code schedul ing is per-
formed before and after register allocation. As it reorganizes
the instructions, the prescheduler tries to control the increase
in the .register lifetimes, helping the register allocator to
minimize the number of registers used. W e compile a set of
product ion C programs using the IMPACT-I C compiler in
order to examine the effectiveness of preschedul ing for con-
trol-intensive non-numeric programs. It is important to evalu-
ate preschedul ing on this class of codes for two reasons. First,
compared to the scientific applications studied earlier, these C
programs have frequent branches, creating small basic blocks
in which there is limited parallelism. Code schedul ing and
register allocation are performed globally in order to find more
parallelism and to reduce the register save and restore over-
head. It is not clear @at the results based on local schedul ing
and register allocation for scientific codes are directly appli-
cable here. Second, even with global schedul ing and register
allocation, these control-intensive programs have less inherent
parallelism than scientific applications. The advantage of pre-
schedul ing for programs with limited parallelism needs to be
demonstrated. If only a small amount of parallelism can be
extracted from these C programs, the restrictions imposed by
the register allocator may not be significant.

This paper also empirically evaluates the advantages of pre-
schedul ing for the superscalar and superpipel ined implemen-

0018-9340/95$04.00 Q 1995 IEEE

354

tations of current and future architectures. W e compile the set
of C benchmarks to several different parallel implementations
of a base architecture and calculate the execut ion time and the
number of dynamic memory references from the schedule. For
each case we compile once with both preschedul ing and post-
schedul ing turned on and once with only postschedul ing turned
on in order to compare the two methods. In order for these
parallel microarchitectures to speed up the execut ion of con-
trol-intensive programs, the compiler must be able to generate
efficient code with sufficient parallelism to utilize-them. The
study done in this paper shows that for architectures that relax
the current restrictions on upward code motion, preschedul ing
helps to achieve this goal.

In other related work, Hennessy and Gross [3] provided a
good description of the code schedul ing problem and a schedul-
ing algorithm. Fisher [4] and Ellis [5] descr ibed a very effective
global schedul ing algorithm called trace schedul ing. A paper by
Chaitin [6] presented the graph-color ing-based register alloca-
tion algorithm on which our global register allocator is based.

This paper is drganized as follows. Section II gives the nec-
essary background on preschedul ing and postschedul ing, our C
compiler, and its register allocator and scheduler. The experi-
mental methodology and the results are discussed in Sec-
tion III. The conclusion is presented in Section IV.

II. BACKGROUND

A. Prepass vs. Postpass Code Schedul ing

The code scheduler has one primary goal: to rearrange the in-
structions so that the code sequence is executed in the smallest
number of cycles. For example, to avoid stalls due to an instruc-
tion with a long latency (such as a load or a multiply), the
scheduler will try to move it upward in the code so that its result
is ready in time for use by a subsequent instruction. While reor-
ganizing the code, it must preserve the correctness of the original
program with respect to the data and control dependences. In
this work, it is assumed that the instructions are statically sched-
uled. All of the instruction latencies and the type and number of
functional units are visible to the code scheduler.

The dependences are expressed in the form of a dependence
graph. Prior to register allocation, the only data dependences
expressed in the graph result from the operat ions necessary to
implement the computat ion specif ied by the source program.’
Because temporary variables are written only once, the only
dependences related to them are flow (read-after-write) de-
pendences. For the user-level variables, there may be flow,
anti- (write-after-read), and output (write-after-write) depend-
ences for both registers and memory locations.

During register allocation, dependences resulting from the
reuse and spilling of registers are added to the dependence
graph. When a register is reused, anti- and output dependences
are created because the last read or write of the variable cur-

1 This assumes that the single assignment rule is used for compiler-
generated temporaries. Depending on the amount of optimization performed
by the compiler before code scheduling, the number of instructions used and
the dependence pattern created may vary. ln any case, there is some given
dependence pattern with which the code scheduler must work.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 3, MARCH 1995

rently occupying the register is fol lowed by the write of the new
variable. When a register is spilled, an ant i -dependence is cre-
ated because the register spilled to memory will soon be reused.
A flow dependence is created because the value written to mem-
ory will eventually be read into a register again. When a register
is refilled, an ant i -dependence may be created if the memory
from which the value is read eventually gets written again.

Code schedul ing can be performed either before or after
register allocation, or both. No matter when schedul ing is per-
formed, the dependences in the initial code sequence constrain
the reordering of instructions: If code schedul ing is performed
after register allocation, the scheduler is additionally restricted
by the extra dependences resulting from the reuse and spilling
of registers descr ibed earlier. As a consequence, the instruc-
tions may not be moved around as effectively as they could be.

One way around this is to perform prepass code schedul ing.
Then the scheduler can move the instructions close to their de-
sired posit ions without the h indrance of the dependences caused
by register recycling. However, if the prepass code scheduler is
not careful about moving instructions, it can greatly increase the
register lifetimes. For example, in order to avoid delays due to a
load instruction, the code scheduler tries to insert useful opera-
tions between the load and the instruction which uses the value
loaded. This increases the lifetime of the destination register of
the load, increasing the chance that the register will have to be
spilled. If the scheduler inserts too many instructions, then the
value loaded will be available sooner than it needs to be and will
take up space in the register for a longer time than is necessary.
The scheduler can also attempt to exploit more parallelism than
the register file is capable of support ing by producing too many
simultaneously live values.

The above are some of the d isadvantages of preschedul ing.
The first one can be minimized by an intelligent scheduler.
The prepass scheduler should insert no more instructions than
are necessary to avoid delays. Temporary values should be
produced as late as possible and used as early as possible. The
second disadvantage can be reduced by increasing the register
file size or more tightly integrating the code scheduler and
register allocator as in [11. W e evaluate the performance of
preschedul ing for various register file sizes, but do not con-
sider more integrated schemes in this paper. It-is shown in
Section III that if the preschedul ing is done intelligently, the
benefits of the increased code movement flexibility outweigh
the cost of the extra register spilling for the control-intensive
benchmarks that we studied. It is also shown that to take full
advantage of the parallel microarchitectures, enough registers
must be provided to hold all the simultaneously live values.

There is another d isadvantage to preschedul ing if post-
schedul ing is not also done. During register allocation, the
optimized sequence of instructions is perturbed by the spill
code added, and there is no code motion opportunity to reduce
the effects of this. If code schedul ing is performed before and
after register allocation, then the postpass scheduler can make
the final adjustments to account for the extra code and depend-
ences added during register allocation. Because most of the
code motion is already completed, the postpass scheduler is
less h indered by the extra dependences.

Fig. 1 shows a code sequence (A) as it progresses through

CHANG ET AL.: THE IMPORTANCE OF PREPASS CODE SCHEDULING FOR SUPERSCALAR AND SUPERPIPELINED PROCESSORS
355

A 1 Id t1,chr 1
2 add t2,tl,l 3
3 st -ckQ 4
4 Id t3,filel 5
5 Id ww) 7
6 add tS,t4,-1 9
7 st W),ti 10

RBGI!?IER
ALLOCATION PRESCHEDULING

B 1 Id t1,chr 1
4 Id &file1 2
2 add t2,tl,l 3
3 St -chr,t2 4
5 Id two3) 5
6 add tS,t4,-1 7
7 st qtm5 8

1 Id IO&r 1
2 add rlJo,l 3
3 st -chm 4
4 Id rO,filel 5
5 Id mttO) 7
6 add 12,&l 9
7 st ww 10

POSTSCHEDULING

1 Id la,chr 1
2 add rlJO.1 3
4 Id rO,fdel 4
3 St J%rJl 5
5 Id rl,O(fl) 6
6 add rqrl,-1 8
7 St o(ro)s2 9

1
REGISTER

ALLOCATION

C E 1 Id ro,chr 1
4 Id rlfilel 2
2 add r2@,1 3
3 St -cbQ 4
5 Id rO,o(rl) 5
6 add r2,rO,-1 7
7 St o(rl)S 8

Fig. 1. Examples of postpass and prepass code scheduling.

register allocation (B) and then postschedul ing (C). For each
instruction, the first operand is the destination, and the next
one or two operands are the sources, Id is a load instruction,
and sf is a store. The base-register-plus-displacement address-
ing mode is similar to that of the MIPS R2000. For example,
the memory address for the instruction Id rl, x(rOJ is generated
by adding x to the contents of r0. The number to the right of
each instruction is the cycle in which the instruction is issued,
assuming that loads have a latency of two cycles and all the
other instructions shown have a latency of one cycle.

tion one is not available in time because of the memory access
delay.2 The corresponding sequence, with preschedul ing (D)
and then register allocation (E), is also shown. The post-
scheduled version takes one cycle longer to execute than the
prescheduled version. Both use the same number of registers,
but the average register lifetime for the prescheduled sequence
is slightly longer. This example is extracted from the most
frequently executed block of code generated by our compiler
for the Unix utility cmp.

