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Abstract
Packing is an essential loop optimization for handcrafting

a high-performance General Matrix Multiplication (GEMM).
Packing copies a non-contiguous block of data to a contigu-
ous block to reduce the number of TLB entries required to
access it, avoiding expensive TLB misses. When copying
data, packing can rearrange elements of the block to de-
crease the stride between consecutive accesses, improving
spatial locality. Until now the use of packing has been limited
to handcrafted GEMM implementations and to auto-tuning
techniques. Existing loop optimizers, such as Polly and Pluto,
either only apply packing to GEMM computations (Polly),
or not at all (Pluto). This work proposes GPAT, a generalized
packing analysis and code transformation that applies pack-
ing, when beneficial, to a generic input loop nest. GPAT is
implemented in the Affine dialect of MLIR and evaluated on
Polybench/C. GPAT applies packing to benchmarks beyond
GEMM and obtains significant speedup compared to current
loop optimizers that do not apply packing.

CCS Concepts: • Software and its engineering → Com-
pilers.
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1 Introduction
In large part, the success of numerical computations is

due to the development of very efficient linear-algebra li-
braries [12, 29, 32]. A sophisticated implementation of a
General Matrix Multiplication (GEMM) kernel that relies
upon two transformations – tiling and packing – is key to
libraries’ efficiency [9, 10]. Tiling breaks large matrices into
smaller blocks that fit in each level of the memory hierarchy.
Packing creates a copy of such blocks while reorganizing
their elements in the order in which each element is used
by computations. Packing leads to higher spatial locality
and higher cache hit rates. Higher spacial locality increases
the likelihood that consecutively accessed data belongs to
the same memory page. Therefore, packing also reduces the
number of Translation Lookaside Buffer (TLB) entries
required to address elements within a given loop-nest level.
While tiling is widely available as a transformation pass

in loop optimizers, packing is almost exclusively used in
handcrafted matrix-multiplication implementations. The ab-
sence of packing as a general compiler transformation is
likely because, until now, the requirements to identify a prof-
itable packing opportunity for general computations had not
been defined. For instance, a modular packing pass based on
principled cost-benefit analysis for general computations is
absent from loop transformations in TVM [4], Halide [25],
the Affine dialect of MLIR [18], and Polyhedral frameworks
(e.g. Pluto [2] and Polly [11]), and optimizing compilers in
general. TVM and the MLIR Affine dialect support explicit
memory transfers designed for software-controlled memory
buffers found in GPUs and other accelerators. Bondhugula
demonstrates that for such transfer operations to emulate
packing, one must follow a pre-defined strategy that does
not generalize [1]. Polly may apply packing when it success-
fully pattern matches a computation to determine that it
is a matrix multiplication but it cannot apply packing to a
general computation. Moreover, Polly’s pattern matching is
limited to specific ways of writing the matrix multiplication
code [6]. Wu et al. [31] can apply packing via a pragma direc-
tive added to C code. Such pragma must be added manually.
Overall, the use of packing is restricted to the handcrafting
of specific computations such as tiled matrix multiplication
in predefined loop orderings or auto-tuning techniques.
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There are two central ideas in this paper. First, a compiler
framework can implement a modular packing strategy that
applies packing to a generic loop nest, thus extending pack-
ing beyond handcrafted matrix-multiplications. Second, an
analytical-model approach to determine what and where to
pack is a viable alternative to trial-and-error auto-tuning of
packing. This work proposes Generalized Packing Anal-
ysis and Transformation (GPAT) based on these ideas.
GPAT’s analysis is inspired by the use of packing described
by Goto et al. [9] to optimize GEMM and GPAT’s code trans-
formation builds upon the infrastructure created by Bond-
hugula [1] to experiment with packing in GEMM.

The main contributions of this work are the following:
• GPAT: a modular compile-time packing analysis and trans-
formation that uses an analytical model to decide when
packing reduces TLB misses and enables vectorization
through data-layout changes (Section 3)

• An open-source artifact that implements GPAT in the
MLIR Affine dialect (Section 3.5)

• The evaluation of GPAT. It shows that GPAT’s heuristic se-
lects good combinations of packings, achieving significant
speedup over the Polly [11] and Pluto [2] loop optimiz-
ers in the Polybench [24] benchmark suite. Additionally,
the evaluation demonstrates that GPAT is orthogonal to
tiling; it can apply packing and improve the performance
of loop nests with or without a prior tiling transformation
and it does so when a loop nest is tiled by two different
approaches at multiple tiling factors (Section 4).

2 Background
Many computations access data that is not contiguous in

memory, such as a submatrix within a larger matrix, lead-
ing to poor spatial locality. Besides poor cache performance,
such an access pattern may stress the virtual memory sys-
tem by requiring that virtual addresses belonging to many
virtual pages be translated within a single loop nest. Address
translation is made efficient through the use of a TLB, which
is a cache for address translations. However, the limited num-
ber of TLB entries may not be enough to translate all the
addresses accessed in a loop nest. Therefore it is crucial to
generate code that either avoids or reduces the number of
cache and TLB misses to obtain good performance. Packing
is a technique that can increase cache and TLB utilization.
Packing consists of making an in-memory copy of a sub-

tensor from an 𝑛-dimensional tensor. A subtensor is a block
of tensor elements, typically non-contiguous in memory.
During the packing copy, the order of subtensor elements
may be rearranged to make consecutively accessed elements
contiguous in memory. Packing a non-contiguous subtensor
results in three important benefits. First, fewer cache self-
interference misses1 occur when accessing the packed sub-
tensor because contiguous elements are less likely mapped to
the same cache set [16]. This benefit is the main motivation
1 Commonly referred to as conflict misses.

in earlier works that proposed packing because, at that time,
caches had low associativity. In these earlier works, packing
is referred to as data copying because no data-layout change
is needed to obtain this effect [28]. Second, and currently
more relevant as problem sizes grow, fewer TLB entries are
required for the address translations of a packed subten-
sor. Third, better vectorization. By employing data-layout
changes in the packing copy, packing can enable the compiler
to use vector instructions to access the packed subtensor,
as its elements are rearranged to the order in which they
are accessed. Vectorization would be much less efficient if
the elements were copied into the packed subtensor in the
same order as they were stored in the original tensor. As the
rearranged elements follow access order in memory, stream
prefetching may also become more effective.

Goto et al. [9] describe high-performance CPU implemen-
tations of GEMM, where packing is a crucial step. Packing is
applied to reduce the number of TLB entries required by sub-
matrices such that the TLB does not become a limiting factor
for the computation. In their work, packing also changes the
data layout of the packed submatrices so that consecutive
operations access consecutive data in memory. As a result,
data is more easily loaded to registers due to the increased
spatial locality. Many state-of-the-art linear algebra libraries
such as Eigen [12], OpenBLAS [32], and BLIS [29] follow the
strategy described by Goto et al. in their implementations of
GEMM. Aside from a few works where packing can be ap-
plied as a user directive or where it is part of an auto-tuning
strategy [1, 30, 31], these library implementations of GEMM
are the extent of current packing use.