In Fig. l(C), instruction four cannot be moved ahead of in-
struction two because of the reuse of register 0 by the register
allocator. This results in a stall when the operand for instruc-

* For this example, we assume that the set of unused registers is managed as
a stack. It is also assumed that the register allocator tries to minimize the
number of registers in order to reduce the procedure call overhead associated
with saving and restoring registers.

3.56

The importance of preschedul ing becomes more pro-
nounced as the intermediate code becomes more parallel. If the
initial dependence graph has very few edges, then the majority
of the constraints come from the edges added by the register
allocator. This is why preschedul ing is so important for scien-
tific programs. W e show that, using global optimization tech-
n iques combined with the proper architectural support, enough
parallelism can be extracted from control-intensive programs
to make preschedul ing necessary.

B. IMPACT-I C Compiler

The IMPACT-I C Compiler [7] is a retargetable, optimizing
compiler des igned to generate very efficient code for pipelined
and multiple-instruction-issue processors. Code generators
have been built for the MIPS R2000 [8], the Sun SPARC [9],
the AMD 29K [lo], the Intel i860 [ll], and the HP PA [12]
processors. IMPACT-I is used to study the effectiveness of
new code optimization techniques and to study alternative ap-
proaches in the design of processors that exploit instruction-
level parallelism. The compiler contains a profiler to identify
the most frequently executed program paths. This information
is used to guide the global code optimization and schedul ing.

IMPACT-I currently performs a wide variety of machine-
independent and machine-dependent code optimizations. The
machine- independent optimizations include the classic local
and global code optimizations [13], inline expansion of fre-
quently executed functions [141, instruction placement optimi-
zation [15], profi le-based classic code optimizations [16], and
profi le-based optimizations to increase the available instruc-
tion-level parallelism [171. The machine-dependent optimiza-
tions include profi le-based branch prediction [18], graph-
color ing-based register allocation [6], and code schedul ing. The
results in this paper are based on the IMPACT compiler imple-
mentation. The task of evaluating the importance of the results
for other compiler systems is left to the reader. The following
sections descr ibe the global register allocator and scheduler.

C. Register Allocation

The IMPACT-I global register allocator is based on the
graph-color ing algorithm descr ibed in [6]. The algorithm con-
structs an interference graph in which each node represents a
value. An arc is added between two nodes if they are ever si-
multaneously live. Two adjacent nodes cannot be al located to
the same register. The algorithm tries to color the graph using
r colors, where r is the number of available registers. If the
graph cannot be colored in r colors, then a register must be
spilled and the coloring attempted again.

A natural result of this algorithm is that two values which do not
have overlapping live ranges (i.e., are not adjacent in the interfer-
ence graph) are often al located the same register. This register
reuse introduces dependences that prevent the code scheduler from
overlapping otherwise independent instructions which read or
write the two variables. Because the algorithm does not take into
account the cost of instructions that cannot be over lapped, it may
allocate registers in a way that handicaps the code scheduler.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 3, MARCH 1995

D. Superblock Schedul ing

This section descr ibes the IMPACT-I code scheduler, which
is based on a new variation of trace schedul ing [4], [5] that we
call superblock schedul ing. The idea is to select frequently
executed paths through the code and optimize them, perhaps at
the expense of the less frequently executed paths. Instead of
inserting bookkeeping instructions where two traces join, we
duplicate part of the trace and optimize the original copy. This
method is especially useful for the control-intensive bench-
marks studied in this paper because the parallelism within a
basic block is very limited. Superblock schedul ing provides an
easier way to find parallelism beyond the basic block bounda-
ries. W e descr ibe superblock schedul ing here because the re-
sults presented in this paper are based on this kind of global
optimization. Superblock schedul ing is performed in the six-
step process shown below:

1) Trace selection
2) Superblock formation
3) Superblock optimization
4) Dependence graph construction
5) Dependence graph optimization
6) List schedul ing

When a program is compiled with the preschedul ing option
turned off, steps 1 through 3 are completed, fol lowed by regis-
ter allocation. Then the dependence graph is constructed and
optimized, and the code is scheduled. When the preschedul ing
option is turned on, steps 4 through 6 are also performed just
before register allocation. The next subsect ion descr ibes the
program representat ion used and the modifications to the code
prior to schedul ing. Later subsect ions descr ibe each step of the
process. The final subsect ion comments on some concerns that
have been expressed about the effects of superblock schedul-
ing on the code size and compile time.

D. 1. Program Representat ion, Profiling, and Preparat ion

In our C compiler, a function is represented as a weighted
flow graph [161. Several steps are taken to prepare the pro-
gram for optimization and code schedul ing. First,:the flow

graphs are generated for each function. Probes are then in-
serted into all the basic blocks to collect the execut ion counts,
and the program is profiled several t imes with different inputs.
The results from all the runs are averaged and used to assign
weights to the nodes and arcs of the graphs. Frequently exe-
cuted function calls are then inline expanded [141.

D. 2. Step I: Trace Selection

The goal of trace selection is to divide the function into a
set of traces such that for each block X, if there is a block Y
immediately following (preceding) X in a trace, Y is the block
most likely to be executed after (before) block X. The block
most likely to be executed after (before) block X is determined
by examining the execut ion counts of all the arcs leaving
(entering) block X. The trace becomes the unit in which in-
structions are rearranged. As a result, code movement across
basic block boundar ies is automatically done in such a way as

CHANG ET AL.: THE IMPORTANCE OF PREPASS CODE SCHEDULING FOR SUPERSCALAR AND SUPERPIPELINED PROCESSORS 357

to optimize the more frequently executed paths. When the
schedule a long one path can be improved at the expense of the
schedule a long another path, the decision is made in favor of
the more frequently traveled path (i.e., the one in the trace).

The algorithm and heuristics we use for trace selection were
first p roposed by Ellis [5] and improved by Chang and Hwu
[191. An example of the result of trace selection on a weighted
flow graph can be seen in [16]. A node is not added to a trace
unless its execut ion count is higher than a minimum count and
the probability of entering it from its predecessor or leaving it
for its successor in the trace is greater than a minimum probabil-
ity.3 Once the traces have been selected, the basic blocks of each
trace are laid out sequential ly in memory [151. Then superblocks
are formed and optimized as descr ibed in the next subsections.

D. 3. Step 2: Superblock Formation

W e define a side exit as a branch from any block X in the
trace, except the last one, to a block Y (Y can be in or out of
the trace) where Y does not immediately follow X in the trace.
A side entrance is def ined as a branch from a block X (X can
be in or out of the trace) to any block Y in the trace, except the
first one, where X does not immediately precede Y in the
trace. W e define a superblock As a trace that has no side en-
trances and zero or more side exits. The goal of superblock
formation is to convert a trace that has side entrances and exits
into a superblock. The motivation and method for doing this is
explained in the following paragraph.

In the traces formed in step 1 there may be many side exits
and entrances. The side entrances especially increase the diffl-
culty of code schedul ing because complex bookkeeping must
be done when code is moved above and below these entrances
[4]. These complex repairs could be avoided if side entrances
could be removed from the trace. One way to do this would be
to not add a block to a trace if it p roduces a side entrance.
However, for control-intensive programs, this would limit the
size of the traces and the effectiveness of trace schedul ing.
Instead, we chose to remove the side entrances using a tech-
n ique called tail duplication. A copy is made of the tail port ion
of the trace from the side entrance to the end and is appended
to the end of the function. Each block copied forms a new su-
perblock. Only one copy of a block is ever made. All side en-
trances into the trace are then moved to the corresponding
duplicate basic blocks. At this point, the trace, with only a
single entrance remaining, becomes a superblock that can be
optimized with special handl ing only for the side exits.

An example of superblock formation can be seen in [161. When
a block is copied, its execut ion count in the original trace is re-
duced by the weight of the side entrances removed. lf the block
has multiple successors, the proport ion of the weight that should
be subtracted from each arc is not known. As an approximation,
we multiply the weight of each outgoing arc by a fraction equal to
the new weight of the block divided by the weight of the block
before tail duplication. For the profi le-based optimizations, this
approximate information is good enough. However, for accurate

3 In the experiments done for this pap&, the min imum count is 50 and the
min imum probability is 60%.

analysis of the final schedule, the transformed program must be
repro&d after superblock optimization.

An additional benefit of tail duplication is that code optimiza-
tions can be more e&ily appl ied to superblocks than to traces
[161. The IMPACT-I compiler uses the superblock as a common
foundat ion for both optimizations and code schedul ing.

D. 4. Step 3: Superblock Optimization

After superblock formation, many classic code optimiza-
tions are performed that take advantage of the profile informa-
tion encoded in the superblock structure.4 These optimizations
are des igned to decrease the number of instructions on the
frequently executed paths, perhaps at the expense of the infre-
quently executed ones [161. They include: constant propaga-
tion, copy propagat ion, constant combining, common subex-
pression elimination, redundant load and store elimination,
dead code removal, loop invariant code removal, loop induc-
tion variable elimination, and global variable migration.

Next, several profi le-based code transformations are per-
formed .that increase the available instruction-level parallelism
of the intermediate code [171, [20]. These optimizations in-
crease the size of superblocks and eliminate data dependences
between instructions. They are appl ied only to the most fre-
quently executed superblocks to control code expansion and
compile time. They include: branch target expansion, loop
peeling, loop unrolling, register renaming, induction variable
expansion, accumulator variable expansion, operat ion migra-
tion, operat ion combining, and tree height reduction.

D. 5. Step 4: Dependence Graph Construction

In this step, a conservat ive dependence graph is built for each
superblock. The dependence graph is a directed acyclic graph in
which the nodes are instructions. There is an arc from node X to
node Y if instruction Y depends on instruction X (i.e., nodes in
the graph depend on their parents). Data-dependence arcs are
added as if the superblock were a basic block. However, unlike
basic blocks, superblocks may contain branches. For each con-
ditional branch instruction I, we define live-out (I) as the set of
variables that may be used before they are def ined when I is
taken. A data-dependence arc is added from an instruction to a
conditional branch I below it if the instruction writes a variable
that is in live-out (I) or if the instruction may cause an excep-
tion. A contro l -dependence arc is added from a conditional
branch I to an instruction below it in the superblock if the desti-
nat ion variable of the instruction is in live-out (I) or if the in-
struction may cause an exception. Memory disambiguation is
done and data-dependence arcs are added between pairs of
memory references that cannot be disambiguated.

Each f low-dependence arc has a length associated with it
that is equal to the latency of the instruction that is the source
of the dependence. The anti- and output -dependence arcs have
length 0. W e assume that the hardware ensures that anti- and
output-dependent instructions issued in the same clock cycle

4 Traditional local and global optimizations that do not utilize profile in-
fonation are also performed at this point [131.

358

are executed corre~tly.~ The side exits in the superblock are
predicted to not, be taken, so there is no delay for a control
dependence and the length of the arc is 0.6

D. 6. Step 5: Dependence Graph Optimization

In this step the dependence graph is optimized by removing
some of the dependence arcs. During the list scheduling step
(described in the next subsection), the instructions are reordered
to improve the execution time within the constraints of the de-
pendences. Instructions are moved upward and downward across
branches. Moving instructions upward across branches is called
speculative code motion. There are two major restrictions on
moving an instruction upward across a branch I:

1) The instruction must not write a variable that is in
live-out (I).

2) The instruction must not cause an exception that termi-
nates the program execution.

The first restriction can usually be eliminated with sufficient
compiler variable renaming support. As an example of the
second restriction, it is not safe to move a division or floating-
point instruction above a branch because of the possibilities of
a division by zero or a floating-point exception, respectively. It
is also not safe to move a memory load instruction above a
branch because of the possibility of a memory access violation.
Page faults are not a problem because they do not cause the
execution to terminate. However, moving loads from below to
above branches may increase the number of page faults.

We have implemented two different code scheduling models
for the purpose of experimentation. The first model enforces
both of the restrictions and is called restricted,percolution. This
model is necessary for the current generation of commercial
architectures where a subset of the instructions can cause traps.
When this model is used, no additional dependence arcs are re-
moved after memory disambiguation. The second model allows
the second restriction to be avoided. This model is called gen-
eral percolation. In this model, the architecture provides non-
trapping versions of the instructions that can cause exceptions.
Whenever an instruction is moved upward across a branch, the
non-trapping version is used. A similar approach has been im-
plemented in the Multiflow Trace computer [2 1] ?

If an exception occurs during a non-trapping instruction, the
exception is simply ignored (except for page faults, which are
handled normally). An invalid value is placed in the destina-
tion register for loads and arithmetic operations. Instructions
that use a (possibly invalid) value generated by a non-trapping
instruction can also be percolated.

For programs which would never have been trapped when
scheduled using conventional techniques, this invalid value
does not affect the correctness of the program because the re-

5 There are several techniques for doing this. For example, the hardware can
do register renaming for register dependences and memory access sequence
control for memory dependences.

6 For the superscalar processors, multiple branches can be issued in a cycle
and the architecture uses a squashing branch scheme [18].

’ The Multiflow Trace eventually detects some floating-point exceptions by
writing NaN to the destination register of the instruction that would have
generated an exception.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 3, MARCH 1995

suits of the instructions moved above the branch are not used
when the branch is taken (a result of restriction 1). However,
for all other programs (e.g., undebugged code, or programs
which rely on traps during normal operation), errors which
would have caused a trap may now cause an exception at a
later trapping instruction, or may cause an incorrect result.

Smith, Lam, and Horowitz described a method called
boosting which uses extra hardware to remove both the first
and second restriction without ignoring exceptions [22]. We
have shown that boosting and general percolation have similar
performance [23]. Currently, we are investigating sentinel
scheduling, a very promising new technique which allows the
code scheduling flexibility of general percolation without ig-
noring exceptions and without requiring much extra hardware
[24]. The results achieved with general percolation in this pa-
per confirm the importance of speculative code motion and
show the potential of these new techniques.

Moving a load from below to above a branch increases the
total number of memory accesses made by the program be-
cause the load is now always executed regardless of which
path is taken. Because the load is moved up from the most
frequently executed path, the number of extra references
should be moderate. When the general percolation model is
used, any control dependence arcs which result only from the
second restriction can be removed.

If an instruction is moved from above to below a condi-
tional branch I and it writes a variable that is in live-out (I),
the instruction must also be inserted between I and its target.
In our compiler, for ease of implementation, code motion of
this type is done during the code optimization phases de-
scribed above. Therefore, the scheduler does not move an in-
struction below a branch if it writes a variable that is in
live-out (I). It also does not move an instruction downward
across branches if it may cause an exception. In these cases,
the exception is only detected when the branch is not taken.
The ability to move such instructions .from above to below a
branch does not improve the schedule very much. We prefer
not to lose the exception.

D. 7. Step 6: List Scheduling

In this step, the dependence graph is scheduled. Because the
code is scheduled before register allocation as well as after, the
scheduling algorithm is careful to keep the register lifetimes to
a minimum while trying to optimize the code for the pipeline.
Temporary values are produced as late as possible and used as
soon as possible, shortening the register lifetimes and reducing
the amount of spilling. The algorithm also tries to control the
number of simultaneously live registers to reduce spilling. The
various factors that the scheduler takes into account are sum-
marized in a priority which is computed for each node in the
graph before scheduling begins.

The general idea of the list scheduling algorithm is to pick,
from the set of nodes in the dependence graph that are ready to
be scheduled, the highest-priority combination of nodes to
issue in a cycle. A node is ready if all of its parents have been
scheduled and the result produced by each parent is available
(i.e., since the time that the parent node was scheduled, enough

CHANG ET AL.: THE IMPORTANCE OF PREPASS CODE SCHEDULING FOR SUPERSCALAR AND SUPERPIPELINED PROCESSORS 359

cycles have passed to cover its latency). When a node is ready,
it is p laced in a set of nodes called the active set. There are a
set of instruction templates for the processor that specify the
possible combinat ions of instructions that can be issued in a
cycle. For each cycle, the scheduler finds the highest-priority
set of nodes from the active set to fill each template. Then it
issues the highest-priority instruction template and marks the
nodes in the template as scheduled. The priorities of all the

. nodes in a template are added together to determine the high-
est-priority template. If there are no nodes in the active set, the
scheduler does not have to issue no-ops. In this case, the flow
dependences are enforced by the hardware interlocks. The
scheduler simply advances the cycle count and checks to see if
nodes become ready to be scheduled.