Though packing offers the benefits previously mentioned,
deciding which tensors to pack and at which point in a loop
nest to place the packing of a tensor is difficult. Moreover,
if the computation modifies the packed subtensor, then it
needs to be unpacked — copied back to the original tensor.
Unpacking creates an additional copying overhead. The copy-
operation overhead can outweigh the benefits of packing.
Thus, packing should only be applied when its performance
gains are greater than such overhead. As remarked by Lam
et al. [16] and Temam et al. [28], the copying overhead of
an unrestricted packing algorithm that packs all tensors can
easily outweigh its gains.

3 Packing Optimizing Analysis
The main contribution of this work is GPAT, a packing

analysis and code transformation that generalizes the idea of
packing. In contrast to existing packing approaches, GPAT is
more robust to changes in tiling strategy and loop order. In
fact, to GPAT, loop tiling is an optional prior transformation:
any computation with loop-nest structures of at least depth
three may contain valid packing opportunities. Nevertheless,
prior loop-tiling transformations may introduce additional
packing opportunities for GPAT to identify.
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3.1 Preliminary Definitions and Notation
The presentation of GPAT assumes an intermediate rep-

resentation (IR) where a for loop is represented as an opera-
tion encoding the induction variable (IV), upper and lower
bounds, increment step, and body of the loop. The body of
a for-loop operation may contain other operations, includ-
ing other for loops. In this IR, a for loop is a single-entry
single-exit (SESE) region in a control-flow graph.
In this IR, a contiguous region of memory can be rep-

resented as a 𝑛-dimensional tensor. A tensor element is ac-
cessed by indexing each of its dimensions separately with the
elements of an index tuple. The address of a tensor element
is given by the sum of the tensor base address and a linear
combination of the index and stride for each dimension. Each
element of an index tuple can be an affine expression of loop
IVs, constants, and variables in the program. The shape of a
tensor is defined by the length of each of its dimensions.

The footprint of a tensor is the number of bytes the tensor
occupies in memory; it is calculated by the product of the
length of each dimension and the size in bytes of the element
data type of the tensor. The working set of a tensor 𝑇 in a
for-loop 𝐿 is a subtensor formed by the set of elements of𝑇
that are accessed inside 𝐿.
Packing a tensor 𝑇 in a target loop 𝐿 involves three steps:

(i) Insert a packing loop immediately before the entry block
of the SESE region of 𝐿. This packing loop creates 𝑇 ′, a
tensor containing a copy of the working set of 𝑇 in 𝐿, and
may change the data layout of the working set of 𝑇 in 𝑇 ′.
(ii) Substitute all memory references to𝑇 by references to𝑇 ′

in 𝐿. (iii) If there are writes to 𝑇 ′, then insert an unpacking
loop immediately after the exit block of 𝐿. Unpacking copies
the elements of 𝑇 ′ to their respective positions in 𝑇 . A loop-
tensor pair (𝐿,𝑇 ) represents a packing candidate.

The packing loopmay swap elements of the indexing tuple
of𝑇 ′ to change the order inwhich elements are copied into𝑇 ′.
This data-layout change is represented with a permutation
vector of size 𝑛, where 𝑛 is the dimensionality of 𝑇 . The
identity permutation vector [0, 1, 2, . . . , 𝑛 − 1] represents no
data layout change. Each element 𝑖 corresponds to the 𝑖-th
dimension of tensor 𝑇 . Swapping elements of the identity
creates a data-layout-altering permutation.
3.2 Analysis Constraints

Consistent with the practice inwidely adopted IRs, GPAT’s
analysis requires for loops to be Static Control Parts (SCoPs)
[15] of a program and the shape of tensors to be statically
known. The idea is that an earlier pass can convert compu-
tations with unknown tensor shapes into fixed-sized tensor
tiles — a practice made more relevant with the proliferation
of hardware accelerators that compute on fixed-sized op-
erators. Given these requirements, the shape of a tensor’s
working set in a loop is also statically known.

1 // 𝐴80𝑥100𝑥50
2 for(i=0; i<50; i++) // 𝐴80𝑥100𝑥1
3 for(j=0; j<60; j++) // 𝐴80𝑥100𝑥1
4 for(k=0; k<80; k++) // 𝐴1𝑥100𝑥1
5 for(l=0; l<100; l++) // 𝐴1𝑥1𝑥1
6 a = load A[k][l][i]

7 b = load B[l][k][j]

8 prod = mul a, b

9 c = load C[i][j]

10 sum = add c, prod

11 store sum, C[i][j]

Listing 1. 3D Tensor Contraction:𝐶𝑖, 𝑗 =
∑
𝑘

∑
𝑙 𝐴𝑘,𝑙,𝑖 × 𝐵𝑙,𝑘, 𝑗 .

On the right, the shape of the working set of A is shown
outside of the loop nest and inside each loop.

1 for(i=0; i<50; i++)

2 A’ = alloc(1x80x100) // 𝐴′
1𝑥80𝑥100

3 for(m=0; m<80; m++)

4 for(n=0; n<100; n++)

5 tmp = load A[m][n][i]

6 store tmp, A’[0][m][n]

7 for(j=0; j<60; j++) // 𝐴′
1𝑥80𝑥100

8 for(k=0; k<80; k++) // 𝐴′
1𝑥1𝑥100

9 for(l=0; l<100; l++) // 𝐴′
1𝑥1𝑥1

10 a = load A’[0][k][l]

11 b = load B[l][k][j]

12 prod = mul a, b

13 c = load C[i][j]

14 sum = add c, prod

15 store sum, C[i][j]

Listing 2. Packing applied to 3D Tensor Contraction. On the
right, the working set of A’ is shown.

3.3 Running Example
The 3-dimensional tensor contraction represented in a

pseudo-IR code in Listing 1 exemplifies GPAT in this section.
In this non-tiled example, the input tensors are A80×100×50,
B100×80×60, and C50×60, where C was initialized to zero.

Listing 2 shows a packing transformation applied to List-
ing 1. Loops are referred to by the name of their IV, e.g. for𝐽
is the loop in Line 3 of Listing 1. Listing 2 highlights the pack-
ing loop applied to tensor A targeting for𝐽 and the load to
the packed subtensor A’. This packing applies a data-layout
change by reordering the index tuple of A’ in Line 6 from
[m][n][0] to [0][m][n] corresponding to the permutation
vector [2,0,1] (from the identity [0,1,2]). The change is
trivial because the length of the outermost dimension of A’ is
1. As a result, A’ has a shape of (1, 80, 100). The working-set
shape of A is shown for every for loop in Listing 1, similarly,
the working-set shape of A’ is shown in Listing 2.
3.4 Analysis Overview
GPAT’s analysis receives a loop nest as input. In a given

loop nest, multiplying the number of contained for loops
by the number of tensors accessed gives the total number of
possible packing candidates. A tuning strategy would have to
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consider all subsets of the set of packing candidates, exclud-
ing redundant ones. A packing candidate subset is redundant
if two candidates pack the same tensor in different target
loops, but one loop contains the other. In contrast to tuning,
GPAT’s analysis statically determines its output: a profitable
selection of packing candidates and their respective data-
layout changes if any. To do so, GPAT uses the following
architecture-specific parameters: (i) Size of the L1, L2, and L3
caches (KiB); (ii) Number of L1 data TLB entries and (iii) Size
of a page addressed by these entries (KiB).
GPAT’s analysis has four phases. The first and second

filtering phases narrow the pool of packing candidates, for-
warding only candidates that exhibit data reuse and maintain
cache residency to the subsequent phases. The third phase,
goal fulfillment, forwards remaining candidates that fulfill
at least one of two packing goals: (i) innermost access stride
reduction and (ii) TLB miss reduction. These goals prevent
GPAT from selecting candidates for which packing benefit is
outweighed by packing overhead. Though all candidates in
the resulting pool fulfill the analysis goals, certain candidate
subsets may contain redundant candidates. Thus, the final
selection phase defines a cost-benefit function and greed-
ily selects a non-redundant candidate subset from Phase 3
candidates that maximize cost-benefit.