The priority computed for each node is the weighted sum of
the values returned by several heuristic functions. Each heu-
ristic function F,(N) (where N is a node) returns a priority
value between 0 and 1. For a given node, one heuristic func-
tion may return a high value, and another a low value. Each
function is ass igned a weight W i to resolve these kinds of
conflicts. The function priority(N) returns xy=, Fi(N)* W i . The
heuristic functions used are descr ibed below beginning with
the highly weighted ones:

slackness(N): This heuristic function assumes that re-
sources are unlimited and that the best schedule length is
equal to the depth of the dependence graph. It f inds the lat-
est time that node N can be issued without increasing the
length of the best schedule and then assigns a priority be-
tween 0 and 1 based on that. Nodes that can be postponed
without increasing the length of the schedule receive a
lower priority.

exec-count(N): Nodes above a branch (including the branch)
are given higher priority than nodes below the branch. This
is because the nodes above the branch are executed more
times than the nodes below the branch. W e do not want to
move an operat ion with a lower execut ion count upward
across a branch if it will delay the issuing of the branch.

register-use(N): This function gives a high priority to nodes
that have many source registers because they may free regis-
ters. It gives a low priority to nodes that write a variable be-
cause they require a new register. This reduces the number
of simultaneously live registers.

uncover(N): High priority is given to nodes that have
many children. Once a node like this is issued, many nodes
are added to the active set. Branches, loads, and stores are
favored by this heuristic.

or&order(N): If two nodes can be scheduled in any order,
the node which appears first in the original code sequence
receives a higher priority.

The weight given to each of these heuristic functions can be
tailored to the target architecture. For example, if the architec-
ture has a small number of registers, register-use(N) might be
given more weight. The uncover(N) heuristic might be em-
phasized for an architecture with lots of parallelism and a large
register file. In this paper, we use the same set of weights for
all of the experiments.

These heuristics were developed based on our exper ience with
control-intensive programs, and the results in this paper are based
upon them. The importance of preschedul ing may vary with dif-
ferent heuristics. The evaluation of the importance of preschechu-
ing for different heuristics is beyond the scope of this paper.

D. 8. The Effect of Superblock Schedul ing on Compile Time
and Code Size

In [20], we have measured the code expansion and compile
time increase due to trace selection, superblock formation, and
optimization for the benchmarks used in this paper. The code
size is increased by an average of 100%. Cache simulation
results in [20] show that, despite the code size increase, an
instruction cache of 16K bytes or larger performs nearly as
well as an ideal cache. Since most future processors will have
an instruction cache at least this large, we do not expect code
expansion to be a problem.

As with trace schedul ing, superblock schedul ing does in-
crease the compilation time. The increase is about 140% on
average (including profiling for one input) in our prototype
compiler. However, this extra effort is worthwhile if it can
significantly reduce the execut ion time of important frequently
executed programs such as the Unix programs that make up
part of our benchmark set. Currently, most microprocessor
manufacturers are already producing superscalar processors
with issue rates between 2 and 5. In [20], it is shown that the
superblock techniques do significantly improve the perform-
ance of important programs for these issue rates. The increased
compile time can be v iewed as part of the overall workload on
a machine. If the time saved by the faster execut ion of impor-
tant programs is greater than the increased compile time, then
there is a net per formance gain for the whole workload. During
program development, when the compile time may be more
critical than the run time, the compiler optimizations can be
turned off.

III. EXPERIMENTS

A. Methodology

This section presents an empirical evaluation of the impor-
tance of preschedul ing for the superscalar and superpipel ined
versions of existing and future architectures. Each experiment
consists of compil ing and optimizing a set of control-intensive,
product ion C programs as descr ibed in Section 1I.D. In each
experiment, the benchmarks are compiled for several different
implementations of a base architecture. For each case, we
compile once with both preschedul ing and postschedul ing
turned on and again with only postschedul ing turned on. For
each compilation, the program execut ion time and the number
of dynamic memory references are calculated using the
schedule for each superblock and the profile information. The
number of dynamic references gives an indication of the
amount of register spilling. It is also affected by the number of
loads moved from below to above branches. W e assume a
100% cache hit rate for these experiments.

The time for each execut ion of a superblock depends upon

,

360 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 3, MARCH 1995

whether or not a side exit is taken. The profile information
indicates how many times each path is taken, and this quantity
is multiplied by the execution time of the path to get the total
time spent executing that path during the measured run of the
program. The totals for all the paths are then added to get the
total execution time for the superblock. The number of dy-
namic memory references is calculated in a similar manner.

As mentioned in Section II.D.3, we reprofile the program
prior to list scheduling and register allocation. During the
profiling process, code is generated by IMPACT for the MIPS
R2000 processor, and the program is executed on a DECSta-
tion 3100. For every new compilation we check the program
output during this execution to verify the correctness of our
compiler optimizations. After list scheduling, we can again
generate MIPS code, execute the scheduled code sequentially,
and produce an instruction trace. Using these traces, we have
simulated the superscalar execution of the benchmarks in a
previous study and found that the simulated execution time
matches the time calculated as described above [25]. We also
verified that the program output during this execution was cor-
rects

The execution time result for each compilation is reported
as a speedup relative to the compilation for the base microar-
chitecture. For the register spilling results, we define a metric
called the memory reference ratio (MRR). The memory refer-
ence ratio is the number of dynamic memory references issued
for benchmark B running on implementation I divided by the
number of dynamic memory accesses for the benchmark on the
base microarchitecture. Numbers greater than one indicate that
more memory accesses were made when the benchmark ran on
implementation I than when it ran on the base microarchitec-
ture. The memory reference ratio is an indication of the de-
mands placed upon the memory system. In a real system where
the cache hit rate is not lOO%, extra memory accesses that
cause misses will cause the speedup reported here to be re-
duced. Even if the extra memory references do not cause cache
misses, the delays due to the original cache misses will become
relatively more significant as the execution time is decreased.
Delays due to page faults wil1 also become more significant as
the execution time is reduced.

B. Processor Architecture

In addition to the benchmark, the scheduler takes as input a
machine description file that characterizes the instruction set,
the microarchitecture (including the issue rate and the instruc-
tion latencies), and the code scheduling model and options
(this is where prescheduling is turned on and off). The base
microarchitecture is a pipelined, single-issue processor that
supports the restricted percolation model. Loads, stores, inte-
ger divides, and floating-point instructions can cause traps. Its
instruction set is similar to the MIPS R2000 instruction set.
Table I shows the instruction latencies. Instructions are issued

’ For the code scheduled using the general percolation model, we must
mask the exceptions produced by the trapping instructions of the R2000.
However, because we also scheduled and executed the code with the re
stricted percolation model, we know that the exceptions are due to general
percolation rather than compiler optimization bugs.

in order (there is no dynamic code scheduling). The processor
is assumed to have interlocks for structural and read-after-
write hazards. The microarchitecture uses a squashing branch
scheme [181 and profile-based branch prediction. One branch
slot is allocated by the compiler for each predicted-taken
branch. The processor has 32 integer registers and 32 floating-
point registers.g Of the 32 integer registers, eight are reserved
as special registers (for the stack pointer, frame pointer, pa-
rameter passing registerslO , etc.). Four registers in each register
file are reserved as spill registers.” These 12 reserved registers
are not available for assignment by the register allocator. All
the speedups and memory reference ratios reported in Section
II1.E are relative to this base microarchitecture.

TABLE I.
hWRUCMON lXIENCIRS.

The superscalar version of this processor fetches multiple
instructions into an instruction buffer and decodes them in
parallel. The issue rate is the maximum number of instructions
that can be fetched and issued per cycle. An instruction is held
in the instruction unit if there is a flow dependence between it
and a previous instruction. All the subsequent instructions are
also held. All the instructions in the buffer do not have to be
issued before more instructions are fetched. We assume that .
once the fetch address is known, the required number of in-
structions can be fetched in a single cache access. The su-
perscalar processor also contains multiple functional units.
Each functional unit can be a single unit, such as an ALU, or a
group of different units, such as a cache interface, an ALU, and
branch logic. The capabilities of the functional unitsdetermine
how many of a particular class of instructions can be executed in
parallel. For the processors in this paper, all the functional units
are capable of executing any instruction. Thus there are no re-
strictions placed on the combinations of instructions that can be
issued in the same cycle. When the issue rate is increased, the
number of cycles of delay due to mispredicted branches remains
the same, but the number of instructions squashed increases.
Since the program execution time is decreased by superscalar
execution, the branch penalty becomes relatively larger.

The superpipelined version of this processor has deeper
pipelining for each functional unit. If the number of pipestages

’ The code for these benchmarks contains very few floating point instruc-
tions. ln the experiments, whenever we change the integer register file sire,
we also change the floating-point register file sire by the same amount. From
this point on, we will simply refer to the register$le size, meaning the integer
re ‘ster tile size.

Y ’ The parameter passing registers are used as temporary registers for leaf-
level functions.

‘t The four spill registers am used in a round-robin fashion to reduce de-
pendences.

CHANG ET AL.: THE IMPORTANCE OF PREPASS CODE SCHEDULING FOR SUPERSCALAR AND SUPERPIPELINED PROCESSORS 361

is increased by a factor P, the clock cycle is reduced by that
same factor. The latency in clock cycles is longer, but in real
time it is the same as the base microarchitecture. The through-
put increases by up to the factor P. We refer to the factor P as
the degree of superpipelining. The instruction fetch and de-
code unit is also more heavily pipelined to keep the microar-
chitecture balanced. Because of this, and the more deeply
pipelined compare-and-branch units, the number of cycles of
delay due to mispredicted branches and the number of instruc-
tions squashed increases [181.

For the superscalar processor, the additional datapaths,
functional units, and instruction unit logic may increase the
cycle time. For the superpipelined processor, the cycle time is
actually reduced by less than the factor P because of the latch
delays. This paper reports speedups based on ideal cycle times
and leaves the reader with the task of scaling the speedups to
account for the above effects.

C. Benchmarks

The benchmarks used are shown in Table II along with the
inputs with which each one is profiled prior to optimization.
We have attempted to use diverse input data for profiling in
order to optimize each program for a wide range of possible
inputs. The SIZE column specifies the size of each program in
number of lines of code. After superblock formation and op-
timization, each benchmark is profiled again with a single in-
put that is not in the set shown in Table II. Recall that, after
superblock formation, the profile information is only approxi-
mate. The benchmarks must be reprofiled in order to accu-
rately measure the execution time and the number of dynamic
memory references. In most cases, a compiled production pro-
gram will not be run with exactly the same inputs with which it
is profiled. By using an input which is not in the set that was
used for optimization, we get a more realistic estimate of how
well the benchmark was optimized for general inputs.

Table III shows the dynamic frequencies of different classes
of control instructions for before/after superblock formation
and optimization. For example, the BRANCHES TAKEN column
shows the percentage of taken branches among all instructions.
A minus means that the program had less than 0.1% instruc-
tions of that type. Before superblock optimization, one out of
every three or four instructions is a control instruction. Super-
block formation and optimization may decrease or increase the
total percentage of control instructions. The percentage of
taken branches decreases and the percentage not taken in-
creases. The formation of superblocks places frequently exe-
cuted blocks in a sequence and adjusts the appropriate branch
target addresses. As a result, the branches in a superblock are
usually’ not taken. One of the superblock optimizations reduces
the number of indirect jumps. If there is a favored target for
the jump, a branch is added to test specifically for that target,
avoiding the indirect jump for most cases. Superblock optimi-
zations do not change the number of function calls. However,
the total number of instructions executed may increase or de-
crease, causing the percentage of function calls and returns to
vary. As a whole, the programs are just about as control-
intensive after superblock formation as before.

D. Compiler Calibration

It is important to measure the effectiveness of prescheduling
using a compiler that produces highly optimized code prior to
code scheduling. Code that is not well optimized can contain
redundant instructions that change the dependence pattern and
allow the prescheduler to produce deceptively parallel code.
On the other hand, some dependences may not be removed by
a poor optimizer, restricting the ability of the prescheduler to

move code. To calibrate the quality of the code generated by
IMPACT-I, the execution time of its output code has been
compared to that of the commercial MIPS C compiler12, which
is well known for its excellent code optimization capabilities.
For the benchmarks described earlier, the performance of
IMPACT-I is slightly better than that of the MIPS C compiler
[161. Thus, the evaluation of prescheduling reported in this
paper is based on well-optimized sequential code.

E. Results

E. 1. The Importance of Prescheduling for Existing Architec-
tures

In this section, two experiments are performed to investigate
the effect of prescheduling on the performance of superscalar
and superpipelined implementations of the current generation
of commercial architectures. The goal is to, find out whether or
not these processors require prescheduling in order to exploit
the instruction-level parallelism in the C benchmarks. Some
instructions in these architectures can cause traps, so all the
compilations for these two experiments adhere to the restricted
percolation code scheduling model.

In the first experiment, the benchmarks are compiled for su-
perscalar processors with issue rates from one to eight instruc-
tions per cycle. These processors all have 32 registers and the
instruction. latencies given in Section 1II.B. For each case, the
benchmarks are compiled once with prescheduling and once
without it. The speedups and memory reference ratios are cal-
culated with respect to the single-issue base architecture de-
scribed in Section 1II.B. Prescheduling is turned off for the 32-
register base architecture. The changes in the amount of mem-
ory references for this experiment are purely due to spilling
because loads cannot be moved above branches.

The individual results for each benchmark are shown in
Fig. 2. The gray bars in the charts show the performance and
number of memory references, without prescheduling, com-
pared to the base processor for issue rates 2, 4, and 8. The
black bars in the speedup chart show the speedup including
prescheduling. In the MRR chart, the black bars show the total
MRR with prescheduling. The separate bars are used because
prescheduling does not always produce an increase in the
MRR.

Prescheduling extracts little or no extra performance for most
of the benchmarks. compress is the only benchmark that shows
a really marked improvement. For issue rate 4, the average
speedup with prescheduling is less than 4% higher than without
it. Performance for a single-issue processor (not shown) is also

l2 MIPS Release 2.1 using the (-04) option.

362 IEEETRANSACTIONSONCOMPUTERS, VOL. 44, NO. 3, MARCH1995

TABLE II.
THEBENCHMARKS.

BENCHMARK 1 SIZE 1 BENCHMARK DESCRIPTION .I INPUT DESCRIPTION

BENCHMARK BRANCHES BRANCHES UNCOND. INDIRECT FUNCTION TOTAL
TAKEN NOT TAKEN JUMPS JUMPS CALLS

improved very slightly for each benchmark. The performance
increase is limited by the restricted percolation code schedul ing
model. W e have observed that loads are often in the critical path.
This was illustrated in the code segment that was shown in Fig.
1. However, with the restricted percolation model, loads cannot
be moved from below to above branches, limiting the ability of
the prescheduler to optimize the critical path.

The memory reference ratio is always 1 without preschedul-
ing. This means that there are no more memory references than
for the single-issue base architecture. The reason for this is that
the register allocation algorithm assigns registers in the same
way regardless of the issue rate. For issue rate 2, there are of-
ten less memory references with preschedul ing than without it.
Before code schedul ing, the instruction sequence is not opti-
mized. Some temporaries are produced too early, resulting in
register lifetimes that are longer than they have to be. Pre-

schedul ing has the chance to rearrange the code to shorten the
register lifetimes and reduce spilling.

As the issue rate increases, the prescheduler tries to take ad-
vantage of the parallelism. More values are simultaneously live,
demanding more registers and increasing the amount of spilling.
For eqn and qsort there are 10 to 18% more memory references
as a result of preschedul ing and little additional performance. In
these cases, the improvements in the schedule made before regis-
ter allocation are offset by extra spills. For compress, the num-
ber of memory references is reduced or only slightly increased
even though there are large gains in performance. The average
MRR is only 2% higher with preschedul ing.

In the second experiment, the benchmarks are compiled for
superpipel ined processors with the degree of superpipcl ining
varied from two to three. W e refer to these as 2X-, and 3X-

CHANG ET AL.: THE IMPORTANCE OF PREPASS CODE SCHEDULING FOR SUPERSCALAR AND SUPERPIPELINED PROCESSORS 363

1
248 248 248 248 248 248 248 248 248 248 248 248 248

cocp -P -P=s eqn upltoo -P=sm PP lex li qsoa tbl W C yacc

1 I n With FVeacbeduling I I I
H Without Pm3ckdul ing

1.1

B

1

248 248 248 248 248 248 248 248 248 248 248 248 248

cccp anp -perr* e+ ecpltoo espresro grcg lex li q- tbl WC Yam

Fig. 2. The perfommce of prescheduling for the superscalar versions of existing architectures. The base architecture is the single-issue processor with no pre-
scheduling. All the processors have 32 registers.

superpipel ined processors, respectively. These processors have
32 registers. For each case, the benchmarks are compiled once
with preschedul ing and once without it. The speedups and
memory reference ratios are calculated with respect to the
same single-issue base architecture as for the first experiment.

The results are shown in Fig. 3. Processors 2 and 3 are sin-
gle-issue, 2X- and 3X-superpipel ined microarchitectures, re-
spectively. Processors 4 and 6 are dual-issue, 2X- and 3X-
superpipel ined microarchitectures. In the previous experiment,
there was often a large’ gap in per formance between the pro-
cessors with issue rates 2 and 4. The single-issue 3X-
superpipel ined microarchitecture tills that gap. Again, pre-
schedul ing has only a small advantage in speedup for most of
the benchmarks and only compress is improved dramatically.
The MRR results are also similar to the previous experiment.