Phase 1. Data Reuse Filter. This phase eliminates a can-
didate (𝐿,𝑇 ) if the packing-loop-created subtensor 𝑇 ′ is not
reused across iterations of 𝐿; a requirement to overcome
packing-loop overhead. If an access is invariant to the IV of
loop 𝑙 , the same set of elements are accessed on each iteration
of 𝑙 and are reused.
This filter checks if all memory instructions related to

tensor𝑇 in loop 𝐿 are invariant to the IV of 𝐿. A flow analysis
is required to determine loop invariance because an IV 𝑖2 may
depend on another IV 𝑖1 if the loop that defines 𝑖2 uses 𝑖1 in its
lower or upper bound expressions. This dependency relation
is transitive: an IV 𝑖3 that depends on 𝑖2 also depends on 𝑖1.
Such dependencies must be checked for the IVs of each child
loop of 𝐿 — a common case on tiled loops. Thus, a subtensor
𝑇 ′ of a tensor 𝑇 is reused in the iterations of a target loop 𝐿

if and only if the index tuple of each instruction accessing𝑇 ′

depends neither on 𝐿’s IV nor any IV depending on 𝐿’s IV.
Listing 1 has four candidates (𝐿,𝑇 ) that exhibit reuse:

{(for𝐽 , A), (for𝐼 , B), (for𝐾 , C), (for𝐿, C)}. In the (for𝐽 , A)
candidate, which is packed in Listing 2, all elements of A’
are reused in every iteration of for𝐽 because the load to A
in Line 6 of Listing 1 is invariant to the IV 𝑗 .
This phase is conservative and has a simple notion of

reuse; certain cases where it may be beneficial to pack could
be filtered out. However, the modularity of the design allows
for future integration of a more sophisticated reuse analysis.

Phase 2. Cache Residency Filter. The second step of
GPAT’s analysis is to filter packing candidates (𝐿,𝑇 ) based
on cache residency. If a packed tensor 𝑇 ′ is reused in 𝐿, but

there is not enough space available in the cache, 𝑇 ′ could be
evicted between iterations of 𝐿, resulting in cache misses and
increased access latency to𝑇 ′. To avoid this, the second filter
eliminates candidates whose packed tensor cannot remain
cache resident while in use.
Modern CPUs have multiple levels of cache. A packed

tensor 𝑇 ′ may remain resident in one level while evicted in
another. GPAT sets a target cache level for its input loop nest
where packed tensors should remain resident. The target
cache level is selected as the largest cache that cannot store
the total footprint of all tensors accessed in the loop nest.
For example, the total footprint of the tensor contraction in
Listing 1 is the sum of the footprints of A, B, and C. Lastly,
if the total footprint fits in L1, then all data can remain in
L1 during the computation. In this case, TLB misses are not
likely limiting the performance and packing is not applied.

A candidate’s packed tensor 𝑇 ′ can remain cache resident
if the target cache is large enough to hold: (i) the footprint
of 𝑇 ′ and (ii) twice the footprint of the working set of all
other tensors in one iteration of the target loop 𝐿. The reuse
distance between two accesses to the same element of 𝑇 ′ is
the number of accesses in one iteration of 𝐿. After completing
the number of accesses in this distance, elements of 𝑇 ′ are
brought back to cache. This distance indicates that having
space in the cache for 𝑇 ′ and the working set of all other
tensors in one iteration of 𝐿 would ensure the residency of
𝑇 ′. However, unlike the working set of 𝑇 ′, the working set
of the other tensors may change between iterations of 𝐿.
Accesses to 𝑇 ′ can also be interleaved with accesses to other
tensors. As a result, in a least recently used (LRU) cache
policy, elements of 𝑇 ′ could be the least recently used. Thus,
twice the footprint of the working set of all other tensors
ensures that 𝑇 ′ can remain resident because this is enough
space not only for the 𝑖-th iteration, but also for the (𝑖 +1)-th
iteration. GPAT generalizes Mitchell et al.’s idea on ensuring
residency for tiled GEMM. [21].

Loop 𝐿 may have multiple immediate child loops and con-
ditional statements. Tensor accesses may belong to mutually
exclusive blocks of code selected by a conditional statement.
For those cases, the GPAT’s analysis may over-approximate
the required cache size to ensure residency. However, even
being conservative in this phase, GPAT shows substantial
speedup for 2mm benchmark tiled with Polymer, which has
mutually exclusive if conditions (see Section 4.3.1).
Assume Listing 2 targets the L2 cache. Elements of the

packed tensor A’ have a reuse distance equivalent to the
number of accesses in one iteration of the target loop for𝐽 .
In one iteration, all elements of A’, and aworking set of shape
B100×80×1 and C1×1 are accessed. To ensure L2 residency of A’
throughout the iterations of for𝐽 , the L2 should have space
for A’ and twice the mentioned working-set footprint of B
and C. Such is the footprint of two for𝐽 iterations.
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Phase 3. Goal Fulfillment. After the filter phases, GPAT’s
analysis identifies which Phase-2-passing candidates fulfill
at least one of the two goals detailed in the following para-
graphs. Goal fulfillment indicates that selecting a candidate
will benefit performance.

Prior to verifying goal fulfillment, GPAT’s analysis checks
each candidate for opportune data-layout changes to mini-
mize the stride of consecutive accesses to the packed tensor.

The stride-minimizing data-layout change of an access is
obtained by: (i) listing the depth of loops that create the IVs
used in the index tuple of the access; (ii) saving the maximum
depth for each element of the index tuple and (iii) permuting
the elements of such index tuple so that elements with lower
loop nest depths precede elements with higher depths. This
permutation can be applied to the packing loop of 𝑇 ′, and
consequently to all accesses to 𝑇 ′, to change its data layout.
The permutation vector representing this data layout change
is saved for the candidate. If no permutation is needed, or if
the permutation order that minimizes stride is not the same
for all accesses to 𝑇 ′, the permutation vector is the identity.
The permutation of 𝐴 in Listing 2 is discussed in Section 3.3.

Innermost Access Stride Reduction. Reducing the stride
between iterations of innermost loops improves cache local-
ity and can enable vectorization. Thus, this goal is fulfilled
by a candidate if a data-layout change of 𝑇 ′ reduces stride
between accesses to 𝑇 ′ in two consecutive iterations of an
innermost loop. Stride reduction between iterations of non-
innermost loops mainly reduces the number of TLB entries
required to access𝑇 ′ and is considered in the next goal. Addi-
tionally, to fulfill this goal a candidate requires the innermost
loops to access the equivalent of at least two cache lines of
packed tensor elements. This empirically-driven criterion is
in place to avoid retaining candidates whose performance
benefit is outweighed by packing overhead.
In the running example, the packing candidate applied

to Listing 2 changes data layout of A’ with a permutation
vector [2, 0, 1]. Contrasting with the 50-strided accesses to
A across iterations of the innermost loop for𝐿 in Listing 1,
the data-layout change of A’ ensures that accesses have unit
stride across consecutive iterations of for𝐿 in Listing 2.