The results of this section show that preschedul ing is not
important for compil ing control-intensive programs to today’s
architectures. For the restricted percolation model, the frequent
branches in the C benchmarks hinder the code scheduler so
much that the extra dependences added by register allocation
don’t have much effect. In order to exploit more instruction-
level parallelism in these benchmarks, some way must be
found to eliminate the restrictions imposed by trapping in-
structions. The next subsect ion presents the results obtained by
doing just that. It is shown that once this restriction is re-

moved, preschedul ing becomes critical to exploiting the newly
obtained code movement opportunit ies.

E. 2. The Importance of Preschedul ing for Future Architec-
tures

In this section, two experiments are performed to study the
effect of preschedul ing on the performance of the superscalar
and superpipel ined implementations of an architecture that
supports the general percolation code schedul ing model. The
goal is to demonstrate that these processors require pre-
schedul ing in order to exploit the extra parallelism in the C
benchmarks made available by general percolation.

In the first experiment, the benchmarks are again compiled for
superscalar processors with issue rates from one to eight instruc-
tions per cycle. These processors have 32 registers and the in-
struction latencies given in Section RIB. For each case the
benchmarks are compiled once with preschedul ing and once
without it. This time the compiler makes use of the general per-
colation model. The speedups and memory reference ratios are
calculated with respect to the single-issue base architecture de-
scribed in Section RIB. Preschedul ing is turned off and re-
stricted percolation is used for this 32-register base architecture.
Therefore, the speedup and change in memory references, due to
both preschedul ing and the general code percolation model, are
shown. The change in memory references is due to both spilling
and to loads that are moved from below to above branches.

364 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 3, MARCH 1995

1
2346 2346 2346 2346 2346 2346 2346 2346 2346 2346 2346 2346 2346

cccp cmp comprers ecpl ecpaoo =P== VP lex li qsoB tbl W C w=

0.9
2346 2346 2346 2346 2346 2346 2346 2346 2346 2346 2346 2346 2346

cccp aP -P=s eQn #pltoo =P=- m ICX li q- tbl WC Y=

Fig. 3. The performance of prescheduling for the superpipelined versions of existing architectures. The base architecture is the single-issue processor with no
prescheduling. 2 and 3 are single-issue, 2X- and 3X-superpipelined processors, respectively. 4 and 6 are dual-issue, 2X- and 3X-superpipelined processors,
respectively. All the processors have 32 registers.

The results are shown in Fig. 4. The performance advantage
of preschedul ing is now much more pronounced. For issue
rate 4, preschedul ing improves the speedup by more than 10%
for every benchmark except eqntott and qsort. For issue rate 8,
the speedups of cmp, lex, and tbl are improved by more than
95%. The average speedup is increased by 26% for issue rate 4.
W ithout preschedul ing, the register allocation algorithm pro-
vides the same number of registers for all issue rates even though
that may not be enough to support the parallelism available in
the hardware. Note that without preschedul ing, the speedup with
general percolation is not much better than for restricted perco-
lation (in Section III.E.l). The hardware that supports the gen-
eral percolation model provides richer opportunit ies for parallel-
ism, but preschedul ing is required to take advantage of them.

The memory reference ratio is no longer constant without
preschedul ing. The increase over the’base microarchitecture is
due only to loads that are moved from below to above
branches. Preschedul ing now increases the number of memory
references in almost every case as it exploits the opportunit ies
provided by the general percolation model. The increase in
memory references is usually small when the issue rate is low.
The scheduler moves instructions only enough to satisfy the
pipeline constraints and exploit the available parallelism. This
keeps the register lifetimes to a minimum, reducing the spill-
ing. As the issue rate increases, the scheduler takes advantage

of the opportunit ies to issue instructions in parallel and as a
result is forced to increase the number of registers used. The
speedup with preschedul ing increases faster than without it in
spite of the MRR, which also increases faster with preschedul-
ing. At the high issue rates, there are more unused instruction
slots to hide spill code and the extra parallelism exploited
overcomes any loss due to spill code that cannot be hidden.
Preschedul ing increases the average MRR by 11%.

The speedups for compress and qsort are very slightly lower
with preschedul ing (which cannot be seen in Fig. 4) for issue
rate 2. There are more memory references for compress with
preschedul ing. When the issue rate is 2 it is more difficult to find
empty instruction slots in which to hide spill code. For qsort, the
MRR is very slightly improved, indicating that some temporaries
may have been produced too early in the original optimized
code. For issue rate 1 (not shown), the speedup is slightly lower
with preschedul ing than without for about half of the bench-
marks. In these cases, the MRR is usually slightly higher. For
some of the benchmarks, particularly cccp and yacc, at issue rate
8, the increase in the MRR with preschedul ing is quite a bit
higher than the increase in the speedup. The above results indi-
cate that per formance may be further improved by more tightly
integrating the code scheduler and register allocator.

In the second experiment, the benchmarks are compiled for
superpipel ined processors with the degree of superpipel ining

CHANG ET AL.: THE IMPORTANCE OF PREPASS CODE SCHEDULING FOR SUPERSCALAR AND SUPERPIPELINED PROCESSORS 365

248 248 248 248 248 248 248 248 248 248 248 248 246

cccp anp canpras em ecplton erpuco 8=P lex Ii s-t tbl WC Ya=

1.7

1.6

1.5

1.4

1.3

13

1.1

1

0.9
248 248 248 248 248 248 248 248 248 248 248 248 248

cccp =P -press eqn ccpltoa w==o grep lex Ii qsort tbl WC Ya=

Fig. 4. The performance of prescheduling for the superscalar versions of architectum that support general percolation. The base architecture is a single-issue
processor with no prescheduling and restricted percolation. All the processors have 32 registers.

varied from two to three. These processors have 32 registers. For
each case, the benchmarks are compiled once with preschedul ing
and once without it. Again, the compiler uses the general perco-
lation model. The speedups and memory reference ratios are
calculated with respect to the familiar single-issue base architec-
ture with 32 registers. Preschedul ing is turned off and the re-
stricted percolation model is used for the base processor.

The results are shown in Fig. 5. The increases in per formance
for preschedul ing with the general percolation model are similar
to those descr ibed for the superscalar processors. The MRR re-
sults are also similar. Preschedul ing can exploit both the su-
perscalar and superpipel ined microarchitectures very well. Note
that for the 3X-superpipel ined processors, the single-issue ver-
sion with preschedul ing often outperforms the dual- issue version
that does not have preschedul ing. Also note that the speedups for
the dual- issue superscalar machine (in the previous experiment)
and the single-issue, 2X-superpipel ined machine are similar. The
same is true for the superscalar machine with issue rate 4 and the
dual-issue, 2X-superpipel ined machine. This matches results that
have been previously reported in the literature [26].

This section demonstrates that for control-intensive bench-
marks, the general percolation code schedul ing model provides
more code motion opportunit ies, but these opportunit ies have
to be taken advantage of before register allocation. Once the
restrictions imposed by trapping instructions are removed, the

dependences added during register allocation become the major
impediment to reorganizing the code. W ithout preschedul ing,
the added dependences prevent the code scheduler from taking
advantage of the general percolation model to the point that
there is little or no advantage to providing non-trapping instruc-
tions. Both general percolation and preschedul ing are required to
obtain good speedup from control-intensive programs.

Between the time that we submitted the first version of this
paper for review and the time of the final draft, we cont inued
to add optimizations to our compiler that increased the avail-
able instruction-level parallelism of the intermediate code. For
this final draft, we repeated our experiments and found that the
advantage of preschedul ing was greater for the more parallel
code. W e predict the importance of preschedul ing will con-
t inue to increase in the future as improved compiler optimiza-
tion techniques find more parallelism.

E. 3. The Effect of Register File Size on the Pegormance of
Preschedul ing

In this section, an experiment is performed to study how the
advantage of preschedul ing varies with the register file size.
W e also want to see the extent to which larger register file
sizes decrease the extra memory referencing that results from
preschedul ing. For the experiment, we pick a middle-of-the-

366 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 3, MARCH 1995

2346 2346 2346 2346 2346 2346 2346 2346 2346 2346 2346 2346 2346

cccp anp =-w=' v upnott aperro grep lex li qsolt tbl WC Y==

1.6 -n 1

2346 2346 2346 2346 2346 2346 2346 2346 2346 2346 2346 2346 23-46

Fig. 5. The perfonuance of prescheduling for the superpipelined versions of architectures that support general percolation. The base architecture is a single-
issue processor with no prescheduling and restricted percolation. 2 and 3 are single-issue, 2X- and 3X-superpipelined processors, respectively. 4 and 6 are dual-
issue, 2X- and 3X-superpipelined processors, respectively. All the processors have 32 registers.

road superscalar processor with issue rate 4, and vary its regis-
ter file size from 24 to 64 registers (recall that 12 of these reg-
isters are reserved). W e use the general percolation code
schedul ing model since it represents the class of architectures
for which preschedul ing is important. For each case, the
benchmarks are compiled once with preschedul ing and once
without it. The speedups and memory reference ratios are cal-
culated with respect to the single-issue base architecture with
32 registers. Preschedul ing is turned off and the restricted per-
colation model is used for the base processor. The speedup
and memory reference ratio numbers show the combined effect
of the four-instruction issue rate, the general percolation
model, and the register file size. For this experiment, the
change in the number of memory references between register
file sizes is due purely to register spilling.

The results are shown in Fig. 6. Machines a, b, c, and d have a
register file size of 24, 32, 48, and 64, respectively. The execu-
tion time decreases as the number of registers increases, because
there is less spill code and fewer dependences due to the reuse of
registers. When the register file size is 24, there is still an advan-
tage to preschedul ing. However, there is quite a bit of extra
spilling. cccp and qsort show very slight per formance decreases
with preschedul ing because of this. More registers are probably
needed to fully exploit the parallelism. W e also obtained results
for 16 registers (of which 12 are reserved). Four allocatable reg-

isters is simply not enough. Many of the benchmarks ran
slower with preschedul ing than without, and preschedul ing
greatly increased the number of memory references. Thirty-
two registers is a reasonable number for these benchmarks.
There is only a small increase in per formance when moving to
48 or 64 registers, and the MRR increase is fairly Tow. The
processors with 48 and 64 registers perform equivalently.

F’reschedul ing’s advantage does not diminish as the register
file size increases because the register allocator reuses regis-
ters in a similar way regardless of the number of available
registers. Note that without preschedul ing, little advantage is
taken of the increasing register file size. The small increase in
per formance is due to a decrease in spills. The code scheduler
cannot take advantage of the larger register file size to increase
performance further. As the number of registers is increased,
the register allocator may still al locate the same register to two
nodes that are not adjacent when it might be able to use a dif-
ferent register to avoid adding a dependence. The average in-
crease in per formance due to preschedul ing is at least 26% for
.register file sizes of 32 or greater. As the register file size in-
creases, the difference in MRR with and without preschedul ing
diminishes because the register set has more space to support
the longer register lifetimes. For register file sizes 32 and
larger, the difference is less than 11%.

CHANG ET AL.: THE IMPORTANCE OF PREPASS CODE SCHEDULING FOR SUPERSCALAR AND SUPERPIPELINED PROCESSORS 361

abed abed l bcd abed abed abed abed abed abed abed abed abed abed

cccp cmp -P-s e+ acpnat espuuro m lex li qsort tbl W C Y=

Fig. 6. The performance of prescheduling for processors with various register file sizes. Processors a, b, c, and d have 24.32.48, and 64 registers, respectively.
All the processors, except the base architecture, have issue rate 4 and support the general percolation model. The base architecture is a single-issue processor
with no prescheduling, restricted percolation, and 32 registers

E. 4. The Effect of Register Allocation on Code Schedul ing

In this section, an experiment is performed to study how
much the extra dependences added during register allocation
hinder the code scheduler given an ideal architecture. This
gives an indication of how much register allocation changes
the dependence graph for control-intensive programs. The
effects of the hardware constraints are minimized as much as
possible. W e model a processor that has an unlimited issue
rate for all instructions, and unit instruction latencies. Unit
instruction latencies were chosen so that each dependence pro-
duces the same delay and has a similar effect on the results.
The processor supports the general percolation code schedul-
ing model. W e vary the register file size from 24 to 64 because
this has a direct effect on the amount of register recycling and
the extra dependences added. For each case, the benchmarks
are compiled once with preschedul ing and once without it. The
speedups and memory reference ratios are calculated with re-
spect to the single-issue base architecture with 32 registers.
The base architecture has the latencies shown in Table I. Pre-
schedul ing is turned off and the restricted percolation model is
used for the base processor. The speedup and memory refer-
ence ratio numbers show the combined effect of the,unlimited
issue rate, the unit latencies, the general percolation model,

and the register file size.
The results are shown in Fig. 7 and are similar to the those

for the previous experiment. The speedup over the base single-
issue processor is higher due to the unlimited issue rate and
unit latencies. Preschedul ing’s performance advantage for the
larger register sizes increases to approximately 43% on aver-
age because the hardware can exploit more parallelism. The
difference in the memory reference ratio is also larger because
the scheduler moves instructions more to take advantage of the
unlimited issue rate. For register file sizes of 32 and larger, the
register allocator clearly handicaps the code scheduler by
adding dependences. The register allocator reuses registers
without regard for the effeet on the final schedule. There is
now a more pronounced difference in spilling between 32 and
48 registers. This is because exploiting more parallelism re-
quires more registers. For 48 or more registers, there is less
than 11% more spilling with preschedul ing.

IV. CONCLUSION

This paper studied the interaction between register allocation
and code schedul ing and the importance of performing prepass,
as well as postpass, code schedul ing. The register allocator in-
t roduces extra dependences between the instructions whenever it

368 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 3, MARCH 1995

P 6

t 5

m4

3

2

1
abed abed abed abed abed abed abed abed abed abed abed abed abed

cccp -P compnrs ecpl eu erpruua VP lex li q- tbl WC Y=

2.9

2s

8 =l
I.7

1.3

0.9
abed abed abed abed abed abed abed abed abed abed abed abed rbcd

c4cp =P -P=s sqn ecpltott srprerm PP lex li qm tbl WC Y=C

Fig. 7. The performance of prescheduling for au ideal processor with various register tile sizes. The ideal processor has an unlimited issue rate, unit instruction
latencies, and supports the general percolation model. Processors a, b, c, and d have 24, 32.48, and 64 registers, respectively. The base architecture is a single-
issue processor with no prescheduling, restricted percolation, and 32 registers.

reuses registers and adds spill code. If code schedul ing is per-
formed only after register allocation, these extra dependences
restrict the ability of the code scheduler to move instructions to
their desired positions. On the other hand, if code schedul ing is
done only before register allocation, the register lifetimes may
be lengthened, increasing the amount of spill code added by
the register allocator. There is also no opportunity to optimize
the code added by the register allocator. If both prepass and
postpass schedul ing are performed, and the prescheduler is
careful to minimize the use of registers by moving code only
as much as necessary to minimize delays, better per formance
can be achieved and spilling can be controlled.

The IMPACT-I C compiler’s code scheduler was descr ibed
in detail. It is used for both preschedul ing and postschedul ing.
It f inds the most frequently executed paths in the functions and
lays the basic blocks of the paths out sequential ly in memory.
Code movement and register allocation are done across basic
block boundar ies in order to find more instruction-level paral-
lelism. This is especially useful for the non-numeric C pro-
grams studied in this paper because they have frequent
branches.

Experimental results showed that preschedul ing is not im-
portant for compil ing control-intensive programs to today’s
architectures. Preschedul ing extracts slightly more perfor-
mance from each processor studied, but the frequent branches in

the C programs we used, combined with the inability to move
loads above branches, hinder the code scheduler so much that
the extra dependences added by register allocation do not cre-
ate too many additional problems. This is in contrast to the
results previously obtained for scientific codes. In those pro-
grams branches are less frequent, making the restrictions on
code percolation less problematic and increasing the impor-
tance of preschedul ing.

If the restrictions imposed by trapping instructions are re-
moved, but preschedul ing is not used, per formance does not
improve much for the benchmarks we looked at. The depend-
ences added during register allocation become the major hin-
drance when reorganizing the code. In order to obtain more
speedup from these benchmarks using processors that exploit
instruction-level parallelism, both general code percolation
and preschedul ing must be used. Using an intelligent sched-
uler, we have shown experimentally that preschedul ing, corn-
b ined with the general percolation code schedul ing model, can
substantially improve the execut ion time of control-intensive
programs on both superscalar and superpipel ined processors.