TLB Miss Reduction. A loop may suffer from TLB ca-
pacity misses if the number of entries needed to access data
within the loop exceeds TLB capacity. A packed subtensor,
with a possible data-layout change, requires less TLB entries
to resolve address translations. This goal is fulfilled if a can-
didate’s packed subtensor reduces the number of required
L1 data TLB (dTLB) entries below or to L1 dTLB capacity.

This phase uses three functions: (i) wSS(t, l) returns the
working-set shape of tensor t in loop l; (ii) perm(PV, s) ap-
plies the permutation vector PV to a shape s; (iii) estTLB(𝑠𝑤𝑠,
𝑠) estimates the number of TLB entries needed to address
a working set of shape 𝑠𝑤𝑠 in a tensor of shape 𝑠 . Using

1 def improvesTLB(L, T, PV, TLBEntries):

2 packedTShape = perm(PV, wSS(T,L))

3 for l in {L, child loops of L}:

4 Packing = 0, NoPacking = 0

5 for t in {tensors accessed in l}:

6 Entries = estTLB(wSS(t,l), shape(t))

7 NoPacking += Entries

8 if t == T:

9 Packing += estTLB(perm(PV,wSS(t,l)), packedTShape)

10 else:

11 Packing += Entries

12 if NoPacking > TLBEntries and Packing <= TLBEntries:

13 return true

14 return false

Listing 3. Function that checks if a packing candidate
achieves the goal of reducing TLB misses.

these functions, Listing 3 describes a Boolean function to
determine goal fulfillment.
For a candidate (𝐿,𝑇 ) with permutation vector 𝑃𝑉 in an

L1 dTLB with TLBEntries entries, for 𝐿 and each of its
child loops, Listing 3 estimates the number of TLB entries
needed to translate the working set of tensors accessed — for
both packing and not packing the candidate. The variables
NoPacking and Packing store the TLB entry estimates for
each of these loops. Only the number of TLB entries required
to access𝑇 is affected by packing (𝐿,𝑇 ). For all other tensors,
this number is computed in Line 6 by estimating the entries
needed to access a working set of the shape of t in l, given
t’s shape is shape(t).
Line 9 approximates the number of TLB entries required

to access 𝑇 in a loop if the working set of 𝑇 in 𝐿 is packed
into 𝑇 ′. In this line, both shape parameters to estTLB are
permuted by PV of the candidate. The second parameter is
the shape of 𝑇 ′ instead of the shape of 𝑇 .
For example, in Listing 1, A has a working set of shape

A1×100×1 in for𝐾 , whereas, in Listing 2, A’ has a working set
of shape A’1×1×100 in the same loop. Recall that the shape
of A is A80×100×50, and that the candidate packed in Listing 2
is (A, for𝐽 ). Assume an L1 dTLB that contains 64 entries,
and for simplicity, assume that each entry can address 50
elements of A. In this setting, 100 TLB entries are needed
to access the working set of 𝐴 in for𝐾 , whereas by packing
A into A’ the same working set requires only two entries.
This example would be run in the improvesTLB function of
Listing 3 when L is for𝐾 and 𝑇 is A. The TLB entries of the
other tensors would also need to be estimated to check the
if condition in Line 12.

Phase 4. Greedy Selection To determine which packing
candidates to select, GPAT ’s final phase performs a cost-
benefit analysis for each candidate that fulfills at least one
of the goals in Phase 3. The benefit of a candidate is quan-
tified by the reduction in the number of TLB entries from
packing𝑇 ′ and from the reuse of𝑇 ′. The benefit is the linear
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combination of the TLB entry reduction for every loop in
which Line 12 in Listing 3 evaluates to true and the number
of times the corresponding loop is executed. Moreover, the
cost estimates packing overhead with the footprint of 𝑇 ′ —
and if 𝑇 ′ is stored to, twice the footprint of 𝑇 . GPAT treats
the ratio of benefit to cost of each candidate as a proxy for
performance improvement, providing a means of sorting
candidates from most to least beneficial. If two candidates
have an equivalent cost-benefit ratio, GPAT resolves order-
ing by comparing the depths of the target loops; a smaller
depth persists 𝑇 ′ for more of the computation and suggests
higher reuse of elements in 𝑇 ′. Once sorted, GPAT iterates
through the list, greedily selecting candidates. To be selected,
a candidate: (i) cannot be redundant with respect to the set
of committed candidates; (ii) must continue to fulfill either
of the goals in Phase 3 when considered with the set of com-
mitted candidates. To verify (ii), before selecting a candidate,
the improvesTLB function is rerun with the knowledge of
the committed candidates.
3.5 GPAT in the MLIR Affine Dialect
MLIR [18] is a recent addition to the LLVM compiler in-

frastructure project [17]. Its goals are to extend the levels of
representation possible in LLVM and to be a common frame-
work for high-level abstractions. MLIR is a combination of
IR dialects, as opposed to LLVM’s general-purpose IR. Affine
is one of such dialects, providing an IR that is amenable
to polyhedral analysis by preserving high-level loop-nest
structures that are available in languages such as C.

Most high-level concepts used in the GPAT’s analysis de-
scription are present in the Affine dialect. Tensors are repre-
sented by memrefs, which are accessed through index maps.
for-loops are first-class operations. As GPAT’s implementa-
tion builds upon Affine’s data copy generation transforma-
tion pass, utility functions that compute tensor shape and
footprint, and the working set shape of a tensor in a loop
are already defined. Like Affine’s loop tiling, GPAT’s Affine
implementation is available as a modular pass within the
infrastructure and will be available as an artifact.

4 GPAT Evaluation
This section evaluates GPAT using its MLIR Affine im-

plementation. As a modular compiler analysis and transfor-
mation, GPAT applies packing to varied input loop nests,
showing the generality of the approach beyond GEMM. The
evaluation shows that GPAT can be applied to the output
of the state-of-the-art Pluto [2] loop optimizer and obtain
considerable speedup. Moreover, even when applied to non-
optimized loop nests, or only tiled nests, GPAT can surpass
the performance of the Polly [11] loop optimizer.

The evaluation addresses the following questions:
1 Can GPAT select an effective combination of packing
candidates?