ACKNOWLEDGMENTS

The authors would like to thank John Andrews, Dave Lilja,
and Merle Levy for their comments on the first version of this

CHANG ET AL.: THE IMPORTANCE OF PREPASS CODE SCHEDULING FOR SUPERSCALAR AND SUPERPIPELINED PROCESSORS 369

paper and Roger Br ingmann for his assistance with the graphs.
They would also like to acknowledge all the members of the
IMPACT research group for their support. This research has
been supported by the National Science Foundat ion (NSF) under
grant MIP-8809478, Dr. Lee Hoevel at NCR, the AMD 29K
Advanced Processor Development Division, and the National
Aeronautics and Space Administration (NASA) under contrqt
NASA NAG 1-613 in cooperat ion with the Illinois Computer
Laboratory for Aerospace Systems and Software (ICLASS).
Daniel Lavery was also supported by the Center for Supercom-
puting Research and Development at the University of Illinois at
Urbana-Champaign under grant DOE DE-FGO2-85ER25001
from the U.S. Department of Energy and the IBM Corporation.

111

121

131

[41

PI

WI

171

[81

PI

WI

[ill

WI

u31

1141

WI

1161

1171

[W

1191

REFERENCES

J.R. Goodman and W .-C. Hsu, “Code scheduling and register alloca-
tion in large basic blocks,” Proc. 1988 Inr’l Conf Supercomputing,
pp. 442-452, July 1988.
W .W. Hwu and P.P. Chang, ‘Exploiting parallel microprocessor
microaditectures with a compiler code generator,” Proc. ZSth Ann.
I&‘! Symp. Cornpurer Architecture, pp. 45-53, June 1988.
J.L. Hetmessy and T. Gross, “Postpass code optimization of pipeline
constraints,” ACM Trans Programming Lunguages and Sysrems,
vol. 5, pp. 422-448, July 1983.
J.A. Fisher, “Trace scheduling: A technique for global microcode com-
paction,” IEEE Trans. Computers, vol. 30, pp. 478-490, July 1981.
J.R. Ellis, “Bulldog: A compiler for VLlW architectures,” Ph.D. The-
sis, MIT Press, Cambridge, Mass., 1986.
G.J. Chaitin, “Register allocation and spilling via graph coloring,”
ACM SZGPZAN Notices, vol. 17, pp. 98-105, June 1982.
P.P. Chang, S.A. Mahlke, W ,Y. Chen, N.J. Warter, and W .W. Hwu,
“IMPAm, An architectural framework for multiple-instruction-issue
processors,” Proc. 18th Ann. Znr’l Symp. Computer Architecture, pp.
266-275, May 1991.
G. Kane, MIPS R2000 RISC Architecture, Prentice Hall, Englewood
Cliffs, N.J., 1987.
Sun Microsystems, ‘The SPARC architecture manual,” part no. 800-
1399-07, rev. 50, Mountain View, Calif., Aug. 1987. ,
Advanced Micro Devices, “Am29000 32-bit streamlined instruction
processor,” users manual, Sunnyvale, Calif., 1988.
Intel, “i860 64-bit microprocessor,” or&r no. 240296-002, Santa
Clara, Calif., Apr. 1989.
Hewlett-Packard Company, “Precision architecture and instruction set
reference manual, 3rd edition,” part no. 09740-90039, Apr. 1989.
A.V. Aho, R. Sethi, and J.D. Uliman, Compilers: Principles, Tech-
niques, and Tools, Addison-Wesley, Reading, Mass., 1986.
P.P. Chang, S.A. Mahlke, W .Y. Chen, and W .W. Hwu, “Profile-
guided automatic inline expansion for C programs,” Software Practice
and Experience, vol. 22, pp. 349-369, May 1992.
W .W. Hwu and P.P. Chang, “Achieving high instruction cache per-
formance with an optimizing compiler,” Proc. 16th Ann. Znt’l Symp.
on Computer Architecture, pp. 242-251, June 1989.
P.P. Chang, S.A. Mahlke, and W .W. Hwu, “Using profile information
to assist classic code optimizations,” Software Practice and Z?xperi-
ence, vol. 21, pp. 1301-1321, Dec. 1991.
S.A. Mahlke, W .Y. Chen, J.C. Gyllenhaal, W .W. Hwu, P.O. Chang,
and T. Kiyohara, “Compiler code transformations for superscalar-
based high-perf~rmancc systems,” Proc. Supercomputing ‘92, Nov.
1992.
P.P. Chang and W .W. Hwu, “‘Forward semantic: A compiler-assisted
instruction fetch method for heavily pipelined processors,” Proc. 22nd
Znt ‘1 Workshop Microprogramming and Microarchitecture,
pp. 188-198, Aug. 1989.
P.P. Chang and W .W. Hwu, “Trace. selection for compil ing large C
application programs to microcode,” Proc. 2Zst Znr’l Microprogram-

WI

1221

[231

1241

[251

WI

ming Workhop, pp. 21-29, Nov. 1988.
W .W. Hwu, S.A. Mahlke, W .Y. Chen, P.P. Chang, N.J. Warter, R.A.
Bringmann, R.G. Guellette, R.E. Hank, T. Kiyohara, G.B. Haab, J. G.
Hahn, and D.M. Lavery, “The superblock: An effective technique for
VLlW and superscalar compilation,” .Z. Supercomputing, vol. 7, no. l-
2, pp. 229-271, 1993.
R.P. Colwell, R.P. Nix, J.J. O’Donnell, D.B. Papworth, and P.K. Rod-
man, “ A VLIW arohitectum for a trace scheduling compiler,” Proc.
Second Znr’l Conj: Architectural Support for Programming Languages
and Operating Systems, pp. 180-192, Oct. 1987.
M.D. Smith, MS. Lam, and M.A. Horowitz, “‘Boosting beyond static
schedul ing in a supexscalar processor,” Proc. 17th Ann. Znr’l Symp.
Computer Architecture, pp. 344-354, May 1990.
P.P. Chang, N.J. Warter, S.A. Mahlke, W .Y. Chen, and W .W. Hwu,
‘Three superblock scheduling models for superscalar and superpipe-
l ined processors,” Center for Reliable and High-Performance Comput-
ing Report CRHC-91-25, Univ. of Illinois at Urbana-Champaign,
Oct. 1991.
S. A, Mahlke, W .Y. Chen, W .W. Hwu, B.R. Rau, and M.S. Schlan-
sker, “Sentinel scheduling for VLJW and superscalar processors,”
Proc. Fifth Ann. Znt’l Conj Architectural Support for Programming
Languages and Operating Sysfems. Oct. 1992.
P.P. Chang, W .Y. Chen, S.A. Mahlke, and W .W. Hwu, “Comparing
static and dynamic code scheduling for multiple-instruction-issue
pmcessors,” Proc. 24th Znt’l Symp. and Workshop Microarchitecture,
Nov. 1991.
N.P. Jouppi and D.W. Wall, “Available instruction-level parallelism for
superscalar and superpipelined machines,” Proc. Third Ann. Znt’l Con&
Architectural Support for Programming Languages and Operating
Systems, pp. 272-282, Apr. 1989.

Pohua P. Chang received his bachelor’s degree in
computer science from the University of California
at Berkeley in 1987. He received his MS and PhD
degrees in electrical engineering from the Univer-
sity of Illinois at Urbana-Champaign in 1989 and
1991, respectively.

Dr. Chang is a member of the technical staff at
Intel Corporation. His research interests are in the
areas of computer architecture, compilers, and
software development tools.

Daniel M. Lavery received the BS and MS degrees
in electrical engineering from the University of
Illinois at Urbana-Champaign in 1986 and 1989,
respectively. He is currently a PhD student at the
university.

Lavq has worked as a coop student for IBM in
VLSI chip design and as a summer intern at Cray
Research Inc., in architecture research. From 1988 to
1991 he was a computer systems engineer at the
Center for Supercomputing Research and Develop-
ment where he worked on the hardware for the Cedar
parallel supen.zomputer and its performance monitor.

Lavery’s research interests include compilers, computer architecture, and

Scott A. Mahlke received the BS and MS degrees
from the Department of Electrical and Computer
Engineering at the University of Illinois at Urbana-
Champaign in 1988 and 1991, respectively. He
received the PhD in electrical engineering from the
same university in 1995.

Dr. Mahlke is currently with Hewlett-Packard
Laboratories. His research interests include com-
puter architecture, compilers and compiler tech-
niques for high-performance architectures.

7 I 1 1 -

370 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 3, MARCH 1995

William Y. Chen received the BSEE degree from
Ohio State University in 1988. He received the MS
and PhD degrees in electrical engineering from the
University of Illinois at Urbana-Champaign in
1991 and 1993, respectively.

Dr. Chen is with the Software Technology Lab
of Intel Corporation. His research interests lie in
the areas of compilation techniques and superscalar
architectures.