2 How does the performance of GPAT compare to previous
loop optimization approaches?
3 Is GPAT robust to prior loop transformation strategies?
4 Is GPAT general? For instance, can it discover packing
opportunities in computations other than GEMM?
5 Can GPAT reduce TLB pressure and increase opportuni-
ties for vectorization?
4.1 Setup

The machine used in the evaluation of GPAT runs Ubuntu
20.04.1 (Kernel 5.15.0-46) and is equipped with an Intel i5
8500 locked at 3.0GHz and 32GiB of DDR4 memory. The
evaluation benchmarks arewritten in the C language; namely,
programs from the PolyBench/C2 benchmark suite [24]. Poly-
Bench/C has thirty numerical computations including lin-
ear algebra kernels and solvers, data mining algorithms,
and stencil computations. Its main objective is to provide a
set of representative computations to evaluate polyhedral-
optimization approaches. Many of the programs have deep
loop nests that provide a suitable input for evaluating GPAT.
All the experiments use the large dataset size of Polybench/C.
At the time of writing, there is no mature tool that compiles
C/C++ programs to MLIR. This work employs Polygeist3, a
research C/C++ frontend that generates MLIR SCF & Affine
Dialect code [22] to compile C programs to MLIR.
Due to MLIR’s current lack of parallel code generation

mechanisms, each experiment was single-threaded. Multi-
threaded code could affect GPAT’s decisions, but it is not
explored at this time.
4.2 Experimental Methodology

The results presented in Section 4.3 used theGoogle Bench-
mark4 tool [8] to collect the average execution time of 100
executions of each evaluated approach. Section 4.3 employs
the above methodology to evaluate: (i) Polymer5: an MLIR
tool that extracts SCoPs of a program and optimizes the
loops within each SCoP using Pluto [22], a polyhedral op-
timizer. The goals of Pluto are to improve locality and par-
allelism through loop-nest transformations including loop
interchange, loop fusion, loop skewing, loop reversal, and
loop tiling; (ii) GPAT6: packing applied by GPAT, which
takes Polymer-optimized IR as input and (iii) Individual
Packings: packing applied individually to candidates that
exhibit reuse; identified by Phase 1 of GPAT’s analysis in the
IR optimized by Polymer. These approaches were evaluated
across a range of tiling factors 𝑡 = 8, 10, 12, . . . , 512 that were
supplied to Polymer. All loops shared the same tiling factor.
Section 4.4 employs a similar methodology but uses the

built-in Polybench/C timing facilities. The following ap-
proaches are evaluated in Section 4.4: (i) Polly7: an LLVM
IR polyhedral loop optimizer [11]; (ii) Clang -O3: Clang7
compilation with its optimization level 3 (-O3); (iii) Polymer;
2 Version 4.2.1. 3 Commit 6ba6b7b8ac07c9d60994eb46b46682a9f76ea34e.
4 Version 1.6.1. 5 Commit 4bb0aa2ff43f70bb3f13f221ebcf9f76fb41fa76.
6 Commit packing-v0.5 7 Version 14.0.1
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(iv) Affine: the MLIR Affine dialect tiling pass and (v) GPAT:
packing applied by GPAT, with either Polymer-optimized or
Affine-tiled IR as input. With Affine, rather than running
benchmarks at each tiling factor, the tiling pass selects a
factor based on a target cache-size parameter; in this case,
the sizes for the L1, L2, and L3 caches. Polly does not take
an input tiling factor, so it is run with a single configuration.
Because GPAT is orthogonal to tiling, the size and shape

of tiles are decided prior to GPAT. Therefore, the graphs only
show a result for GPAT in the tile sizes that it determined
that packing should be applied.
For all evaluated approaches the floating-point contract

used is fast-math, pointers are declared as non-aliases, and
the compilation flags used are -march=native -flto. With-
out declaring pointers as non-aliases, GPAT would have a
slight advantage as a compiler can easily determine that a
packed tensor is not an alias. For Polly, pattern-matching-
based optimizations are disabled and cache associativity and
size information are passed as parameters. GPAT uses the
architecture-specific parameters described in Section 3.4.
4.3 Packing Selection Evaluation

This experiment shows the execution time of GPAT and
Individual Packings relative to Polymer to address 1 . For
each tile size, the performance range from the lowest to the
highest performing Individual Packings is shown as the
light orange area in the graphs. The higher end of the ranges
in Figures 1a and 1c indicate that most packing candidates
in these benchmarks are beneficial for performance. The
performance of GPAT is shown by the orange squares in the
graphs for the tile sizes for which GPAT’s analysis deemed
packing to be beneficial. GPAT may select a combination of
packing candidates, thus falling outside of the range of Indi-
vidual Packings. The performance obtained by combining
individual packing candidates answers 1 affirmatively for
most, but not all, tile sizes.
4.3.1 2mm. Figure 1a reports on the 2mm benchmark
which computes two matrix multiplications and uses a total
of five matrices. The second multiplication has an operand
that is the result of the first matrix multiplication. 2mm can
be expressed as 𝐷𝑀×𝑁 = 𝛽 ∗ 𝐷𝑀×𝑁 +𝑇𝑀×𝑁 ∗𝐶𝑁×𝑁 , where
𝑇𝑀×𝑁 = 𝛼 ∗𝐴𝑀×𝐾 ∗ 𝐵𝐾×𝑁 . Although matrix multiplication
is the core of this benchmark, 2mm behaves differently from
GEMM because there is a data dependence between the two
matrix multiplications. After 2mm is optimized by Polymer,
the two level-3 loop nests that represent the two matrix mul-
tiplications are tiled, interchanged, and partially fused into
two loop nests. The first loop nest is a level-4 nest that initial-
izes 𝑇𝑀×𝑁 with zeros and computes 𝐷𝑀×𝐿 = 𝛽 ∗ 𝐷𝑀×𝐿 . The
second loop nest is a tiled level-6 nest that fuses the computa-
tion of𝑇𝑀×𝑁 = 𝛼 ∗𝐴𝑀×𝐾 ∗𝐵𝐾×𝑁 and 𝐷𝑀×𝐿 +=𝑇𝑀×𝑁 ∗𝐶𝑁×𝑁 .
This second loop has three mutually exclusive if conditions
in its level-3 loop. GPAT does not find any profitable opportu-
nities in the first loop nest, but in the second, it identifies 13

individual packing candidates that pass Phase 1. Polymer’s
optimization trades a unit-strided access order between it-
erations of its innermost loops for matrix B to fuse the two
multiplications. The fused loop has multiple opportunities
for packing that change the data-layout of 𝐵, making its
accesses unit strided in the innermost loops. Additionally,
many TLB entries are needed to address the tiles of the five
matrices involved in the fused loop. Thus, packing some of
these tiles can also be beneficial to avoid TLB misses. Overall,
GPAT packed from 0 to 4 of the 13 individual packing depend-
ing on the tile size. Figure 1a, indicates an affirmative answer
to 1 : for the majority of tile sizes, GPAT selects an effective
set of packing candidates, surpassing the performance of
Individual Packings and Polymer.

The slowdown observed with tile sizes between 8 and 36
is attributed to the LLVM loop unrolling pass. When loop
unrolling is enabled at the lower tiling sizes, there is a higher
frequency of memory spills due to increased register pres-
sure. When disabling loop unrolling, the observed speedup
follows the trend of the higher tiling sizes. Of the thirteen
candidates that compose Individual Packings, GPAT’s code
transformation that relies on MLIR Affine’s infrastructure
fails for two candidates because it computes incorrect loop
bounds, these candidates were omitted from the graph.
4.3.2 gemm. Figure 1b reports on the gemm benchmark,
calculating a singlematrixmultiplication expressed as𝐶𝑀×𝑁 =

𝛼 ∗𝐴𝑀×𝐾 ∗𝐵𝐾×𝑁 + 𝛽 ∗𝐶𝑀×𝑁 . Polymer tiles and interchanges
loops, producing well optimized code that already ensures a
unit-strided access order to the innermost dimension of its
tiles. Thus, no data-layout changes need to be applied to the
packing candidates of this benchmark. For this benchmark,
GPAT selects packing candidates based only on reducing
TLB misses and Figure 1b shows orange squares only for
points where GPAT determines that a beneficial TLB-entry
reduction can be achieved. For most tiling sizes for which
GPAT applied packing, a tile of matrix B is packed. Given the
loop ordering used by Polymer, the performance range of
Individual Packings shows that for some tile sizes, packing
only deteriorates performance in gemm. Even so, GPAT sur-
passes the performance of Polymer on the majority of tile
sizes for which it applied packing. In Figure 1b, the orange
squares of GPAT are all within the range of Individual
Packings because GPAT selected only one candidate.
4.3.3 gemmwith BLIS Loop Ordering. Figure 1c reports
on the GEMM benchmark using the loop nest ordering sug-
gested by the BLIS framework [29] — different from the
loop order generated by Polymer and evaluated in the previ-
ous section. Such loop order is based on the work by Goto
et al. [9], and it is used in BLIS in combination with pack-
ing to optimize gemm. GPAT’s performance is shown w.r.t.
BLIS loop ordering and without packing in Figure 1c. GPAT
found data-layout transformation opportunities that result
in simpler memory access patterns — by reducing strides of
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(a) 2mm (b) gemm (c) gemm with BLIS Loop Ordering

Figure 1. Packing selection evaluation graphs

consecutive accesses — in the innermost loop. In addition to
reducing the number of TLB entries to address a tile, GPAT
obtained consistent performance improvements across tiling
sizes. Examining this alternative loop nesting order revealed
better opportunities for packing. The contrasting results of
Figure 1b and Figure 1c highlight the importance of building
a modular packing compiler pass that is agnostic to opti-
mization decisions made by other compiler passes, and thus
indicate an affirmative answer to 3 .
4.3.4 TLBMisses andVectorization. To address 5 , hard-
ware performance counterswere collected on the 2mm bench-
mark from the experiment outlined in Section 4.3.1. For each
tile size in the experiment, the analysis used the Linux perf
tool to collect counters for: (i) L1 dTLB load misses, more
precisely, L1 dTLB load misses that were a hit in the L2 TLB,
shown in Figure 2; and (ii) total instruction count, shown
in Figure 3. As opposed to the previous graphs, these fig-
ures show the average counter values for the 100 iterations,
therefore lower values represent fewer L1 dTLB misses or
fewer instructions executed. For a given tile size, Individual
Packings is represented by the highest and lowest value of
the hardware performance counter obtained by an individual
candidate, shown as the light orange area in the graphs.

Through Phase 3’s TLB-aware analysis, GPAT can find and
select packing candidates that lower TLB requirements of
a loop and reduce TLB misses substantially. Figure 2 shows
that the reduction in TLB misses for the candidates selected
by GPAT is more significant than for Individual Packings.

The packing and unpacking of buffers increases the num-
ber of instructions, but by transforming non-contiguous
accesses into contiguous accesses — through data-layout
changes within the packed buffer— GPAT is able to better
utilize CPU vector instructions, leading to a decrease in total
instruction count. Specifically, in 2mm, increased vectoriza-
tion is afforded by the data-layout change of two packing
candidates that pack a tile of matrix B in the second loop nest
of the computation described by Section 4.3.1. GPAT selects
these candidates in most tile sizes, leading to the instruction
count reduction shown in Figure 3.

Figure 2. 2mm L1 dTLB load misses.

Figure 3. 2mm instructions count.

Together, Figures 2 and 3 indicate an affirmative answer to
5 : GPAT can reduce TLB misses and improve vectorization.
4.4 PolyBench Evaluation
This experiment addresses questions 2 , 3 , and 4 by

comparingGPAT against other loop optimization approaches
and evaluating it beyond GEMM. The experiment used two
tiling engines, Polymer and the Affine. Unlike Polymer
which can also apply optimizations such as loop interchange
and loop fusion, the Affine tiling pass can only perform tiling
and is restricted to perfectly nested loops.
This experiment contrasts the results of Polly with the

results of GPAT applied after each of the two tiling engines.
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(a) gemm, baseline time: 446ms (b) 2mm, baseline time: 1673ms (c) 3mm, baseline time: 3140ms

Figure 4. Polybench evaluation on the Polymer tiling engine

Figure 5. Polybench evaluation on the Affine tiling engine.
Baseline times (ms) of each benchmark in the same order of
figure: 1673, 3121, 482, 93, 13919, and 2966

All results are shown as speedup over the baseline Clang
-O3. The experiment considers each benchmark in the Poly-
Bench/C suite and the results are reported for each of the
benchmarks in which GPAT discovers and selects oppor-
tunities for packing. Polybench was engineered as an opti-
mization target for Polly. Therefore, results showing GPAT
outperforming Polly are evidence of GPAT’s effectiveness.
4.4.1 PolymerTiling Engine. As shown in Figure 4, GPAT
identifies optimization opportunities in gemm, 2mm and
3mm. For 2mm,GPAT identifies opportunities for data-layout
changes after a partial loop fusion performed by Polymer
(Section 4.3.1). The code generated with GPAT is consistently
faster than the code generated by Polly, which optimizes for
data access pattern but does not apply data-layout transfor-
mations: in 2mm there is no way to reduce the stride of all
tensor accesses only by applying loop interchange. Polly is
optimized well for gemm. Still, GPAT outperforms Polly at

multiple tiling sizes by reducing the number of TLB entries
required to access gemm’s inputs (Section 4.3.2).
The 3mm benchmark computes a matrix multiplication

(𝐺𝑀×𝐿 = 𝐸𝑀×𝑁 ∗ 𝐹𝑁×𝐿), where each operand matrix is itself
the result of a matrix multiplication (𝐸𝑀×𝑁 = 𝐴𝑀×𝐾 ∗ 𝐵𝐾×𝑁
and 𝐹𝑁×𝐿 = 𝐶𝑁×𝑃 ∗ 𝐷𝑃×𝐿). Syntactically, this benchmark
contains the computations for both gemm from Section 4.3.2
and 2mm from Section 4.3.1 after optimized by Polymer.
GPAT selects and combines the packing candidates that are
beneficial to both gemm and 2mm into one computation,
achieving the highest speedup overall. Polly fails to reduce
the memory-access stride because it does not apply data-
layout changes. The slower performance for small tile sizes
of 2mm and 3mm are attributed to LLVM’s loop unrolling.
4.4.2 Affine Tiling Engine. Figure 5 shows the results
from applying GPAT to the output of Affine. The label under
each pair of columns indicates the cache level used for the
cache-size parameter in the Affine tiling transformation. An
𝑋 indicates that tiling did not change the output. Results are
reported only for cache-level sizes for which GPAT selected
packing candidates. GPAT identifies packing opportunities in
five benchmarks from the PolyBench suite and in contract3D,
the running example described in Section 3.3.
For gramschmidt, a solver that computes the QR Decom-

position by applying the Gram-Schmidt process to the set of
column vectors in a full-rank input matrix, results exemplify
the generality of GPAT: gramschmidt does not resemble a
GEMM, thus confirming the decoupling of packing from
handcrafted GEMM implementations and affirmatively an-
swering 4 . Moreover, Affine fails to tile contract3D and
gramschmidt, providing evidence that GPAT is independent
of tiling transformations.
GPAT also discovers opportunities in trmm and doitgen,

which are not packed if their loops are optimized by Poly-
mer. These latter observations provide affirmative support
for 3 : GPAT optimizes computations with loop nests if po-
tential benefit is found, regardless of the computation and
prior transformations. The performance of trmm produced
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by Affine tiling is the same as Clang-O3 because it tiles only
one loop. Tiling a single loop — equivalent to strip-mining —
does not affect the overall execution of a loop nest. GPAT im-
proves on the Affine-produced trmm and outperforms Polly
on contract3D and gramschimidt in a similar scenario. How-
ever, solely applying packing to the otherwise unoptimized
trmm is not sufficient to outperform the loop optimizations
— including tiling strategy — that Polly applies.

5 Related Works
Earlier work proposed copying, a simpler version of pack-

ing that does not change data layout. Lam et al. investigate
a copying approach to reduce cache interference misses and
demonstrate its use for matrix multiplication [16]. Never-
theless, as discussed by Lam et al., and later by Temam et
al. [28], copying overhead is not always compensated for
by performance improvements. Temam et al. pioneered a
compile-time technique to determinewhat andwhen to apply
copying [28]. In the same year, Esseghir proposed a Tile-and-
Copy algorithm that couples tiling and copying [7]. However,
these previous works only consider copying to reduce cache
interference. To the best of our knowledge, GPAT is the first
general compiler analysis and code transformation that tar-
gets TLB utilization through packing.

Coleman et al. present a tile-size selection (TSS) algorithm
that decreases cache interferencemisses while avoiding copy-
ing [5]. Their work acknowledges that TLB misses have a
higher performance impact than cache interference misses.
But TSS avoids TLB misses by restricting the size and shape
of tiles, which is not possible for some computations, for
example the fused loop nest of the 2mm benchmark (Sec-
tion 4.3.1). GPAT overcomes this challenge by changing the
packed tensor’s data layout to improve access order. GPAT
also detects cases where most accesses are already contigu-
ous and where packing would have a small, or even negative,
effect, such as for some tile sizes of gemm (Section 4.3.2).
On modern CPUs, cache interference became less signif-

icant when compared to TLB misses due to higher cache
associativity and larger problem sizes [27]. Park et al. ac-
knowledge the importance of TLB misses and present a
mathematical model to estimate TLB utilization in blocked
algorithms [23]. TLB misses are reduced with a novel stor-
age layout, blocked data layout (BDL), which partitions and
reorders sub-blocks of the entire input matrix to ensure mem-
ory contiguity. Different from GPAT, the approach of BDL
is not designed as a compiler transformation. Instead, BDL
is a language-level construct that requires a matrix to be
explicitly constructed in BDL prior to any computation. This
approach restricts computations to a single tiling strategy be-
cause the block size must match the BDL. In contrast, GPAT
finds opportunities and applies packing to𝑛-dimensional ten-
sors regardless of tile size and data layout. GPAT also allows
a tensor to be packed at multiple points in a computation,
having a different data-layout change at each point. Others

recognize the impact of data-layout transformations on the
performance of tensor computations [13, 14]. Nevertheless,
they only consider data-layout changes for the entire tensor
and thus suffer from TLB-miss penalties for large tensors.
Packing is mostly used in high-performance Basic Lin-

ear Algebra Subroutines (BLAS) libraries [12, 29, 32]. A
generic packing interface is exposed by these libraries but
needs to be explicitly used when implementing new opera-
tions. Such a framework limits the use of packing to these
library-supported operations and requires highly special-
ized developers. Such limitations are also recognized by Li
et al. [19]. In particular, Li et al. show evidence that the
approach adopted by all BLAS libraries is not adequate for
tall-and-skinny matrices that arise from convolution compu-
tations [3]. In contrast, GPAT is a general compiler analysis
and transformation that makes packing transparently avail-
able to all programmers — and computations apart from
those in BLAS — thus eliminating the requirement that one
should know how to use packing within specialized libraries.

Uday Bondhugula is a pioneer in attempting to match the
performance of GEMM libraries with compiler-generated
code in MLIR [1]. Bondhugula’s study starts with a naïve
hand-written implementation of GEMM in MLIR Affine di-
alect. The level-3 loop nest is then tiled and reordered using
an external polyhedral library. For packing, Bondhugula’s
approach utilizes the data copy generation (DCG) pass in
Affine, which GPAT builds upon. However, the current im-
plementation of DCG lacks a cost-benefit analysis such as the
one integrated in GPAT. As a result, to prevent packing all
tensors, Bondhugula hand-tuned the DCG pass for GEMM.
In contrast, GPAT is fully agnostic to the computation in a
target loop nest. Other code generation approaches either do
not implement packing as a compiler pass or only consider
packing for GEMM [20, 30].

6 Conclusion
This work presents GPAT, a modular compiler analysis

and code transformation to determine what and where to
apply packing. Using an analytical model that accounts for
TLB utilization and data-layout changes, GPAT decides when
applying packing improves performance. Although the ab-
stractions in MLIR are convenient to implement GPAT, GPAT
can be integrated into other production-ready compilers
(e.g. LLVM) to automatically optimize computations beyond
GEMM while being orthogonal to tiling strategy. This paper
shows that, though GPAT by itself surpasses the performance
of current loop optimizers for some benchmarks, it can also
be used alongside them to improve overall performance.
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A Artifact Appendix
A.1 Abstract
This artifact provides a Docker image containing all re-

quired binaries and instructions to execute the two experi-
ments presented in the paper. Additionally, the artifact con-
tains the source code, scripts, benchmarks, and the data and
graphs from the presented experiments.
A.2 Artifact Check-List (Meta-Information)

• Algorithm: A generalized packing analysis and code trans-
formation.

• Program: Includes source for Polybench/C 4.2 and the run-
ning example (Listing 1).

• Compilation: Includes LLVM 14.0.1.
• Transformations: Includes Polygeist and Polymer at ver-
sions specified in Sections 4.1 and 4.2.

• Binary: Includes binaries in the Docker image.
• Run-time environment: Tested on Ubuntu 20.04.1 (Ker-
nel 5.15.0-46) with Docker. Root access is needed to enable
profiling with perf.

• Hardware: Tested on Intel x86-64 CPUs. Sudo access is
required to lock CPU frequency.

• Metrics: Execution time, Linux perf counters (L1, L2, and
L3 cache misses; L1 and L2 TLB misses.),

• Output: Execution logs and associated graphs for the exper-
iments. The expected results are also included.

• Experiments: Packing selection evaluation (Section 4.3)
and Polybench evaluation (Section 4.4).

• Howmuchdisk space required (approximately)?: 4.1GiB
for the base Docker container. An additional 1.4GiB for the
source code, scripts, and results from the paper.

• How much time is needed to complete experiments
(approximately)?: 3-4 days, but highly dependent on the
CPU and locked frequency.

• Publicly available?: Yes.
• Code licenses?: Apache License v2.0 with LLVM Excep-
tions.

• Archived (provide DOI)?: 10.5281/zenodo.7517506

A.3 Description
A.3.1 How toAccess. The artifact is archived: 10.5281/zen-
odo.7517506 and the space required is about 5.5GiB [26].
A.3.2 Hardware Dependencies. A CPU with access to
hardware counters for cache misses, TLB misses, and instruc-
tions executed.
A.3.3 Software Dependencies. Working Docker instal-
lation and Linux perf.
A.4 Installation
A.4.1 Perf on Host. To enable perf, install it and allow
unprivileged users to see perf event counters:

$ sudo apt install linux-tools-common linux-tools-generic \
linux-tools-$(uname -r)

$ sudo sh -c 'echo 1 > /proc/sys/kernel/perf_event_paranoid'

A.4.2 CPU Scaling. To obtain more consistent and reli-
able results, lock the CPU frequency. For the experiments

presented in this paper, the CPU was locked at its base fre-
quency (3GHz), which varies across CPUs.

$ sudo cpupower frequency-set --governor performance
$ sudo cpupower frequency-set -u 3GHz
$ sudo cpupower frequency-set -d 3GHz

A.4.3 Docker Container. Download the Docker image,
navigate to the directory containing the download to load
the image, and then create and start a container.

$ docker load --input docker-packing-artifact.tar.gz
$ docker create --privileged -it --name artifact \

packing-artifact
$ docker start artifact

The --privileged flag is needed to use perf in the experi-
ments. Additionally, perf requires installing the version that
matches your system in the container by running:

$ docker exec -u 0 -it artifact bash
$ apt update && apt install -y linux-tools-$(uname -r)
$ exit

A.5 Experiment Workflow
With the docker container already started, run the Docker

container interactively using the following command.

$ docker exec -it artifact bash

Start by setting up the architectural-specific parameters
of the target CPU by modifying spec.file inside the container.
This can be done, for example with the following command
(vim or nano):

$ vim $HOME/scripts/experiments/spec.file

The parameters entered in spec.file are used by the packing
analysis and by LLVM’s Polly. They also define what are the
cache parameters used as inputs to Affine Tiling in the Poly-
bench evaluation. In the host, cache and TLB information
for an x86 machine can be found by running:

$ lscpu -C
$ sudo apt install -y x86info && x86info -c

A.5.1 Replicate Experiments. To exactly replicate the
methods used to obtain the results in this paper, run the
following in the container:

$ mkdir $HOME/replica
$ $HOME/scripts/experiments/auto-eval.sh $HOME/replica

Finally, in the host, retrieve the results by running:

$ ID="$(docker ps -aqf 'name=^artifact$')"
$ docker cp ${ID}:/home/packing/replica/ .
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A.5.2 Detailed Workflow. The following instructions
provide a more modular way to run the same experiments.
They also allow running the experiment without perf, thus
not requiring root permissions to execute.

To run the packing selection evaluation on gemm, execute
the following commands inside the Docker container:

$ BENCHMARK="gemm"
$ DATASET_SIZE="LARGE"
$ cd $HOME/scripts/experiments/packing-selection-evaluation/
$ OUTPUT_DIR="$HOME/output/output-${BENCHMARK}-${

DATASET_SIZE}"
$ mkdir -p ${OUTPUT_DIR}/graphs
$ ./generate-files.sh -D ${DATASET_SIZE} -B ${BENCHMARK} \

${OUTPUT_DIR}
$ ./run.sh -D ${DATASET_SIZE} ${OUTPUT_DIR}/executables \

${OUTPUT_DIR}
$ ./parse-log.py ${OUTPUT_DIR}/output.log \

${OUTPUT_DIR}/graphs ${BENCHMARK}

To run the same experiment with 2mm or gemm in the
BLIS loop order, change the BENCHMARK variable to "2mm"
or "gemm-blis" and rerun the previous commands.

To run the Polybench evaluation experiment with the Poly-
mer tiling engine, execute the following commands inside
the Docker container:

$ TILING="Polymer"
$ DATASET_SIZE="LARGE"
$ cd $HOME/scripts/experiments/polybench-evaluation/
$ OUTPUT_DIR="$HOME/output/output-polybench-${TILING}-${

DATASET_SIZE}"
$ mkdir -p ${OUTPUT_DIR}/logs ${OUTPUT_DIR}/graphs
$ ./generate-files.sh -D ${DATASET_SIZE} -T ${TILING} \

${OUTPUT_DIR}
$ ./run.sh -D LARGE ${OUTPUT_DIR} ${OUTPUT_DIR}/logs
$ ./parse-log.py ${OUTPUT_DIR}/logs ${OUTPUT_DIR}/graphs \

${TILING}

To run the same experiment with the Affine Tiling engine,
simply change the TILING variable to "AffineTiling".
All scripts have a help message, accessed through the

-h flag, describing the script’s use and optional parameters.
There are also README.md files in the ~/scripts directory
that provide more information.
To collect event counters with perf during benchmark

execution, add the flag -p to the run.sh scripts. Additionally,
to specify the number of runs of each benchmark, use the flag
-r NUMBER in the run.sh scripts. Lastly, Polybench defines 5
dataset sizes: EXTRALARGE, LARGE, MEDIUM, SMALL, and MINI.
The experiments were run with the LARGE dataset. To use
a different size, change the variable DATASET_SIZE to the
desired dataset size.

To copy an experiment’s output from the Docker container
to the host, run from the host machine:

$ ID="$(docker ps -aqf 'name=^artifact$')"
$ docker cp ${ID}:/home/packing/output/ .

A.6 Evaluation and Expected Results
If using a similar environment, the result trends should

follow what was presented in this paper. However, a dif-
ferent CPU may have different features, affecting the end
results. For example, large changes to the cache and TLB
sizes, or support for additional instructions may affect the
final results.
A.7 Experiment Customization

The scripts allow selecting the Polybench dataset size used
in the experiments. Further, in the experiment’s spec.file,
there are three false-by-default variables that can be set to
true.

• POLLY_ENABLE_PATTERN_MATCHING: enables pattern-
match-based optimizations in Polly, affecting all Polly
compiled benchmarks when matrix multiplication can
be detected.

• LLVM_DISABLE_VECTORIZATION: disables vectorization
passes in LLVM, affecting all compiled benchmarks.

• LLVM_DISABLE_UNROLLING: disables unrolling passes
in LLVM, affecting all compiled benchmarks.

To customize the Polybench evaluation workflow, scripts
are available in ~/scripts in folders named: affine-tiling,
lower-to-binary, mlir-packing, polly, polygeist, and polymer.

Interacting with these scripts is not necessary to execute
the experiments, but they provide more details on the com-
pilation pipeline used. Each folder contains a script with a
help message and a README.md file.
A.8 Notes

• Depending on the host’s Docker configuration, sudo
privileges may be required.

• Some tiling sizes cause MLIR to generate incorrect
code for trmm leading to failures. However, these fail-
ures do not affect the other benchmarks.

• In the Polybench evaluation using the Affine tiling
engine, the summary graph (Figure 5) is sensitive to
hardware parameter changes and may fail to render
correctly. Please refer to the graphs that show data for
benchmarks individually in this case.

• A host machine not using Ubuntu nor an Intel CPU
may require changing the perf event counter names
in the run.sh scripts. If the perf container installation
fails try the following command before using perf.

$ export PATH=/usr/lib/linux-tools/5.4.0-132-generic/:$PATH
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